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Abstract 

Nowadays one of the main priorities for metro line operators is the reduction of energy consumption, due to the environmental 
impact and economic cost. In order to achieve this objective different strategies can be applied, normally focused into rolling 
stock, infrastructure and/or operation. Considering short-term measures and related to the traffic operation strategies, different 
approaches are being researched. One of the most effective strategy which reduce net energy consumption is the use of efficient 
driving techniques. These techniques produce a speed profile between two stations that requires the minimum net energy 
consumption, without degrading commercial running times or passenger comfort. In this paper, a computer model for calculating 
the metro vehicles speed profiles minimizing the energy consumption was developed. The equations considered in the model 
represent the behavior of a single vehicle operated under manual driving, subject to different constraints such as the headway, 
cycle time, distances and acceleration limits. The proposed model calculates different commands to be systematically executed 
by the driver. The resulting simulator has been tuned by means of on board measurements of speed, accelerations and energy 
consumption obtained along different lines in Metro de Valencia network. For this purpose, different scenarios are analyzed to 
assess the achievable energy savings. In general terms and comparing with the actual energy consumption, the solutions proposed 
can reduce the net energy consumption around 19%. 
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1. Introduction 

Nowadays metros systems are playing important roles in modern cities. Since metro systems consume huge 
amounts of energy each day, reducing the intensity of traction energy cost can lead to great economic growth and 
environmental protection benefits.  

 
In order to reduce traction energy, two main methods are timetable optimization and energy-efficient driving 

(eco-driving). On the first case, considering that most trains are equipped with regenerative-braking systems, 
timetable optimization is focused on synchronize the movement of trains to reduce the global energy consumption 
from substations by maximizing the use of regenerative energy. A large number of timetable optimization models 
have been developed with different objectives, such as trip time by Szpigel (1973), passenger waiting time by 
Nachtigall (1997), transport demand by Cordonea and Redaelli (2011), energy consumption by Nourbakhsh and 
Ouyang (2010), delay time by Liebchena et al. (2010), reliability by Salicrùa et al. (2011), operation cost by Li et al. 
(2013), and robustness by Cacchiani and Toth (2012). However, most of these techniques only considered the 
determination of the optimal timetable without some disturbances, which are very frequently and modifies 
substantially the effectivity of the solution.  

 
On the other hand, the objective in eco-driving techniques is the reduction of the traction energy by optimizing 

speed profiles. The optimal speed contains an effective combination of four basic train regimes: acceleration, 
cruising at constant speed, coasting and deceleration.  

 
As previously, an important number of projects and test were been developed in terms of speed profiles by Asnis 

et al. (1985), Calderaro et al. (2014) and Gong et al. (2014), manual driving for freight trains by Lukaszewicz 
(2001), genetic algorithms by Khmelnitsky (2000) and Bigharaz et al. (2014) and high speed driving speed profiles 
by Sicre et al. (2012). In addition, other recent researches were focused on the use of energy storage systems by 
Fournier, (2014) and Wang et al. (2014). 

 
Unlike the above studies, the motivation for this work is to approach reduction in traction energy on an 

experimental approach. Therefore, an energy measurement system is presented, which acquires the most important 
quantities on-board the train, as a first step to determine the best approach to reduce energy consumption. Then an 
algorithm based on simulation of the single train motion is proposed in order to design optimal speed profiles, 
considering the regenerative braking energy. The algorithm has been constructed and validated with real measures 
obtained. 

2. Characterisation and energy flow of Valencia metro network 

Energy costs represent a considerable financial burden for transport companies, and after staff is the second 
largest budget item for operators. The energy consumption on metropolitan rail networks consists of two principal 
aspects: the traction energy for the tractions of its trains and the additional energy to supply systems and for 
example, lightening or elevators in stations, energy for depots, and so forth. 
 

The share of the traction energy is normally much more than half of the total energy consumption. For each rail 
network, the traction energy consumption is determined by many dynamic factors such as driving techniques, 
characteristics of the trains, alignments and natural environment of the tracks, operation management, etc.  

2.1. Valencia metro network 

Valencia metro operator agency is called Ferrocarrils de la Generalitat Valenciana (FGV), which operates nine 
narrow-gauge lines (equal to 1000 mm). Its network consists of more than 156 km, of which around 27 km is 
underground (see Fig. 1). The tension in metro lines are 1500 V DC and total annual energy consumption is around 
64.5 GWh. 
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Fig. 1. Detail of FGV metro city center network. Source: FGV. 

The underground section of the lines (which represents around 17 % of the total length) are equipped with 
automatic train operation (ATO), in which responsibility for operation management of the trains is transferred from 
the driver to the train control system. For each inter-station, a set of four speed commands are possible, obtaining 
four different travel times and energy consumptions. In this work, only ATP segments will be analyzed and 
performed due that ATO system incorporates some operational and technical constraints that have not been able to 
study. 

