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Abstract This study aims to identify and characterize species of Lasiodiplodia responsible for 

table grape dieback in São Francisco Valley, the main Brazilian exporting region. Fungal 

identifications were made using a combination of morphology together with a phylogenetic 

analysis based on partial translation elongation factor 1-α sequence (EF1-α) and internal 

transcribed spacers (ITS). Eight species of Lasiodiplodia were identified: L. brasiliense, L. 

crassispora, L. egyptiacae, L. euphorbicola, L. hormozganensis, L. jatrophicola, L. 

pseudotheobromae and L. theobromae. Only three these species had previously been reported 

in grapevine, while all the other species are reported for the first time in association with this 

host in Brazil and worldwide. Lasiodiplodia theobromae was the prevalent species. All 

species of Lasiodiplodia were pathogenic on detached green shoots of grapevine, with L. 

brasiliense being the most virulent. 

 

Keywords Botryosphaeriaceae, Phylogeny, Trunk disease, Virulence, Vitis vinifera 

 

Introduction 

 

Table grape (Vitis spp.) is an important fresh fruit exported by Brazil. In 2011, 59,400 t of 

table grapes were exported and accounting for US$ 136 million (FAO 2014). The 

Northeastern region is responsible for 99% of Brazilian exports of table grapes, where 9,600 

ha are cultivated. The São Francisco Valley, located in the semi-arid region of Bahia and 

Pernambuco States, is the main table grape growing area in the region, accounting for 98% of 

the production (Lazzarotto and Fioravanço 2013).  

Northeastern Brazil is a tropical region, thus the management systems for grapevine 

production are adapted to the specific environmental conditions of a tropical viticulture. In the 

dry tropic, the growth and cropping cycle of the vine can be manipulated to extend from 5 to 

12 months by a combination of pruning, modifying vine water status and the use of chemical 
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regulators. Thus, it is possible to achieve two and a half to three vegetative cycles per year 

(Camargo et al. 2008; Possingham 2008). 

Table grapes are affected by various pests and pathogens. Among the wide range of 

diseases that impact on table grape production in Brazil, dieback has become increasingly 

important (Garrido et al. 2011). The first report of grapevine dieback in Brazil was in 1992 

(Ribeiro et al. 1992) and since then the intensity of the disease has increased leading, in some 

cases, to drastic reductions in longevity and productivity of the plants, greatly increasing 

production costs (Garrido et al. 2011).  

Grapevine dieback is caused by a complex of fungi, but members of the 

Botryosphaeriaceae are considered to be the most important (Úrbez-Torres 2011; Larignon 

2012; Úrbez-Torres et al. 2012). Lasiodiplodia Ellis & Everh. is a member of the 

Botryosphaeriaceae, a genus-rich family in the Dothideomycetes, containing numerous 

species with a cosmopolitan distribution that occur on a large variety of plant hosts, on which 

they are found as saprophytes, parasites, and endophytes (Slippers and Wingfield 2007; Liu et 

al. 2012; Phillips et al. 2013; Wikee et al. 2013). Lasiodiplodia species are common, 

especially in tropical and subtropical regions (Punithalingam 1980; Burgess et al. 2006), 

where they cause a variety of diseases in up to 650 plant hosts (Farr and Rossman 2014). The 

fungus has been reported as a grapevine pathogen worldwide associated with several disease 

symptoms including stunted growth, dieback of shoots, spurs and arms, canker of trunk or 

arms, wedge-shape cankers in the vascular tissue and mortality (Larignon et al. 2001; van 

Niekerk et al. 2004; Amponsah et al. 2011; Úrbez-Torres 2011; Úrbez-Torres et al. 2012). 

Besides grapevine, several other crops of economic importance are affected by 

Lasiodiplodia in Brazil, especially avocado (Persea americana Mill.), banana (Musa spp.), 

barbados cherry (Malpighia glabra L.), cacao (Theobromae cacao L.), cashew (Anacardium 

occidentale L.), castor bean (Ricinus communis L.), citrus (Citrus spp.), coconut palm (Cocos 

nucifera L.), custard apple (Annona squamosa L.), guarana (Paullinia cupana Ducke), guava 
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(Psidium guajava L.), mango (Mangifera indica L.), muskmelon (Cucumis melo L.), papaya 

(Carica papaya L.), passion fruit (Passiflora edulis Sims), physic nut (Jatropha curcas L.), 

soursop (Annona muricata L.) and watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) 

(Tavares 2002; Freire et al. 2003; Costa et al. 2010; Muniz et al. 2012; Marques et al. 2013; 

Machado et al. 2014; Netto et al. 2014). 

The main features that distinguish Lasiodiplodia from other closely related genera are 

the presence of pycnidial paraphyses and longitudinal striations on mature conidia (Sutton 

1980; Phillips et al. 2008). The taxonomic history of Lasiodiplodia is confused, but after 150 

years this trend ended with the monograph of Punithalingam (1976), which reduced most 

species to synonymy with L. theobromae (Pat.) Griff. & Maubl. However, in recent years, the 

use of molecular tools has been offering meaningful advances at the species identification of 

Lasiodiplodia and 24 new species have been reported since 2004 (Phillips et al. 2013; 

Machado et al. 2014 ; Netto et al. 2014). 

Four species of Lasiodiplodia have been found associated with grapevine dieback 

worldwide: L. crassispora T.I. Burgess & Barber, L. missouriana J.R. Úrbez-Torres, F. 

Peduto & W.D. Gubler, L. theobromae L. pseudotheobromae A.J.L. Phillips, A. Alves & 

Crous, L. parva A.J.L. Phillips, A. Alves & Crous, and L. viticola J.R. Úrbez-Torres, F. 

Peduto & W.D. Gubler (Phillips 2002; Taylor et al. 2005; Qiu et al. 2011; Úrbez-Torres 2011; 

Larignon 2012; Úrbez-Torres et al. 2012; Abreo et al. 2013; Bertsch et al. 2013; Billones-

Baaijens et al. 2013; Correia et al. 2013; Pitt et al. 2013; Yan et al. 2013). Among these, L. 

theobromae has been reported to be the most prevalent and virulent in grapevine worldwide 

(van Niekerk et al. 2006; Úrbez-Torres et al. 2008; Qiu et al. 2011; Úrbez-Torres 2011; Pitt et 

al. 2013; Yan et al. 2013). 

