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Abstract

This paper deals with the computation of the maximal closed-loop admis-
sible set for linear systems with non-convex polyhedral constraints. These
constraints are modeled as the union of a finite number of convex polyhedra.
An efficient algorithm for the computation of this set, based on removing
subsets of the maximal closed-loop invariant set for the convex hull of the
original constraints, is proposed and compared with the existing generic algo-
rithm. Next, stability conditions for a general predictive control scheme are
applied to the particular problem proposed. Finally, two examples showing
the performance of the maximal admissible set algorithm are given.

Keywords: Maximal Admissible Set, Non-convex Constraints, Model
Predictive Control, Stability

1. Introduction

Closed loop admissible sets for discrete systems are defined as the set
of initial states from which the evolution of a closed loop system satisfies
specified pointwise-in-time constraints, both in the states an the inputs. The
characterization of such sets is an important propriety for the performance
of the closed loop system.
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Furthermore, closed loop admissible sets have an important role in the
field of stability of model predictive control (MPC). MPC is nowadays a ma-
ture control framework based on a finite horizon open loop optimal control
problem which yields an optimal control sequence. The control action is
obtained by a receding horizon strategy, i.e. applying only the first control
action in the optimal sequence.
Sufficient conditions that actively guarantee the a priori stability of predic-
tive control schemes include the use as a terminal constraint of a closed loop
admissible set for an specified terminal controller [1].

Non-convex polyhedral constraints, defined as the non-convex union of a
finite number of convex polyhedra, arise naturally in problems such as ob-
stacle avoidance, which is inherently non-convex. The importance of this
problem is stressed in [2], and it appears naturally in many practical control
engineering problems, such as robot path planning [3] or aircraft traffic plan-
ning [4].
Another field of application of non-convex polyhedral constraints comes from
linear systems with non-linear constraints. These problems usually appear
when controlling Hammerstein systems, defined by an static non-linearity
followed by a linear system. These models are often controlled by an inver-
sion of the non-linearity and an appropriate controller, such as predictive
control, for the linear part [5][6]. However, constraints on the system inputs
have to be transformed by the non-linearity in order to be coped with by the
predictive controller. If the constraints are non-convex, precise approxima-
tion require the use of several polyhedra with a non-convex union.
Furthermore, non-convex constraints also arise in feedback linearization con-
trol with linear constraints. Feedback linearization control is a widely used
technique for controlling non-linear systems [7]. Clearly, the linear con-
straints of the system become non-linear for the linearized model [8], [9].
Once again, if these non-linear constraints are non-convex, they can be ap-
proximated by the union of several polyhedra.

Linear systems with non-convex polyhedral constraints can also be treated
as piecewise affine (PWA) systems. For this kind of models, which also al-
low to represent a wide range of discrete-time hybrid systems [10], several
approaches for the computation of closed-loop admissible sets have been pre-
sented in the literature in the context of stability of finite-time constrained
optimal control (FTCOC) and predictive control.

A simple one is taken in [11], where the origin is chosen as the admissible
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set. However, this approach typically deteriorates the overall performance
of the system. A different suboptimal approach, which uses a polyhedral
terminal set and a reference governor, is proposed in [12]. This methodology
reduces the computational burden of the online controller at the cost of sub-
optimality and a smaller region of attraction. A less conservative solution is
achieved by using a piecewise quadratic terminal cost and piecewise linear
terminal control, as in [13]. This requires the computation of a terminal set,
either the maximal positively invariant set, as in [14], or a more simple subset
of it, as in [13].
Although the system with non-convex polyhedral constraints can be mod-
eled as piecewise affine, fully exploiting the structure of the initial problem
presents the fundamental advantage that invariant sets can be calculated in
a more simple way.

The structure of the paper is as follows. Next section introduces the prob-
lem formulation. In section 3 an efficient algorithm for the computation of
the maximal closed-loop admissible set is presented. In section 4, the appli-
cation of stability conditions to a predictive control scheme with non-convex
polyhedral constraints is discussed. Finally, section 5 gives two examples
showing the performance of the invariant set calculation algorithm.