2.2. Rolling stock 

The metro Valencia lines are based on the Vossloh 4300 series, composed by four or five cars. As regards the 
maximum operation performances, it is able to reach a maximum speed equal to 80 km/h, with acceleration and 
deceleration maximum rates of 1.1 m/s2 and 1.2 m/s2, respectively. Other principal characteristics, for the four 
carriages unit, are summarized in table 1. 

     Table 1. Rolling stock characteristics. 

Rolling stock (Vossloh series 4300) Column A (t) 

Tension 1.500 V DC 

Total traction power 1480 kW 

Weight 122,85 t 

Length 60,49 m 

Composition M-R-R-M 

Capacity 588 passengers (116 seating  and 472 standings) 

 

3. Energy measurement campaign 

Despite urban rail operators' desire to measure the energy consumption of its rolling stock, a standardized 
measurement procedure is not yet fully implemented to assist with this process.  
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In order to gather reliable data for the analysis of energy consumption optimization, three monitoring devices 

were installed on a single metro train operating in the Metro Network of Valencia. The devices were three DC 
voltage and current measuring systems developed by Mors Smitt (model MSAV-DC), as seen Fig.2. 

Fig. 2. DC voltage and current measuring device installed on metro roof 

These devices were placed in the train so as to measure the main energy consumptions, including the overall 
energy transmitted from the catenary to the train (energy consumed) and backwards (energy regenerated), the train 
auxiliary systems (i.e. heating, lights, automatic doors, etc.) and the energy consumed by the rheostatic braking 
system according to European Standards (EN-50463). The sampling frequency of the electric devices is 1 Hz, while 
the speed was measured at 100 Hz. All the data gathered from these devices was stored in a laptop placed in the train 
cabin. Additionally, the train speed was measured by means of an odometer and stored in the same laptop. 

4. Energy consumption model 

Energy-efficient train operations is a very difficult optimization problem due that timetables and speed profiles 
should be controlled to reduce the tractive energy consumption under dynamic constraints such as speed limits, train 
interactions, travel times and distances. To maintain the actual level of service, actual travel times between two 
consecutive stations have not been modified. The model includes three independent modules (train dynamics, motor, 
and energy consumption), with an automatic generator of every possible speed profile. 

4.1. Train dynamics 

Railway movement is seen as a one-dimensional problem located in the longitudinal direction of the track. The 
train motion is governed by the equation 1: 
 

  (1) 

 
where FT is the traction force from the motors, FB is the braking force, FR is the running resistance, FC is the 

running resistance when negotiating curves, FG is the gradient resistance, meq is the equivalent mass of the train 
(which includes the passenger mass and the rotational inertia of the rotating masses) and a is the train acceleration.  

4.2. Traction force 

This term includes the force applied by the motor on the wheels. This force is transmitted to the rail through the 
wheel-rail contact. The traction force of the motors can be calculated as expressed in equation 2: 
 
  (2) 

 
where Ptotal is the total traction power, η is the efficiency of the full traction chain and  is the running speed. 
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4.3. Braking force 

This term represents the force applied in order to decrease the speed of the train. The force is transmitted through 
the wheel and rail interface, so its magnitude, is limited by the adhesion of interfaces, as in the previous case. The 
4300 Vossloh train is equipped with dynamic and mechanic brakes. The total braking force is the summation of all 
the braking systems acting in each moment. 

 
On the one hand, the dynamic braking is performed by the motors; so the braking force is calculated following the 

model in equation 2, but with an opposite sign. Then, the dynamic braking power is limited by the total power of the 
motors and the dynamic braking force by the adhesion in the wheel-rail interfaces for the powered wheelsets. When 
the motors are acting as brakes, the recovered energy can be either returned to the overhead power supply lines or 
dissipated in resistances (braking resistances), depending on the conditions of the traffic. It is assumed that the 
maximum dissipated power in the braking resistances is equal to the total traction power of the motors. 

4.4. Running resistance 

Running resistance is the summation of different forces caused by many factors and impede the forward motion 
of a train. Normally is obtained by adding all individual elements together and it can be calculated as shown in 
equation 3. 
 
  (3) 
 

where A, B, C are positive constants for a specific train and  is train velocity. A, B and C are usually obtained 
from field tests. In this study, values are provided by the manufacturer of the unit. 

4.5. Curve resistance 

This term represents the resistant force which appears on the wheelsets of the train, when traversing a curve. 
When a train runs on a curved section its instantaneous moving direction is tangent to the curve and different 
external forces act on the vehicle and on its wheelsets. In this situation, wheelsets try to move laterally on the track 
and find the radial position whilst primary suspension opposes this movement. Then, extra resistance to motion is 
experienced by the train, and it is modelled in equation 4. 
 

  (4) 

 

where  is a constant which depends on the track gauge, R is the radius in meters and mt is the total train mass in 
kilograms. 

4.6. Gradient resistance 

Considering the gravity force, when the plane of the track is inclined two forces can be described: the force along 
the gradient and the force normal to the incline. The equation that gives the gradient resistance can be expressed as 
Equation (5). 
 