In Brazil, thirteen species of Lasiodiplodia were reported (Costa et al. 2010; Correia et 

al. 2013; Marques et al. 2013; Machado et al. 2014; Netto et al. 2014), and only L. 

theobromae, L. crassispora, L. pseudotheobromae and L. parva has been reported on 
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grapevine (Garrido et al. 2011; Correia et al. 2013). However, in some works, identifications 

of L. theobromae from grapevine were based primarily on morphological and cultural data, 

which is now considered to be unreliable for species discrimination since the morphological 

characteristics overlap with other species of Lasiodiplodia (Costa et al. 2010). 

The increasing economic importance of dieback caused by Lasiodiplodia in grapevine 

and the recent discovery of several new species of fungus associated with tropical plants led 

us to speculate that more than one species of Lasiodiplodia may be associated with table 

grape dieback in São Francisco Valley, Northeastern Brazil. The disease etiology is crucial for 

epidemiological studies and for a better understanding of the distribution and importance of 

individual species, as well as finding effective management strategies to each pathogen. 

Therefore, the objective of this study were (a) to identify species of Lasiodiplodia associated 

with dieback of table grapes in São Francisco Valley, (b) to investigate the prevalence and 

distribution of the species in the region and (c) to evaluate their pathogenicity and virulence in 

excised green shoots of table grape. 

 

Materials and methods 

 

Sampling and fungal isolation 

 

During 2012 and 2013, isolates of Lasiodiplodia were obtained from 14 vineyards located in 

São Francisco Valley, Northeastern Brazil. These isolates represented three table grape 

populations (Casa Nova, Juazeiro and Petrolina) according to their geographical origin (Fig. 

1). In each vineyard, 10 grapevines exhibiting dieback symptoms were sampled for tissue 

isolation. Symptomatic wood fragments taken from the margin of dead and healthy tissue, and 

from internal necroses were washed under running tap water, surface-disinfected for 1 min in 

a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. Small 
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pieces (4-5 mm) of tissue were taken from the margin between necrotic and apparently 

healthy tissue to be plated onto potato dextrose agar (PDA) (Acumedia, Lansing, USA) 

amended with 0.5 g l−1 streptomycin sulfate (PDAS). Plates were incubated at 25°C in the 

dark for 3 to 4 days. Fungal colonies emerging from plant tissue pieces that were 

morphologically similar to species of Botryosphaeriaceae (Sutton 1980; Phillips 2006) were 

transferred to PDA plates and incubated at 25 °C in the dark, with observation after 3, 7 and 

15 days. To obtain single-spore isolates, pycnidia were induced on 2 % water agar (WA) with 

autoclaved pine needles as a substrate after 3-week incubation at 25 °C under a 12 h daily 

photoperiod with near-ultraviolet light (Slippers et al. 2004). A single conidium was cut from 

each isolate under a stereo microscope (Zeiss Stemi DV4; Carl Zeiss, Berlin, Germany) and 

placed in 250 μl of sterile water to produce a conidial suspension. A 20 μl aliquot was spread 

on PDAS and incubated at 25 °C in the dark for 24 h. A single-conidia isolate was recovered 

for an individual sample and transferred to a fresh PDA plate. One-hundred and twelve 

isolates were morphologically identified as Lasiodiplodia based on morphological 

characteristics typical of the genus, namely conidiomatal paraphyses, conidia that were 

initially hyaline and aseptate, but in time developed a single median septum, the wall became 

dark brown and melanin granules deposited longitudinally on the inner surface of the wall 

giving the conidia a striate appearance (Sutton 1980; Alves et al. 2008). Stock cultures were 

stored in PDA slants at 5 °C in the dark. 

 

DNA isolation, PCR amplification and sequencing 

 

Using a sterile 10 μl pipette tip, a small amount of aerial mycelium was scraped from the 

surface of a 7 day old culture on PDA at 25 °C and genomic DNA was extracted using the 

AxyPrep™ Multisource Genomic DNA Miniprep Kit (Axygen Scientific Inc., Union City, 

USA) following the manufacturer’s instructions. A portion of the translation elongation factor 
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1α (EF1-α) gene was sequenced for all the Lasiodiplodia isolates collected from vineyards. 

The internal transcribed spacer (ITS) region of rDNA was sequenced to confirm the identity 

of 32 representative isolates within EF1-α identified species. The ITS region was amplified 

using the primers ITS1 and ITS4 (White et al. 1990) as described by Slippers et al (2004) and 

EF1-α gene was amplified using the primers EF1-688F and EF1-1251R (Alves et al. 2008) as 

described by Phillips et al. (2005). Each 50 μl polymerase chain reaction (PCR) mixture 

included 21 μl of PCR-grade water, 1 μl of DNA template, 1.5 μM of each primer, and 1 μl of 

PCR Master Mix (2X) (0.05 u μl−1 de Taq DNA polimerase, reaction buffer, 4 mM MgCl2, 

0.4 mM of each dNTP; Thermo Scientific,Waltham, USA). PCR reactions were carried out in 

a thermal cycler (Biocycler MJ 96; Applied Biosystems, Foster City, USA). The PCR 

amplification products were separated by electrophoresis in 1.5 % agarose gels in 1.0× Tris-

acetate acid EDTA (TAE) buffer and were photographed under UV light after staining with 

with ethidium bromide (0.5 μg ml−1) for 1 min. The PCR amplification products were 

separated by electrophoresis in 1.5% agarose gels in 1.0× Tris-acetate acid EDTA (TAE) 

buffer and were photographed under UV light after staining with ethidium bromide (0.5 g 

ml-1) for 1 min. PCR products were purified using the AxyPrep PCR Cleanup Kit (Axygen) 

following the manufacturer’s instructions. ITS and EF1-α regions were sequenced in both 

directions using an ABI PRISM® 3100-Avant Genetic Analyzer (Applied Biosystems) at the 

Sequencing Platform LABCEN/CCB in the Universidade Federal de Pernambuco (Recife, 

Brazil). 

 

Phylogenetic analyses 

 

Sequences were aligned with ClustalX v. 1.83 (Thompson et al. 1997), using the following 

parameters: pairwise alignment parameters (gap opening = 10, gap extension = 0.1) and 

multiple alignment parameters (gap opening = 10, gap extension = 0.2, transition weight = 
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0.5, delay divergent sequences = 25 %). Alignments were checked and manual adjustments 

were made where necessary. Phylogenetic information contained in indels (gaps) was 

incorporated into the phylogenetic analyses using simple indel coding as implemented by 

GapCoder (Young and Healy 2003). Sequences of Lasiodiplodia type strains obtained from 

GenBank were included in the analyses (Table 1). Diplodia seriata De Not. (CBS 112555) 

and D. mutila Fr. (CBS 112553) were used as outgroup. 