2. Problem statement

Let us consider a discrete-time linear time invariant system of the form
(1)

{

xk+1 = Axk +Buk

yk = Cxk
(1)

with input and states constraints, which we assume that contain the origin
of their respective spaces, defined as the non-convex union of a finite number
of convex polytopes

uk ∈ U =

γu
⋃

i=0

Ui, xk ∈ X =

γx
⋃

i=0

Xi (2)

and a linear control law uk = Kf(x) = −Kx.
In this work, we aim to find the the maximal closed-loop admissible set

O
Kf
∞ (U,X), that is, the set of states for which the closed-loop trajectory
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satisfies the state and input constraints, X and U:

O
Kf
∞ (U,X) = {x ∈ Rn|K(A− BK)kx ∈ U,
(A− BK)kx ∈ X for k = 0, 1, . . .}

It is well known that for discrete-time systems, if O
Kf
∞ (U,X) is not empty, it

is a positively invariant set [15].
In order to propose our algorithm for the computation of the maximal

closed-loop admissible set, we introduce here set definitions from [16]. In the
following, Ω represents a non-empty arbitrary set in the x space, h(x) is a
given control law, and U is a constraint set in the inputs space.

Definition 1. Given a control law uk = h(xk), the input admissible subset
of Ω ⊂ R

n is given by

Ωh(U) = {xk ∈ Ω|h(xk) ∈ U}

Definition 2. The closed loop input admissible one-step set Qh(U,Ω) is the
set of states in Rn from which the closed loop system is guaranteed to evolve
to Ω with an admissible input uk = h(xk) ∈ U, i.e.

Qh(U,Ω) = {xk ∈ R
n|h(xk) ∈ U; f(xk, h(xk)) ∈ Ω}

Definition 3. The i-step controllable set Ki(U,Ω,T) is the largest set of
states in Ω for which there exists an admissible sequence of inputs such that
an arbitrary target set T ⊂ Ω is reached in exactly i steps, while keeping the
state inside Ω for the first i− 1 steps, i.e.

Ki(U,Ω,T) = {x0 ∈ Rn|∃{uk ∈ U}i−1
0 ;

{xk ∈ Ω}i−1
0 , xi ∈ T}

Definition 4. The set KOh
i (U,Ω,T) for the system xk+1 = f(xk, uk) in

closed-loop with the control law uk = h(xk) is defined as Ki(U,Ω
h,T) for the

system xk+1 = f(xk, h(xk)):

KOh
i (U,Ω,T) = {x0 ∈ Rn|{h(xk) ∈ U}i−1

0 ;
{xk ∈ Ω}i−1

0 , xi ∈ T}
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3. Maximal closed-loop admissible set computation

The most direct way of computing the maximal closed-loop admissible

set O
Kf
∞ (U,X) is to note that it is equal to the set KOKf

∞ (U,Ω,ΩKf ) and
that, by definition, this set can be calculated as the infinite-time input ad-
missible controllable set for the closed loop system xk+1 = f(xk,Kf(xk)):
K∞(U,ΩKf ,ΩKf ).
This set can be computed by means of the recursive algorithm 1 from [16].

Algorithm 1 Calculation of the closed-loop N -step controllable set
KN (U,Ω

Kf ,T)

1. Make i = 0 and K0(U,Ω
Kf ,T) = T

2. While i < N :

(a) Ki+1(U,Ω
Kf ,T) = QKf

(

U,Ki(U,Ω
Kf ,T)

)

∩ ΩKf

(b) If Ki+1(U,Ω
Kf ,T) = Ki(U,Ω

Kf ,T), end algorithm and
KN (U,Ω

Kf ,T) = K∞(U,ΩKf ,T) = Ki(U,Ω
Kf ,T).

(c) i=i+1

This algorithm starts by taking the target set T and then it calculates the
subset of Ω that takes the system to T in one step, K1(U,Ω

Kf ,T). Next, this
calculated set is defined as the new target set and the procedure is repeated.
The algorithm finishes when it arrives to step N or when a Ki(U,Ω

Kf ,T)
equal to the previous iteration one is found.

Algorithm 1 is used in [14] for the computation of the maximal closed-loop
invariant set for piecewise affine systems.

