Index

I. Introduction ... 1

1. Functional foods... 3
 1.1. Definition ... 3
 1.2. Interest in functional foods ... 4
 1.3. Challenges in the design of enriched functional foods 4

2. Microencapsulation ... 7
 2.1. Definition and advantages .. 7
 2.2. Microencapsulation methods .. 8
 2.2.1. Physical/physic-mechanical microencapsulation techniques 9
 2.2.2. Physic-chemical microencapsulation techniques ... 11
 2.2.3. Chemical microencapsulation technologies ... 12
 2.2.4. Biological microencapsulation technologies ... 13

3. Food-grade microencapsulation matrices .. 13
 3.1. Carbohydrates .. 13
 3.2. Proteins .. 15
 3.3. Lipids .. 15
 3.4. Selection of the encapsulation matrix ... 16

4. Electrohydrodynamic processing ... 17
 4.1. Fundamentals of electrohydrodynamic processing ... 17
 4.1.1. Influence of the solution properties .. 19
 4.1.2. Influence of the process parameters .. 19
 4.2. Advantages of electrospraying for microencapsulation 20
 4.3. Challenges of electrospraying for food applications .. 22
I. Introduction 41
II. Objectives 45
1. Chapter 1 49
 Introduction to Chapter 1 51
 1.1. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods 53
 1.2. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds 81
 1.3. Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study 107
2. Chapter 2 143
 Introduction to Chapter 2 145
 2.1. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives 147
 2.2. Potential of microencapsulation through emulsion-electrospraying to improve the bioaccessibility of β-carotene 179
 2.3. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin 207
Index

2.4. A step forward towards the design of a continuous process to produce hybrid liposome/protein microcapsules 231

3. Chapter 3 Introduction to Chapter 3 247

3.1. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion 251

4. Chapter 4 Introduction to Chapter 4 275

4.1. Binding of dietary phenolic compounds to potato cells and individual cell components - nutritional and industrial implications 279

5. Chapter 5 Introduction to Chapter 5 303

5.1. Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development 307

5.2. Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits 329

IV. General discussion 353

1. Microencapsulation of hydrophilic bioactive ingredients 355

2. Microencapsulation of hydrophobic bioactive ingredients 356

3. Microencapsulation of probiotic microorganisms 359

4. Potential of plant cells as delivery vehicles for functional ingredients 360
Index

5. Application of microencapsulation in real food systems 360

V. Conclusions 363

VI. Annexes 369

Annex A. List of publications included in this thesis 371
Annex B. List of additional publications 383