Phylogenetic analyses were performed using PAUP v. 4.0b10 (Swofford 2003) for 

maximum-parsimony and MrBayes v. 3.0b4 (Ronquist and Huelsenbeck 2003) for Bayesian 

analyses. Maximum-parsimony analyses were performed using the heuristic search option 

with 1000 random taxa addition and tree bisection and reconnection (TBR) as the branch-

swapping algorithm. All characters were unordered and of equal weight and gaps were treated 

as missing data. Branches of zero length were collapsed and all multiple, equally 

parsimonious trees were saved. The robustness of the most parsimonious trees was evaluated 

from 1000 bootstrap replications (Hillis and Bull 1993). Other measures used were 

consistency index (CI), retention index (RI) and homoplasy index (HI). In the Bayesian 

analysis, the full data set were run twice for 106 generations.  Trees were sampled every 

1000th generation for a total of 10 000 trees. The first 1 000 trees were discarded as the burn-

in phase of each analysis. Posterior probabilities (Rannala and Yang 1996) were determined 

from a majority-rule consensus tree generated with the remaining 9 000 trees. This analysis 

was repeated four times starting from different random trees to ensure trees from the same 

tree space were sampled during each analysis 

Phylogenetic trees were viewed with Treeview (Page 1996). Sequences generated in this 

study were deposited in GenBank (Table 1) and the alignment in TreeBase (S14682). 

Representative isolates of different Lasiodiplodia species obtained in this study were 

deposited in the Culture Collection of Phytopathogenic Fungi “Prof. Maria Menezes” (CMM) 

at the Universidade Federal Rural de Pernambuco (Recife, Brazil). 
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Morphology and cultural characteristics 

 

The 32 Lasiodiplodia isolates that were identified in the phylogenetic analysis using the 

combined data set were used to study colony morphology and conidial characteristics. The 

color and aerial hyphal growth from isolates were recorded during 15 days of growth on 2 % 

malt extract agar (MEA) (Acumedia) at 25 ºC in the dark. Colony colors were recorded as per 

Rayner (1970). Characteristics of conidial morphology were observed after placing cultures 

on 2 % WA containing autoclaved pine needles and incubation under near-ultraviolet light, as 

previously described. Conidia and other structures were mounted in 100 % lactic acid and 

digital images recorded with a Leica DFC320 camera on a Leica DMR HC microscope fitted 

with Nomarski differential interference contrast optics (Leica Microsystems Imaging 

Solutions Ltd., Cambridge, UK). The length and width of 50 conidia per isolate were 

measured with the Leica IM500 measurement module. Mean and standard errors of the 

conidial measurements, including mean length to width ratio (L/W) of the conidial 

measurements were calculated. Conidial color, shape, and presence or absence of septa was 

also recorded. 

Isolates were also used to determine the effect of temperature on colony growth of 

different species. A 3-mm-diameter mycelial plug from the growing margin of a 3-day-old 

colony was placed in the center of a 90-mm-diameter 2 % MEA plate, and four replicates of 

each isolate were incubated at temperatures ranging from 10 °C to 40 °C in 5 °C intervals in 

the dark. After a 2-days incubation period, the colony diameter (mm) was measured in two 

perpendicular directions. The experiment was done twice. Colony diameters were plotted 

against temperature and a curve was fitted by a cubic polynomial regression 

(y=a+bx+cx2+dx3). Optimal temperature was estimated from the regression equation and 

numeric summary with TableCurve™ 2D v. 5.01 (SYSTAT Software Inc., Chicago, USA). 
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Optimum temperature was defined as the temperature that produced the maximum mycelial 

growth. The colony diameter data at 30 °C were used to calculate the mycelial growth rate 

(mm/day). One-way analyses of variance (ANOVA) were conducted with data obtained from 

optimum temperature and mycelial growth rate experiments, and means were compared by 

Fisher’s least significant difference (LSD) test at the 5 % significance level using STATISTIX 

v. 9.0 (Analytical Software, Tallahassee, USA). 

 

Distribution and diversity of Lasiodiplodia species  

 

Based on the number of isolates of each Lasiodiplodia species recorded, it was calculated the 

relative frequency of each species in relation to overall number of isolates and to the total 

number of isolates within each table grape population (Zak and Willig 2004). The diversity of 

Lasiodiplodia species was estimated in terms of species richness (number of species in the 

sample) and evenness (dominance of species in the sample) by the Shannon-Wiener’s index 

H´ = Σj (pj ln pj), j = 1……… Np, where Np is the number of species identified among these 

isolates, and pj is the proportion of individuals in the jth species. The H´ values increases with 

the number of species in a sample or reduces as one or a few species domain in the sample 

(Shannon and Weaver 1949). To quantify the degree of overlap between the Lasiodiplodia 

species in the table grape populations, a measure of the similarity between pairs of samples 

was calculated by the Jaccard’s index JI = a/ (a+b+c), where a represents the number of 

species occurring in both samples, b represents the number of species restricted to sample 1, 

and c represents the number of species restricted to sample 2. The JI values ranges from 0 (no 

species shared) 1 (all species shared) (Kumar and Hyde 2004). 

 

Pathogenicity and virulence on detached green shoots 
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Detached green shoots of cultivar Isabel were used to investigate the pathogenicity and 

virulence of the eight Lasiodiplodia species found on grapevines in San Francisco Valley. The 

isolates were the same used in the morphological characterization. The soft green shoots from 

unsprayed plants were cut in a commercial vineyard in São Vicente Férrer (Pernambuco), 

from which Botryosphaeriaceae species where not detected following repeated sampling and 

isolation. The shoots were immediately placed into large plastic containers filled with sterile 

water, with the shoots placed over a plastic grid. The plastic containers were partially sealed 

with plastic bags and transported to Universidade Federal Rural de Pernambuco. The cut ends 

were dipped in wax and in the centre of each shoot (30 cm long) a superficial wound (~4-mm 

length, 2-mm deep) was made using a sterilized scalpel. It was inoculated with a mycelial 

plug (4 mm in diameter) removed from the margin of a 5-day-old PDA culture of each isolate. 

Non-colonized PDA agar plugs were used as negative controls. The inoculated area was 

wrapped with Parafilm (Pechiney Co., Chicago, USA) to prevent rapid dehydration. 

Inoculated shoots were placed in large plastic containers, as described above, and incubated at 

25 °C and 12-h photoperiod in a growth chamber. After 10 days, the Parafilm was removed, 

the shoots were sliced through lengthwise and the internal lesions visually observed. The 

isolates were considered pathogenic when the lesioned area advanced beyond the 4-mm 

diameter inoculated area. The virulence of the isolates was evaluated by measurement of the 

lesion lengths with a digital calliper (Mitutoyo Co., Kanagawa, Japan). The experiment was 

arranged in a completely randomized design with ten replicates per treatment (isolate) and one 

shoot per replicate. The experiment was conducted twice. Differences in virulence caused by 

Lasiodiplodia species were determined by one-way ANOVA and means were compared by 

LSD test at the 5 % significance level using STATISTIX. 