As can be seen, algorithm 1 makes recursive use of the one-step input
admissible set, QKf (U,Ω). In order to calculate this set, when Ω is a non-
convex polyhedron the following property is needed:

Proposition 1. [16] If Ω is given as the union

Ω =
⋃

i

Ωi,

then
QKf (U,Ω) =

⋃

i

QKf (U,Ωi)
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In an analogous way, when U is a non-convex polyhedra we can formulate
the following proposition:

Proposition 2. If U is given as the union

U =
⋃

i

Ui,

then
QKf (U,Ω) =

⋃

i

QKf (Ui,Ω)

Proof. If xk ∈ QKf (U,Ω), by definition, uk = Kf(xk) ∈ U and xk+1 ∈
Ω. But if uk ∈ U, then uk ∈ Ui for one or more i, so xk ∈ QKf (Ui,Ω),
which implies xk ∈

⋃

i Q
Kf (Ui,Ω). Therefore, it is proved QKf (U,Ω) ⊆

⋃

i Q
Kf (Ui,Ω). In the opposite way, if xk ∈

⋃

i Q
Kf (Ui,Ω), for some i xk ∈

QKf (Ui,Ω) holds. Using the definition of the closed-loop one-step set, uk =
Kf(xk) ∈ Ui for some i and xk+1 ∈ Ω. But for any uk ∈ Ui, uk ∈ U holds, so
xk ∈ QKf (U,Ω). This way it is proved that

⋃

i Q
Kf (Ui,Ω) ⊆ QKf (U,Ω) and

therefore QKf (U,Ω) =
⋃

i Q
Kf (Ui,Ω).

Using both propositions in our particular problem:

QKf (U,Ω) =
⋃

i

⋃

j

QKf (Ui,Ωj) (3)

Recursive algorithm 1 has an important drawback motivated from the fact
that the one-step set (3) will in general be also non-convex. As the al-
gorithm needs recursively each one-step set to calculate the following one,
QKf (U,QKf (U,X)), the number of non-convex sets will grow up in a com-
binatorial explosion way. This fact, apart from making the algorithm more
computationally expensive, will mean that if the set is used as a terminal
set in an MPC scheme without further simplification1, the complexity of the
optimization problem associated to the predictive controller will be high.

In order to design a different algorithm, we first introduce the following
set definitions:

1An algorithm for the union of regions, such as the one in [17] can be used at this point,
with the drawback of a considerably increased computation time.
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Definition 5. The i-step input admissible closed loop set Qh
i (U,Ω,T) is the

set of states for which the closed loop evolution given by xk+1 = f(xk, h(xk))
drives the state to T in i steps or less, while keeping the evolution of the state
and the control action uk = h(xk) inside, respectively, Ω and U:

Qh
i (U,Ω,T) = {x0 ∈ Rn|∃N ≤ i :

{uk = h(xk) ∈ U}N−1
0 , {xk ∈ Ω}N−1

0 , xN ∈ T
}

This set can be calculated by obtaining the sets that drive the closed loop
system to T in exactly i steps, i.e. KOh

i (U,Ω,T):

Qh
i (U,Ω,T) =

i
⋃

j=1

KOh
j (U,Ω,T) (4)

Definition 6. The i-step input admissible closed loop set for i = ∞ is
the maximal input admissible closed loop set Qh

∞(U,Ω,T) and is said to
be finitely determined if there exists some i∗ ∈ N such that Qh

∞(U,Ω,T) =
Qh

i∗(U,Ω,T).

Note that we do not assume that target set T is invariant, therefore an
initial condition x0 ∈ Qh

∞(U,Ω,T) will drive the closed-loop system to T

in a given number of steps but it is unknown if the trajectory will remain
inside this set. If the target set is defined as a subset of the state space for
which some problem constraints do not hold, the set Qh

∞(U,Ω,T) represents
the states that violate those constraints at some point in their closed loop
trajectories.

In order to find a practical way to calculate Qh
∞(U,Ω,T) we formulate

the following proposition:

Proposition 3. If the closed-loop system xk+1 = f(xk, h(xk)) is asymptoti-
cally stable and 0 /∈ T, there exists some i∗ ∈ N such that KOh

i (U,Ω,T) = ∅
∀i ≥ i∗.