  (5) 

 

where α is the angle of gradient in radians, g is the acceleration of gravity in m/s2 and pt is the coefficient of grade 
resistance (‰). 
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4.7. Energy consumption 

The estimation of total energy consumption is based on three terms: the energy used by the traction motors, the 
energy consumption of auxiliary systems, and the energy recovered from regenerative braking. For our purposes 
only traction and regenerative energy are considered, considering that energy used by auxiliary systems depends 
basically on travel time. In addition, the energy consumption model with regenerative braking systems usually 
implies an energy consumption model of the entire line in order to consider regenerate energy used by other train in 
the same electric stretch. 

 
The purpose of this paper is to optimise speed profiles for a single train between two consecutive stations in order 

to minimise its energy balance. This means that the travel is constrained to its timetable and to the forecasted travel 
demand.  

 
The energy consumption (E) for single train running along a given track is calculated as the mechanical power 

delivered by the traction force minus the energy recovered from the dynamic braking, which is returned to the 
overhead power supply. These two terms are represented in equation 6.  
 

  (6) 

 

where  is the dynamic brake force which is used to regenerate energy to the overhead power supply. 

5. Model validation 

In order to adjust and validate the simulator, the proposed model was applied to different lines with manual 
driving of the Valencia metro network under real operative constraints by adjusting the parameters. The results 
obtained have been compared with measured data registered in the monitoring campaign. The simulated running 
times differ on average 0.5 % from measured times, and the difference between net energy consumptions less than 
2.5 % for all cases, as shown in table 2. 

     Table 2. Energy consumption comparison results. 

Stretch Measured values 
(kWh) 

Simulated values 
(kWh) 

Error (%) 

L1 - Bétera/Seminari CEU 15.48 15.39 -0.60 

L1 - Seminari CEU/Bétera 53.99 54.00 0.03 

L2  - Líria/Eliana 17.94 18.08 0.79 

L2  - Eliana/Líria 31.52 31.27 -0.80 

L3  - Rafelbuñol/Almásera 42.43 43.28 2.01 

L3  - Almásera/Rafelbuñol 62.48 62.12 -0.58 

L7  - Val.Sud/Torrent 31.95 32.68 2.26 

L7  - Torrent/Val.Sud 20.01 19.92 -0.42 

 

6. Design of efficient speed profiles 

Once validated, the model allow us to compare the speed profiles and energy consumption obtained with real 
examples, measuring the reduction in energy that model provides. To enable the simulation of manual driving 
strategies, different strategies can be managed with a set of configurable parameters such as acceleration-
deceleration rates, coasting criteria and speed restrictions. The most efficient techniques to reduce the energy 
consumption are holding speed without braking and performing a coasting process before braking to reach a speed 
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limit or a stopping station. The model executes this commands taking into account the speed and running time 
constraints. Under these conditions, a wide range of solutions can be obtained and analyzed.  

 
As example, in Fig. 3 the real and simulated speed profiles between two stations are reported. The simulation uses 

the real time travel as input, so the optimized curve does not significantly deviate from the reference run. The result 
obtained covers the single section length with a total running time of 87 seconds which is the actual running time for 
this stretch, and the savings in net energy consumption reaches 10 %. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 3. Optimal speed profile (red) versus real speed profile (yellow). 

Other results for different lines are showed in table 3. The energy reduction varies between 16% and 26%, 
depending on the track considered. Only in one case of study (L1) the energy optimization has not been possible.  

     Table 3. Energy savings obtained. 

Stretch Measured values 
(kWh) 

Simulated values 
(kWh) 

Error (%) 

L1 - Bétera/Seminari CEU 4.23 4.23 0.00 

L1 - Seminari CEU/Bétera 10.24 7.52 26.78 

L2  - Líria/Eliana 7.41 5.88 20.59 

L2  - Eliana/Líria 9.99 7.87 21.23 

L3  - Rafelbuñol/Almásera 4.20 3.33 20.66 

L3  - Almásera/Rafelbuñol 6.12 4.65 23.95 

L7  - Val.Sud/Torrent 5.38 4.50 16.59 

L7  - Torrent/Val.Sud 4.91 3.95 19.48 
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7. Conclusions 

Previous works have already highlighted the importance of the optimal design of speed profiles, taking into 
account timetable constraints. In this paper, a model is proposed for the design speed profiles to minimize the energy 
consumption in the Valencia metro network under manual driving.  

 
The tool presented is based on a mechanical and an electrical model. The mechanical model recalculates train 

speed and position in every simulation step. The acceleration parameter is obtained through the traction force, the 
aerodynamic resistance, the track gradient and curvature resistance, the braking force and the dynamic train mass.  

The energy consumption is calculated knowing the traction force and the speed in all simulation steps. During the 
braking process is also possible to determine the energy recovered in the train. 

 
Finally, the model proposed was tested on a real-scale case involving a suburban line. The simulations have 

shown to obtain a great reduction in the consumption of net energy of around 16 - 26 %. 
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