 

Results 
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DNA sequencing and phylogenetic analyses 

 

A total of 112 isolates of Lasiodiplodia spp. were obtained from table grape plants. All the 

isolates were identified based on phylogenetic analysis of the partial translation elongation 

factor 1α (EF1-α) gene. To confirm the identity of the isolates, the internal transcribed spacer 

(ITS) sequence was obtained for 32 isolates representing each putative species. The combined 

ITS and EF1-α data set consists of 83 taxa, including two outgroup. The alignment contained 

746 characters, of which 579 were constant while 33 were variable and parsimony 

uninformative. A heuristic search of the remaining 134 parsimony-informative characters 

generated 8 equally parsimonious trees with (Tl=284; CI=0.739; RI=0.900; HI=0.261). 

Maximum-parsimony and Bayesian inference produced nearly identical topologies (Bayesian 

tree not shown). Sequences of ex-type isolates of Lasiodiplodia species from GenBank were 

included in the analysis together with isolates obtained in this study (Table 1). The combined 

dataset resulted in 25 well supported clades of which 23 clades corresponded to previously 

described Lasiodiplodia species. Six isolates clustered with clade containing L. jatrophicola 

(CMM 3610). The second group with five isolates clustered with L. theobromae. Four isolates 

clustered with L. euphorbicola (CMM 3651, CMM 3609 and CMM 3652) and L. marypalme 

(CMM 2173, CMM 2275 and CMM 2272). In clades L. crassispora and L. brasiliense (CMM 

4011, CMM 4015) four isolates were clustered in each. Three isolates clustered with L. 

egyptiacea and other three isolates clustered with L. pseudotheobromae. In clade L. 

hormozganensis three isolates clustered (Fig. 2). 

 

Morphology and cultural characteristics 

 

The 32 Lasiodiplodia isolates [L. brasiliense (4), L. crassispora (4), L. egyptiacae (3), L. 

euphorbicola (4), L. hormozganensis (3), L. jatrophicola (6), L. pseudotheobromae (3) and L. 
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theobromae (5)] that were identified based in the phylogenetic analysis using the combined 

data were further characterized by colony morphology and conidial characteristics. All 

isolates produced anamorph structures on the pine needles on WA within 2–4 wk. No 

teleomorph structures were observed during this study. All species showed morphological 

features typical of the genus, namely slowly maturing conidia with thick walls and 

longitudinal striations (Punithalingam 1976, 1980). All isolates grew rapidly on PDA, 

covering the entire surface of the Petri dishes within 3 days. The aerial mycelium was initially 

white, turning dark greenish-grey or greyish after 4–5 days at 25 °C in the dark. The species 

of Lasiodiplodia found in this study show differences in conidial size. The conidial 

dimensions found in L. euphorbicola and L. jatrophicola are outside of the range previously 

described for these species in the literature (Table 2). All species of Lasiodiplodia used in this 

study grew at 10 °C. There were significant differences (P≤0.05) in growth rate among the 

Lasiodiplodia species and differences in the optimum temperature for mycelial growth. The 

optimum temperature for growth of L. egyptiacae (29.9 °C) was significantly lower than that 

of L. euphorbicola (32.6 °C). The other species (L. brasiliense, L. crassispora, L. 

hormozganensis, L. jatrophicola, L. pseudotheobromae and L. theobromae) presented 

intermediate values of optimum temperature for growth, without differing of observed 

extremes. The mycelial growth rate of L. jatrophicola (43.5 mm/day) was significantly higher 

than L. brasiliense, L. euphorbicola and L. hormozganensis, which varied from 36.9 to 39.8 

mm/day. The other species (L. crassispora, L. egyptiacae, L. pseudotheobromae and L. 

theobromae) presented intermediate values of mycelial growth rate, without differing of L. 

jatrophicola, L. euphorbicola and L. hormozganensis (Table 3). 

 

Taxonomy 
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Lasiodiplodia euphorbicola A.R. Machado & O.L. Pereira. Fungal Divers (DOI 

10.1007/s13225-013-0274-1) 

= Lasiodiplodia marypalme M.S.B. Netto, M.W. Marques, A.J.L. Phillips & M.P.S. 

Câmara. Fungal Divers (DOI 10.1007/s13225-014-0279-4) 

 

Placed as synonymy with L. euphorbicola, the species L. marypalme was described by Netto 

et al. (2014) causing stem-end rot of papaya in Northeastern Brazil. The authors described this 

species by multi-locus phylogeny using the EF1-α and ITS genes. Machado et al. (2014) early 

described the species L. euphorbicola using sequence data of EF1-α, βT and ITS genes. Since 

the molecular data of L. euphorbicola were not available in public database, Netto et al. 

(2014) described L. marypalme as a new species. We sequenced the EF1-α and ITS genes for 

some isolates first described as L. marypalme (including the ex-type) and included them in 

our analysis. Morphological characteristics are similar for both species, differing only in the 

size of conidia (Table 1). The phylogenetic tree generated showed that this isolate nested with 

the ex-type of L. euphorbicola in a well supported clade. 

 

Distribution and diversity of Lasiodiplodia species  

 

Lasiodiplodia theobromae was the predominant species isolated from table grape plants (46.4 

%) followed by L. brasiliense (15.2 %), L. jatrophicola (11.6 %), L. hormozganensis (7.1 %), 

L. crassispora (7.1 %), L. egyptiacae (5.4 %), L. euphorbicola and L. pseudotheobromae (3.6 

%). The distribution of Lasiodiplodia species differed between the three table grape 

populations of São Francisco Valley. Only in the population of Casa Nova all Lasiodiplodia 

species were found. In Petrolina population the only species that was not present was L. 

crassispora. Lasiodiplodia jatrophicola, L. hormozganensis and L. theobromae were found in 

all populations. Lasiodiplodia theobromae was the predominant species in all populations. 
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Lasiodiplodia brasiliense, L. egyptiacae, L. euphorbicola and L. pseudotheobromae were 

found in populations of Casa Nova and Petrolina. Lasiodiplodia crassispora was found only 

in population of Casa Nova, where it was the second most prevalent species (Fig. 1).  

A comparison of the Shannon-Wiener’s diversity index (H´) showed that populations 

of Casa Nova and Petrolina are similar in diversity of Lasiodiplodia species causing dieback 

in table grapes (H´ = 1.55 and H´ = 1.56, respectively), while the population of Juazeiro had 

the lowest diversity (H´ = 0.90) (Fig. 1).  