Proof. If 0 /∈ T, there exists some ǫ > 0 such that if ||x|| < ǫ, then x /∈ T.
On the other hand, if the closed-loop system is asymptotically stable, there
exists some i∗ ∈ N such that ||xi|| < ǫ ∀i ≥ i∗. Therefore, for i ≥ i∗ ||xi|| /∈ T

and KOh
i (U,Ω,T) = ∅.

Remark 1. Note that if the closed-loop system is asymptotically stable and
0 /∈ T, from proposition 3 and (4), Qh

∞(U,Ω,T) is finitely determined.
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Previous definitions and proposition can be used to design a different al-

gorithm for the calculation of O
Kf
∞ (U,X).

To start the procedure, we need the convex hulls of the constraint sets
Ū = conv(U) and X̄ = conv(X) and the complement of these constraint sets
in their respective hulls. These complementary sets will in general be also
non-convex, defined as the union of a problem-dependent number of convex
polyhedra:

Ū\U = Ū\

(

⋃

i

Ui

)

=
⋃

l

U
∗
l X̄\X = Ū\

(

⋃

j

Uj

)

=
⋃

m

X
∗
m.

In many cases, such as obstacle avoidance problems, it is not necessary to
calculate the hulls and complementary sets, as the problem constraints are
defined as a convex set and forbidden subsets inside it.

Note that, as by assumption U and X contain the origin of their spaces,
their complements do not contain it:

0 /∈ U
∗
l , ∀l

0 /∈ X
∗
m, ∀m

The algorithm is started by calculating the maximal admissible setO
Kf
∞ (Ū, X̄).

As Ū and X̄ are convex, this set is easily obtained by algorithm 1.
As the original constraints are included in their respective hulls, by definition

we have O
Kf
∞ (U,X) ⊂ O

Kf
∞ (Ū, X̄).

Therefore, the idea for the algorithm is to start from this set and eliminate
from it any state for which the closed-loop trajectory violates at some point
either the state or the input constraints. This set of states that need to be
eliminated is denoted as X∗

f .

It is clear that, for any U∗
l , any state for which uk = Kf(xk) ∈ U∗

l must
be eliminated. From our sets definitions, this states are represented as Tl =

QKf (U∗
l ,O

Kf
∞ (Ū, X̄)). Furthermore, any state that, in any number of steps,

drives the future trajectory of the closed-loop system to the previous set,

must be eliminated too. These states can be represented as Q
Kf
∞ (Ū, X̄, Tl).

As U∗
l and O

Kf
∞ (Ū, X̄) are convex, so is Tl, which is easily calculated from

the definition of closed loop one step set. On the other hand, Q
Kf
∞ (Ū, X̄, Tl)
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is also defined over convex sets. Furthermore, as 0 /∈ U∗
l , proposition 3 can

be applied and the set is finitely determined.
In an analogous way, every state inside any X∗

m has to be eliminated:

Dm = O
Kf
∞ (Ū, X̄) ∩ X∗

m. Once again, it also has to be eliminated every

state that drives the future trajectory to the previous set: Q
Kf
∞ (Ū, X̄,Dm).

Clearly, as 0 /∈ X∗
m, the last set is also finitely determined by application of

proposition 3.

Therefore, the set of states X∗
f that have to be eliminated from O

Kf
∞ (Ū, X̄)

is:
X

∗
f =

⋃

l

(Tl ∪Q
Kf
∞ (Ū, X̄, Tl)) ∪

⋃

m

(Dm ∪ Q
Kf
∞ (Ū, X̄,Dm))

Finally, the maximal input admisible invariant set can be computed as:

O
Kf
∞ (U,X) = O

Kf
∞ (Ū, X̄)\X∗

f

Algorithm 2 summarizes the described procedure.

3.1. Efficiency of the algorithms

As previously stated, algorithm 1 has the fundamental drawback of the
exponential growth of the worst-case number of regions. This growth is
defined by the number of iterations that the algorithm needs to converge, i∗,
and depends on the closed-loop system dynamics.