The comparison between the Lasiodiplodia species recovered from different table 

grape populations was computed using a Jaccard’s index for possible pairs of populations. 

The highest overlap (JI = 0.89) was observed for the Lasiodiplodia species from populations 

of Casa Nova and Petrolina, followed by populations of Juazeiro and Petrolina (JI = 0.43). 

The lowest value of similarity (JI = 0.38) was observed between populations of Casa Nova 

and Juazeiro. 

 

Pathogenicity and virulence in detached green shoots  

 

All isolates of Lasiodiplodia were pathogenic to detached green shoots of table grape, 

resulting in visible lesions 10 days after inoculation. The symptoms observed both on the 

surface and internally were dark brown necrotic lesions which extended upward and 

downward from the point of inoculation. There were significant differences (P≤0.05) in 

internal lesion lengths produced by the different Lasiodiplodia species. The longest lesions 

were produced by L. brasiliense (253.0 mm), wherein was most virulent, followed by L. 

theobromae (197.6 mm). The small lesions were produced by L. egyptiacae and L. 

euphorbicola (20 mm), than did not differ significantly from each other and were considered 

the less virulent species. The others species (L. crassispora, L. hormozganensis, L. 
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jatrophicola and L. pseudotheobromae) presented intermediate virulence, with lesions 

varying from 109.3 mm to 148.1 mm (Fig. 3). 

 

Discussion 

 

This study represents the first survey of species of Lasiodiplodia associated with table 

grape dieback in the main Brazilian exporting region with an extensive collection of isolates, 

and integrating morphology, pathology and molecular data. Eight species of Lasiodiplodia 

were identified as causing table grape dieback: L. brasiliense, L. crassispora, L. egyptiacae, 

L. euphorbicola (L. marypalme), L. hormozganensis, L. jatrophicola, L. pseudotheobromae, 

and L. theobromae. Except for L. crassispora, L. pseudotheobromae, and L. theobromae, all 

the other species are reported for the first time on grapevine worldwide.  

In this work, L. theobromae was the most frequently isolated species associated with 

table grape dieback (46.4 %), and also the most widespread species in vineyards of São 

Francisco Valley, Northeastern Brazil. Similar results were obtained when the frequency of 

Lasiodiplodia species associated with dieback and stem-end rot of mango (Marques et al. 

2013) and stem-end rot of papaya (Netto et al. 2014)  was investigated in the semi-arid region 

of Northeastern Brazil. This species is considered a pantropical pathogen occurring in a wide 

range of hosts (Punithalingam 1980; Burgess et al. 2006; Farr and Rossman 2014). In Brazil, 

L. theobromae, L. crassispora, L. parva and L. pseudotheobromae had been reported in 

grapevine (Gava et al. 2010; Correia et al. 2013). In this work, five more species were found 

in this host.  

Worldwide, several species have been described in the L. theobromae complex, mostly 

due to the increase in the application of DNA sequence data, but also because of the increased 

sampling of relatively unexplored areas, including Venezuela (Burgess et al. 2006), Australia 

(Pavlic et al. 2008), Iran (Abdollahzadeh et al. 2010), Egypt (Ismail et al. 2012), Brazil 
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(Marques et al. 2013; Machado et al. 2014; Netto et al. 2014), Oman and United Arab 

Emirates (Al-Sadi et al. 2013). 

Lasiodiplodia hormozganensis was described in Iran associated with mango and Olea 

sp. (Abdollahzadeh et al. 2010), in Australia associated with Adansonia digitata L. (Sakalidis 

et al. 2011), in Brazil associated with mango (Marques et al. 2013) and papaya (Netto et al. 

2014) and in Oman associated with Citrus, date palm (Phoenix dactylifera L.) and mango (Al-

Sadi et al. 2013). This work represents the first report of this species causing table grape 

dieback worldwide. In this study, L. hormozganensis presented intermediate virulence in 

detached green shoots of table grape. This result differs from that found by Sakalidis et al. 

(2011), Marques et al. (2013) and Netto et al. (2014) where L. hormozganensis isolates 

produced the largest lesions in mango branches, mango fruits and papaya fruits, respectively. 

Another species associated with table grape dieback in Brazil was L. 

pseudotheobromae. This species was described from Acacia, Citrus, Coffea, Gmelina and 

Rosa species, and differs from L. theobromae in its bigger conidia that are more ellipsoid and 

do not taper as strongly towards the base (Alves et al. 2008). Worldwide, L. 

pseudotheobromae has been reported on numerous hosts (Alves et al. 2008, Phillips et al. 

2008, Begoude et al. 2010, Perez et al.  2010, Wright and Harmon 2010, Zhao et al. 2010, 

Abdollahzadeh et al., 2010, Sakalidis et al. 2011, Ismail et al. 2012), but in Brazil it has been 

reported only on grapevine (Correia et al. 2013), mango (Marques et al. 2013), physic nut 

(Machado et al. 2014) and papaya (Netto et al. 2014). This shows an increase in the spread of 

the fungus, suggesting that L. pseudotheobromae, like L. theobromae, has a worldwide 

distribution and a wide host range. Regarding the pathogenicity, L. pseudotheobromae was 

the most virulent species in mango fruits in Australia (Sakalidis et al. 2011), in mango 

seedlings in Egypt (Ismail et al. 2012) and in young trees of Terminalia catappa L. in 

Cameroon (Begoude et al. 2011). However, in the present work, L. pseudotheobromae had 

relatively low level of virulence in detached green shoots of table grape, similar to that 
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observed when this species was inoculated in mango fruits (Marques et al. 2013) and papaya 

fruits (Netto et al. 2014) in Brazil. The divergent results indicate that there is a great 

variability in virulence within this species and that the Brazilian isolates might represent a 

population with low virulence. 

Lasiodiplodia crassispora was described in Australia causing canker in Santalum 

album L. (Burgess et al. 2006). In terms of morphology, L. crassispora resembles L. 

pseudotheobromae and the only feature that distinguishes the two species is that in L. 

crassispora the pseudoparaphyses are mostly septate, while in L. pseudotheobromae they are 

mostly aseptate (Phillips et al. 2013). In 2010 it was described in Eucalyptus urophylla L. 

(Perez et al. 2010) and grapevine (Úrbez-Torres et al 2010; van Niekerk et al. 2010). In 2013, 

L. crassispora was described in Brazil associated with trunk disease in grapevine (Correia et 

al. 2013), and dieback and stem-end rot of mango (Marques et al. 2013). In this study, L. 

crassispora showed low prevalence and low virulence. 

Other species found in this work associated with table grape dieback was L. 

egyptiacae. This species was described first on mango in Egypt (Ismail et al. 2012), and 

recently was reported in Brazil in the same host (Marques et al, 2013) and physic nut 

(Machado et al, 2014). This species is morphologically and phylogenetically closely related to 

other previously reported species previously associated with table grape dieback in Brazil, L. 

pseudotheobromae and L. parva (Correia et al. 2013), but it can be distinguished based on the 

dimensions of conidia and paraphyses. In this study, L. egyptiacae showed low levels of 

virulence in detached green shoots of table grape compared to other Lasiodiplodia species. 

Similar results were obtained in mango fruits (Ismail et al. 2012; Marques et al. 2013) and in 

physic nut plants (Machado et al., 2014). More sampling is necessary to understand the host 

range, distribution and variability of this species. This work represents the first report of this 

species causing dieback in table grape worldwide. 
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Lasiodiplodia jatrophicola and L. euphorbicola were recently described in Brasil 

associated with physic nut. L. jatrophicola is phylogenetically close but clearly separate from 

L. iraniensis and the new species has larger conidia and smaller paraphyses. L. euphorbicola 

is phylogenetically close but clearly separate from L. parva. The two taxa have several similar 

morphological characteristics, but the proposed new species has smaller paraphyses (Machado 

et al. 2014). In this work, L. jatrophicola was the third most prevalent species with moderate 

virulence, whereas L. euphorbicola showed low levels of virulence and low prevalence.  

Machado et al. (2014) found only one isolate of L. jatrophicola and three of L. euphorbicola 

associated with physic nut. This work is the first report of these species causing table grape 

dieback worldwide, identifying one second host of these species, which may indicate that 

these species are distributed in the country. The species were identified in regions distant from 

one another and under different climatic conditions.   

Other species described in Brazil in 2014, but associated with stem-end rot of papaya, 

were L. brasiliense and L. marypalme. Phylogenetically L. brasiliense is closely related to L. 

viticola, but conidia of L. brasiliense, 22.7–29.2 × 11.7–17.0 μm, are longer and wider than 

those of L. viticola 18.2–20.5 × 8.8–10.1μm. L. brasiliense differs from its closest 

phylogenetic neighbor, L. viticola, by unique fixed alleles in one loci. In this work L. 

brasiliense was the most virulent species in detached green shoots from table grape and 

second species most prevalent in São Francisco Valley. Netto et al. (2014) it also showed that 

L. brasiliense was the second prevalent species associated with stem-end rot of papaya in São 

Francisco Valley, but the virulence of this species did not differ significantly from L. 

marypalme, L. pseudotheobromae and L. theobromae. This is the first world record of L. 

brasiliense causing dieback in grapevine.  

Phylogenetically, L. marypalme is closely related to L. pseudotheobromae and L. 

citricola, but conidia of L. citricola, 22.5–26.6 × 13.6–17.2 μm, and L. pseudotheobromae, 

23.5–32 × 14–18, are longer and wider than those of L. marypalme, 18.0–24.4 × 9.8–15.3 μm. 
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L. marypalme differs from its closest phylogenetic neighbor, L. pseudotheobromae and L. 

citricola, by unique fixed alleles in two loci (Netto et al. 2014). In this study, we observed 

that L. marypalme is synonymy of L. euphorbicola. The phylogenetic tree generated showed 

that this isolate nested within the former type of L. euphorbicola in a well-supported clade. 

Therefore, the 24 species reported Lasiodiplodia (Phillips et al.2013; Machado et al. 2014; 

Netto et al. 2014), 23 may be considered valid species. 

Regarding cultural characteristics, the optimum temperature for mycelial growth for 

Lasiodiplodia species from table grape varied between 29.9 °C and 31.2 °C. In addition, all 

the species in this study grew at 10 °C. This growth at low temperature corroborates the work 

of Abdollahzadeh et al. (2010), Marques et al. (2013) and Netto et al (2014) and is in contrast 

to other studies that show only L. pseudotheobromae as capable of growing at this 

temperature (Alves et al. 2008; Ismail et al. 2012). As can be observed, cultural characteristics 

may vary widely among isolates of the same species and therefore are of limited value in the 

determination of species. 

Regarding the distribution of species in the sampled populations, a greater diversity of 

Lasiodiplodia species was observed in populations of Petrolina and Casa Nova, while 

population of Juazeiro presented lower species diversity. Lasiodiplodia theobrome was the 

predominant species in all populations and it was the species that had the largest number of 

isolates (52). Lasiodiplodia crassispora was found only in population of Casa Nova, where 

was the second most prevalent species.  

This paper reports eight species of the genus Lasiodiplodia associated with table grape 

dieback in São Francisco Valley, the main Brazilian exporting region. L. theobromae, despite 

being the most frequent species, is not the only etiologic agent and neither the most virulent. 

All the species found in in São Francisco Valley have potential to cause table grape dieback, 

but L. brasiliense was the most virulent species. Information about this species is scarce due 

to its recent description (Netto et al. 2014). Studies are needed on the epidemiology and 
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impact on table grape production together with information referring to ecology, distribution, 

host range and fungicide sensitivity of all species of Lasiodiplodia found in this study. The 

results of this study will certainly be crucial to a better formulation of dieback control 

strategies and genetic improvement programs for the table grape.  
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Fig. 1 Collection sites of Lasiodiplodia isolates associated with grapevine dieback in three 

different populations located in São Francisco Valley (Casa Nova, Juazeiro and Petrolina), 

Northeastern Brazil. Circles represent association frequency of each species with plants 

exhibiting symptoms of dieback in each population sampled, v is the number of vineyards 

sampled in each population, n is the number of isolates analyzed in each population, and H’ is 

the Shannon-Wiener’s diversity index 
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Fig. 2 One of 8 most parsimonious trees (Tl=284; CI=0.739; RI=0.900; HI=0.261) obtained 

from combined ITS and EF1-α sequence data. Maximum parsimony bootstrap support values 

from 1000 replications and Bayesian posterior probability scores are shown at the nodes. Ex-

type isolates are in bold 
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Fig. 3 Mean internal lesion lengths (mm) caused by eight Lasiodiplodia species associated 

with grapevine dieback in São Francisco Valley (Northeastern Brazil), 10 days after 

inoculation with mycelium colonized agar plugs onto wounded detached green shoots of 

Isabel cultivar. Bars above columns are the standard error of the mean. Columns with same 

letter do not differ significantly according to Fisher’s LSD test (P0.05) 
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Table 1 Isolates of Lasiodiplodia species used in this study 