Let us consider input and state constraints defined as (2). Algorithm 1
starts by making

K0(U,X
Kf ,XKf ) = X

Kf =

γx
⋃

k=0

Xk

Next, in any given iteration, in step 2.b one needs to calculate the set:

Ki+1(U,X
Kf ,XKf ) = Q

(

U,Ki(U,X
Kf ,XKf )

)

∩ X
Kf

By (3), this set can be written as:

Ki+1(U,X
Kf ,XKf ) =

(

⋃γu
j

⋃γKi

k QKf (Uj,Kik(U,X
Kf ,XKf ))

)

∩ (
⋃γx

l Xl)

=
⋃γu

j

⋃γKi

k

⋃γx
l

(

QKf (Uj,Kik(U,X
Kf ,XKf )) ∩ Xl

)

where γKi
represents the number of convex polyhedra that defineKi(U,X

Kf ,XKf ).
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Algorithm 2 Computation of O
Kf
∞ (U,X)

1. Initialize the subset of states to eliminate, X∗
f = ∅.

2. Calculate the convex hull of each constraints set, if not given: Ū =
conv(U), X̄ = conv(X).

3. Calculate the maximal input admissible invariant set for them:

O
Kf
∞ (Ū, X̄).

4. Calculate the complement of U and X in their hulls, if not given: Ū\U =
⋃

l U
∗
l , X̄\X =

⋃

mX∗
m.

5. For each U∗
l :

(a) Obtain the subset of O
Kf
∞ (Ū, X̄) such that uk = Kf(xk) ∈ U∗

l :

Tl = QKf (U∗
l ,O

Kf
∞ (Ū, X̄))

(b) Calculate the maximal input admissible closed loop set:

Q
Kf
∞ (Ū, X̄, Tl)

(c) Add those sets to X∗
f :

X∗
f = X∗

f ∪ Tl ∪ Q
Kf
∞ (Ū, X̄, Tl)

6. For each X∗
m:

(a) Obtain the subset of O
Kf
∞ (Ū, X̄) such that xk ∈ X∗

m: Dm =

O
Kf
∞ (Ū, X̄) ∩ X∗

m.
(b) Calculate the maximal input admissible closed loop set:

Q
Kf
∞ (Ū, X̄,Dm)

(c) Add those sets to X∗
f :

X∗
f = X∗

f ∪ Dm ∪ Q
Kf
∞ (Ū, X̄,Dm)

7. Compute the final set as:

O
Kf
∞ (U,X) = O

Kf
∞ (Ū, X̄)\X∗

f
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In a worst-case scenario, none of the polyhedra that form Ki+1 can be
united with each other to form a new convex polyhedra, and therefore, this
set is defined by γu · γx · γKi regions.

Considering this worst-case scenario for each iteration of the algorithm,
we have the region in each step defined by the following number of convex
polyhedra:

γKi = γK0 · (γuγx)
i = γx(γuγx)

i

Therefore, the number of sets that define O
Kf
∞ (U,X) in the worst case is given

by
γKi∗ = γx(γuγx)

i∗

which is clearly exponential on i∗ and polynomial on γu and γx.
On the other hand, algorithm 2 requires the computation of the set X∗

f .
Therefore, the efficiency of the algorithm will be analyzed in terms of the cost
of the computation of this set. Taking the complements of the constraint sets,
U∗ =

⋃γ∗

u

l U∗
l and X∗ =

⋃γ∗

x

m X∗
m, for each of the convex polyhedra we obtain

the set Q
Kf
∞ (Ū, X̄, Tl) or Q

Kf
∞ (Ū, X̄,Dm).

These sets are defined by (4) and the analogous expression for Dm:

Q
Kf
∞ (Ū, X̄, Tl) =

i∗
l
⋃

j=1

Kj(Ū, X̄
Kf , T

Kf

l )

where i∗l depends on the closed-loop system dynamics.
Each of the Kj has to be calculated by algorithm 1. However, unlike for

the previous case, as Ū, X̄ and Tl (or Dm) are convex sets, Kj is a single

convex polyhedra. Therefore, Q
Kf
∞ (Ū, X̄, Tl) (Q

Kf
∞ (Ū, X̄,Dm)) is formed in

the worst case by the non-convex union of i∗l (i∗m) convex polyhedra. Now,
considering that each Tl and Dm is formed by a single polyhedron, the total
number of convex polyhedra that form X∗

f in the worst case can be calculated
as:

γ∗
xf =

γ∗

u
∑

l=1

(1 + i∗l ) +

γ∗

x
∑

m=1

(1 + i∗m) ≤ (γ∗
u + γ∗

x)(2 + i∗max)

where i∗max is the maximum value of every i∗l and i∗m. It can be seen that γ∗
xf

is bounded by a linear expression on i∗max, γu and γx.