 

Taxon 
Culture Accession 

No.a  
Host Location Collector GenBank Accession No. b 

     ITS EF1-α 

Diplodia mutila  CBS 112553 Vitis vinifera Portugal A.J.L. Phillips AY259093  AY573219 

D. seriata  CBS 112555 V. vinifera Portugal A.J.L. Phillips AY259093  AY573220 

Lasiodiplodia brasiliense CMM 4011 Mangifera indica  Brazil M.W. Marques JX464074 JX464037 

L. brasiliense CMM 0418 V. vinifera Brazil M.A. Silva KJ417850 KJ417846 

L. brasiliense CMM 0354 V. vinifera Brazil M.A. Silva KJ417849 KJ417845 

L. brasiliense CMM 0415 V. vinifera Brazil M.A. Silva KJ417852 KJ417848 

L. brasiliense CMM 0264 V. vinifera Brazil M.A. Silva KJ417851 KJ417847 

L. brasiliense CMM 4015 M. indica  Brazil M.W. Marques JX464063 JX464049 

L.  citricola CBS 124707 Citrus sp. Iran J. Abdollahzadeh & A. Javadi GU945354 GU945340 

L. citricola IRAN 1521C Citrus sp. Iran A. Shekari GU945353 GU945339 

L. crassispora CMW 13448 Eucalyptus urophylla Venezuela S. Mohali DQ103552 DQ103559 

L. crassispora CMM 0390 V. vinifera Brazil M.A. Silva KJ417881 KJ417856 

L. crassispora CMM 0389 V. vinifera Brazil M.A. Silva KJ417882 KJ417855 

L. crassispora CMM 0242 V. vinifera Brazil M.A. Silva KJ417883 KJ417854 

L. crassispora CMM 0283 V. vinifera Brazil M.A. Silva KJ417884 KJ417853 

L. crassispora WAC 12533 Santalum album Australia T.I. Burgess & G. Pegg DQ103550 DQ103557 

L. egyptiacae BOT 29 M. indica Egypt A.M. Ismail JN814401  JN814428 

L. egyptiacae CMM 0305 V. vinifera Brazil M.A. Silva KJ417885 KJ417858 

L. egyptiacae CMM 0281 V. vinifera Brazil M.A. Silva KJ417886 KJ417859 

L. egyptiacae CMM 0795 V. vinifera Brazil M.A. Silva KJ417887 KJ417857 
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L. egyptiacae BOT 10   M. indica Egypt A.M. Ismail JN814397  JN814424 

L. euphorbicola CMM 3651 Jatropha curcas Brazil A.R. Machado & O.L. Pereira KF234553 KF226711 

L. euphorbicola CMM 3609 J. curcas Brazil A.R. Machado & O.L. Pereira KF234543 KF226689 

L. euphorbicola CMM 0323 V. vinifera Brazil M.A. Silva KJ417888 KJ417860 

L. euphorbicola CMM 0280 V. vinifera Brazil M.A. Silva KJ417889 KJ417863 

L. euphorbicola CMM 0316 V. vinifera Brazil M.A. Silva KJ417890 KJ417861 

L. euphorbicola CMM 0786 V. vinifera Brazil M.A. Silva KJ417891 KJ417862 

L. euphorbicola CMM 3652 J. curcas Brazil A.R. Machado & O.L. Pereira KF234554 KF226715 

L. gilaniensis CBS 124704 Unknown Iran J. Abdollahzadeh & A. Javadi GU945351 GU945342 

L. gilaniensis IRAN 1501C Unknown Iran J. Abdollahzadeh  & A. Javadi GU945352 GU945341 

L. gonubiensis CBS 115812 Syzigium cordatum South Africa D. Pavlic DQ458892 DQ458860 

L. gonubiensis CMW 14078 S. cordatum South Africa D. Pavlic AY639594 DQ103567 

L. hormozganensis CBS 124709 Olea sp. Iran J. Abdollahzadeh & A. Javadi GU945355 GU945340 

L. hormozganensis CMM 0495 V. vinifera Brazil M.A. Silva KJ417892 KJ417865 

L. hormozganensis CMM 0362 V. vinifera Brazil M.A. Silva KJ417893 KJ417864 

L. hormozganensis CMM 0237 V. vinifera Brazil M.A. Silva KJ417894 KJ417866 

L. hormozganensis IRAN 1498C M. indica Iran J. Abdollahzadeh & A. Javadi GU945356 GU945344 

L. iraniensis IRAN 1520C  Iran A. Javadi GU945346 GU945334 

L. iraniensis IRAN 1519C M. indica Iran A. Javadi GU945350 GU945338 

L. iraniensis IRAN 1517C Citrus sp. Iran A. Javadi GU945349 GU945337 

L. jatrophicola CMM 3610 J. curcas Brazil A.R. Machado & O.L. Pereira KF234544 KF226690 

L. jatrophicola CMM 0247 V. vinifera Brazil M.A. Silva KJ417895 KJ417870 

L. jatrophicola CMM 0360 V. vinifera Brazil M.A. Silva KJ417896 KJ417867 

L. jatrophicola CMM 0409 V. vinifera Brazil M.A. Silva KJ417897 KJ417868 

L. jatrophicola CMM 0342 V. vinifera Brazil M.A. Silva KJ417898 KJ417872 
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L. jatrophicola CMM 0290 V. vinifera Brazil M.A. Silva KJ417899 KJ417871 

L. jatrophicola CMM 0840 V. vinifera Brazil M.A. Silva KJ417900 KJ417869 

L. lignicola MFLUCC 11 0435 
Dead wood of unknown 
host 

Thailand A.D. Ariyawansa GU945346 GU945334 

L. lignicola MFLUCC 11 0656 
Dead wood of unknown 
host 

Thailand A.D. Ariyawansa JX646798 JX646863 

L. macrospora CMM 3833 J. curcas Brazil A.R. Machado & O.L. Pereira KF234557 KF226718 

L. mahajangana CMW 27820 Terminalia catappa Madagascar J. Roux FJ900597 FJ900643 

L. mahajangana CMW 27801 T. catappa Madagascar J. Roux FJ900595 FJ900641 

L. margaritaceae CBS 122065 Adansonia gibbosa Western Australia T.I. Burgess EU144051 EU144066 

L. margaritaceae CBS 122519 A. gibbosa Western Australia T.I. Burgess EU144050 EU144065 

L. marypalme CMM 2173 C. papaya  Brazil J.H.A. Monteiro KC484839 KC481563 

L. marypalme CMM 2272 C. papaya  Brazil J.H.A. Monteiro KC484842 KC481566 

L. marypalme CMM 2275 C. papaya  Brazil J.H.A. Monteiro KC484843 KC481567 

L. missouriana UCD 2193MO V. vinifera Missouri, USA K. Striegler & G.M. Leavitt HQ288225 HQ288267 

L. missouriana UCD 2199MO V. vinifera Missouri, USA K. Striegler & G.M. Leavitt HQ288226 HQ288268 

L. parva CBS 456.78 Cassava-field soil Colombia O. Rangel EF622083 EF622063 

L. parva CBS 494.78 Cassava-field soil Colombia O. Rangel EF622084 EF622064 

L. plurivora STE-U 5803 Prunus salicina South Africa U. Damm  EF445362 EF445395 

L. plurivora STE-U 4583 V. vinifera South Africa F. Halleen AY343482 EF445396 

L. pseudotheobromae CBS 116459 Gmelina arborea Costa Rica J. Carranza-Velásquez EF622077 EF622057 

L. pseudotheobromae CMM 0454 V. vinifera Brazil M.A. Silva KJ417901 KJ417875 

L. pseudotheobromae CMM 0448 V. vinifera Brazil M.A. Silva KJ417902 KJ417873 

L. pseudotheobromae CMM 0347 V. vinifera Brazil M.A. Silva KJ417903 KJ417874 

L. pseudotheobromae IRAN 1518C Citrus sp. Iran J. Abdollahzadeh/A. Javadi GU973874 GU973866 

L. rubropurpurea WAC 12535 E. grandis Queensland T.I. Burgess & G. Pegg DQ103553 DQ103571 
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L. rubropurpurea WAC 12536 E. grandis Queensland T.I. Burgess & G. Pegg DQ103554 DQ103572 

L. subglobosa CMM3872 J. curcas Brazil A.R. Machado & O.L. Pereira KF234558 KF226721 

L. subglobosa CMM 4046 J. curcas Brazil A.R. Machado & O.L. Pereira KF234560 KF226723 

L. theobromae CBS 111530 Unknown Unknown Unknown AY622074 AY622054 

L. theobromae CMM 0384 V. vinifera Brazil M.A. Silva KJ417904 KJ417876 

L. theobromae CMM 0820 V. vinifera Brazil M.A. Silva KJ417905 KJ417877 

L. theobromae CMM 0307 V. vinifera Brazil M.A. Silva KJ417906 KJ417879 

L. theobromae CMM 0310 V. vinifera Brazil M.A. Silva KJ417907 KJ417880 

L. theobromae CMM 0455 V. vinifera Brazil M.A. Silva KJ417908 KJ4177878 

L. theobromae CBS 164.96 Fruit on coral reef coast New Guinea A. Aptroot AY640255 AY640258 

L. venezuelensis WAC 12539 Acacia mangium Venezuela S. Mohali DQ103547 DQ103568 

L. venezuelensis WAC 12540 A. mangium Venezuela S. Mohali DQ103548 DQ103569 

L. vitícola UCD 2553AR V. vinifera USA K. Striegler & G.M. Leavitt HQ288227 HQ288269 

L. vitícola UCD 2604MO V. vinifera USA K. Striegler & G.M. Leavitt HQ288228 HQ288270 

 
a CBS Centraalbureau voor Schimmelcultures, Utrecht, Netherlands; CMW Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; WAC 

Department of Agriculture Western Australia Plant Pathogen Collection, University of Western Australia, Perth, Australia; CMM Culture Collection of Phytopathogenic Fungi 

"Prof. Maria Menezes", Universidade Federal Rural de Pernambuco, Recife, Brazil; STE-U Culture Collection of the Department of Plant Pathology, University of Stellenbosch, 

Stellenbosch, South Africa; UCD Phaff Yeast Culture Collection, Department of Food Science and  Technology, University of California, Davis, USA; BOT A. M. Ismail, Plant 

Pathology Research Institute, Giza, Egypt; IRAN Culture Collection of the Iranian Research Institute of Plant Protection, Tehran, Iran 
b Sequence numbers in bold were obtained in the present study 
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Table 2 Comparison of conidial size of Lasiodiplodia species examined in this study and 

previous studies 

 

Species Conidial size (μm) L/W ratio References 

Lasiodiplodia brasiliense 22.3–28.7 × 11.9–16.7 1.8 This study 

 22.7–29.2 × 11.7–17.0 1.8 Netto et al. 2014 

L. crassispora 27.2–29.6 × 15.3–16.9 1.8 This study 

 27–30 × 14–17 1.8 Burgess et al. 2006 

L. egyptiacae 20.4–23.1  × 11.2–13.1 1.8 Present study 

 20–24 × 11–13 1.8 Ismail et al. 2012 

L. euphorbicola 18.0–24.4 × 9.8–15.3 1.8 This study 

 15−23 × 9−12 1.7 Machado et al. 2014 

L. hormozganensis 19.8–22.7 × 11.8–13.2 1.8 This study 

 19.6–23.4 × 11.7–13.3  1.7 Abdollahzadeh et al. 2010 

L. jatrophicola 23.6–28.5 × 11.0–14.8 1.9 This study 

 22−26 × 14−17 1.6 Machado et al. 2014 

L. pseudotheobromae 25.3–29.6 × 14.7–16.8 1.8 This study 

 25.5–30.5 × 14.8–17.2 1.7 Alves et al. 2008 

L. theobromae 24.5–28.2 × 13.3–15.1 1.8 This study 

 23.6–28.8 × 13–15.4 1.9 Alves et al. 2008 
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Table 3 Optimum temperature for mycelial growth and mycelial growth rate at 30 °C of 

Lasiodiplodia species associated with dieback of table grape in São Francisco Valley, 

Northeastern Brazil 

 

Species n Optimum temperature (oC)  SE Mycelial growth rate (mm/day)  SE 

Lasiodiplodia brasiliense 4 31.2  0.43 ab 36.9  2.11 c 

L. crassispora 4 30.3  0.40 b 40.6  1.10 ab 

L. egyptiacae 3 29.9  0.86 b 41.5  3.18 ab 

L. euphorbicola 4 32.6  0.71 a 39.8  1.93 bc 

L. hormozganensis 3 30.9  0.59 ab 39.9  1.57 bc 

L. jatrophicola 6 30.8  0.60 ab 43.5  2.16 a 

L. pseudotheobromae 3 30.1  0.55 b 40.3  1.86 ab 

L. theobromae 5 30.0  0.33 b 41.1  0.74 ab 

 
Mean  standard error. Values within columns followed by the same letter do not differ significantly according 

to Fisher’s LSD test (P0.05) 
 
 
  
 