The number of polyhedra that define O
Kf
∞ (U,X) when calculated by al-

gorithm 2 is not γ∗
xf but a number dependent on each particular problem.

However, it is in general in the same order that γ∗
xf .
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Therefore, for closed-loop systems with relatively high values for the pa-

rameters of i∗, i∗l and i∗m, in the worst-case O
Kf
∞ (U,X) obtained by algo-

rithm 2 will be defined by a considerably inferior number of regions than this
same set obtained by algorithm 1, because of the exponential nature of γKi∗ .
Consequently, the latter algorithm will be more computationally expensive.
Furthermore, if the number of final convex regions is reduced by applying
algorithms from [17] for both algorithms, algorithm 2 is even more efficient
because in [17] the hull and complement of the final sets are needed. This
sets have already been calculated in algorithm 2, but not in algorithm 1. The
difference between both algorithms’ cost is illustrated in examples of section
5.

4. Stability of MPC scheme with non-convex polyhedral constraints

One of the fundamental applications of maximal closed-loop admissible
sets is its use as a terminal region in order to assure stability of model pre-
dictive control schemes.

Model predictive control solves regulation problems by defining a value
function and solving the finite horizon optimal control problem (5) and later
applying a receding horizon policy.

PN(x) : V OPT
N (x) := min VN({xk}, {uk}),

subject to:
xk+1 = f(xk, uk) for k = 0, . . . , N − 1,
x0 = x,
uk ∈ U for k = 0, . . . , N − 1,
xk ∈ X for k = 1, . . . , N,
xN ∈ Xf ⊂ X,

VN({xk}, {uk}) := F (xN) +
∑N−1

k=0 L(xk, uk)

(5)

where L(x, u), F (x) and Xf are, respectively, the per-stage weighting, the
terminal state weighting and the terminal constraint set.

The minimizing solution to the optimization problem is a control sequence
function of the current state x

uopt := {uopt
0 , uopt

1 , . . . , uopt

N−1}
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and, by the receding horizon policy, the control applied to the plant is only
the first element of the sequence

KN(x) = uopt
0 (6)

In order to get a good system performance with a predictive controller, the
value function is chosen with a quadratic per-stage weighting L(x, u):

VN(x) = F (xN ) +
1

2

N−1
∑

k=0

(xT
kQxk + uT

kRuk) (7)

In this section, we aim to formulate a priori conditions that assure the sta-
bility of the predictive controller scheme with linear system (1), non-convex
constraints (2) and value function (7).

4.1. Stability conditions

Stability of predictive control schemes such as (5)-(6) has been a widely
studied topic. A good synthesis that covers the state of the art can be found
in [1], where authors introduce stability conditions. Based on them, in [18]
it is proposed the following theorem:

C1 The per-stage weighting L(x, u) in (5) satisfies L(0, 0) = 0 and L(x, u) ≥
γ(||x||) for all x inside the set of feasible initial states ( x ∈ SN ), u ∈ U,
where γ : [0,∞) → [0,∞) is continuous, γ(t) > 0 for all t > 0, and
limt→∞ γ(t) = ∞.

C2 The terminal state weighting F (x) in (5) is a Lipschitz continuous func-
tion and satisfies F (0) = 0,F (x) ≥ 0 for all x ∈ Xf , and the following
property: there exists a terminal control law Kf : Xf → U such that
F (f(x,Kf(x)))− F (x) ≤ −L(x,Kf (x)) for all x ∈ Xf .

C3 The set Xf is positively invariant for the system xi+1 = f(xi, ui) under
Kf(x), that is, f(x,Kf(x)) ∈ Xf for all x ∈ Xf .

C4 The terminal control law Kf(x) satisfies the control constraints in Xf ,
that is, Kf(x) ∈ U for all x ∈ Xf .

C5 The sets U and Xf contain the origin of their respective spaces.
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Theorem 1. Consider the system

xi+1 = f(xi, ui) for i ≥ 0, f(0, 0) = 0,

controlled by the receding horizon algorithm (5)-(6) and suppose that condi-
tions C1-C5 are satisfied. Then:

1. The set of feasible initial states SN is positively invariant for the closed
loop system.

2. The origin is globally attractive in SN for the closed loop system.

3. If, in addition to C1-C5, 0 ∈ int(SN ) and the value function V OPT
N

is continuous on some neighborhood of the origin, then the origin is
asymptotically stable in SN for the closed loop system.

4. If, in addition to C1-C5, 0 ∈ int(Xf), SN is compact, γ(t) ≥ atσ in
C1, F (x) ≤ b||x||σ for all x ∈ Xf in C2, where a > 0, b > 0 and σ > 0
are some real constants, and the value function V OPT

N is continuous in
SN , then the origin is exponentially stable in SN for the closed loop
system.

Next, we analyze conditions C1-C5 for our particular problem (5)-(6) with
linear system (1), non-convex polyhedral constraints (2) and value function
(7):

C1: Holds by the choice of the quadratic per-stage weighting L(x, u).

C2: Following the same arguments as in [18] for polyhedral constraints, con-
dition holds by choosing appropriate control law and terminal state
weighting from the solution of a Ricatti equation:

F (xN) =
1

2
xT
NPxN

Kf(x) = −Kx (8)

that satisfy

P = ATPA+Q−KT R̄K (9a)

K = R̄−1BTPA (9b)

R̄ = R +BTPB (9c)

C3-C4: Hold by definition when choosing as terminal region Xf the maximal

closed-loop admissible set O
Kf
∞ (U,X) as computed in section 3.
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C5: Holds by assumption.

Once conditions C1-C5 hold, Lyapunov stability of the MPC scheme is
proved. However, in order to prove asymptotical stability, continuity of the
value function on some neighbourhood of the origin must be assured. This
property will hold as long as the origin is not on the boundary of any of the
sets Ti, as we discuss next.

Considering the system equation (1) and all the possible combinations of
constraints, problem (5) can be written with a single non-convex polyhedral
constraint:

PT(x) : V OPT
N (x) := min 1

2
uTHu+ uTFx,

subject to:
(u, x) ∈ T =

⋃γ

i=0 Ti

where u represents the future sequence of inputs.
This problem can be rewritten once again as:

PT(x) : V OPT
N (x) := min

{

V OPT
iN (x)

}

where:
V OPT
iN (x) := min 1

2
uTHu+ uTFx,

subject to:
(u, x) ∈ Ti

(10)

Now, we take the Ti sets which contain the origin, and intersect them. As
by assumption the origin is not in the boundary of any Ti, this intersection
gives a convex set containing the origin in which the minimum of the value
function is defined as the minimum of a finite set of functions: V OPT

N (x) =
min

{

V OPT
iN (x)

}

.
It is well known that the optimal value function for each of the convex

subproblems, V OPT
iN (x), is continuous [19]. Furthermore, the minimum of a

finite number of continuous functions defined over the same convex set is also
continuous on that set. Therefore, continuity of V OPT

N (x) in a neighbourhood
of the origin holds.

As conditions for statement (3) of theorem 1 hold, the origin is asymp-
totically stable.
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4.2. Set of feasible initial states

An important feature of any MPC scheme is the subset of the space state
from which the closed-loop system is guaranteed to be stable, SN . As can
be seen from (10), our particular problem can be formulated as finding the
minimum cost given by the solutions of several convex optimization problems.
Therefore, for a given x0, if any of these problems has a feasible solution, the
global problem will have too. So, we can define the set of feasible initial states
for the global problem as the union of that same set for every subproblem,
SNi. To calculate these sets, te procedure from [16] can be used.

5. Examples

5.1. Example 1

Consider the 2× 2 linear system:

G(s) =

[

5

s2+5

−1

s+2

0 2

s+2

]

which is discretized with a sample time Ts = 0.2.
The system is subject to constraints in the states, x(t) ∈ X = X1 ∪ X2

and in the inputs, u(t) ∈ U = U1 ∪ U2 where:

U1 :=

{

−2 ≤ u1 ≤ 1

−1 ≤ u2 ≤ 2

}

U2 :=

{

1 ≤ u1 ≤ 3

−2 ≤ u2 ≤ 3

}

X1 :=







−6 ≤ x1 ≤ 30

−30 ≤ x2 ≤ 30

−30 ≤ x3 ≤ 30







X2 :=







−30 ≤ x1 ≤ −6

−30 ≤ x2 ≤ 30

−21 ≤ x3 ≤ 30







As can be seen in figures 1 and 2, both constraint sets are non-convex
polyhedra.

We aim to find the maximal closed-loop admissible set O
Kf
∞ (U,X) for the

LQR controller (8) with weighting matrices Q = CTC and R = 5I:Kf(x) =
−Kx.

To do so, we follow algorithm 2 and start by calculating the convex hulls
of U and X and finding the complement of these constraint sets in them. As
shown in figures 3 and 4, these complements are formed by, respectively, two
and one polyhedra (U∗

1 and U∗
2 and X∗

1).
Then, we calculate the maximal input admissible set with constraints

defined as the hulls, O
Kf
∞ (Ū, X̄), shown in figure 5.
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Figure 1: Input constraints U.
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Figure 2: State constraints X.
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Figure 3: Complement of input constraints
U∗.

Figure 4: Complement of state constraints
X∗.

Figure 5: O
Kf
∞ (Ū, X̄). Figure 6: T1 ∪Q

Kf
∞ (Ū, X̄, T1).

17



Next, we calculate the set of states T1 for which the controller Kf gives an
input inside U∗

1 (and therefore not inside U). Furthermore, we also calculate
the set of states that, in any number of steps, drives the future trajectory

of the closed-loop system to the previous set, Q
Kf
∞ (Ū, X̄, T1). The union of

these sets is shown in figure 6. The set T2 ∪ Q
Kf
∞ (Ū, X̄, T2) is calculated the

same way and shown in figure 7.

Figure 7: T2 ∪Q
Kf
∞ (Ū, X̄, T2). Figure 8: D1 ∪Q

Kf
∞ (Ū, X̄,D1).

Then, we obtain the set of states that drive the closed-loop system, in

any number of steps, to X
∗
1 (which is outside of X): D1∪Q

Kf
∞ (Ū, X̄,D1). This

set is represented in figure 8.
Lastly, we calculate the maximal closed loop invariant set for the non-

convex constraints O
Kf
∞ (U,X) by removing from O

Kf
∞ (Ū, X̄) all the previously

calculated sets. As can be seen in figure 9, O
Kf
∞ (U,X) is formed by the union

of 8 convex polyhedra.
Figure 10 represents this same region calculated asK∞(U,ΩKf ,ΩKf ) using

algorithm 1. It can be seen that the non-convex polyhedral region is the
same in both cases although when algorithm 1 is used, the number of convex
regions obtained is 278.

For this example, we compare the implementation in MATLAB with
the MPT toolbox [20] of both algorithms in terms of number of LP solved
and CPU time in seconds on a 2.66 GHz Pentium D with 1 GB of RAM.
With algorithm 2, 1165 LPs are solved, with a total computation time of
1.9 seconds. On the other hand, with algorithm 1, 256725 LP problems are
solved, with a total computation time of 140.3 seconds.

Furthermore, if O
Kf
∞ (U,X) is calculated to be used as the terminal con-

straint set for a predictive control problem, it is crucial to have it defined
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Figure 9: O
Kf
∞ (U,X) by algorithm 2 . Figure 10: O

Kf
∞ (U,X) by algorithm 1.

as the union of a minimum number of convex regions, to keep the optimiza-
tion problem as simple as possible. To do so, algorithms for the union of
regions as the ones proposed in [17], should be used. If we perform one of
these algorithms for the example after algorithm 2, we reduce the number of
convex polyhedra to 7, but the total number of LP increases to 4278 and the
computation time to 53.9 seconds. For algorithm 1, after the procedure for
the union of regions the set is defined by 23 polyhedra, with a total cost of
484453 LP and 909 seconds.

Finally, if we use weighting matrices Q, R and P as calculated in (9),

and a terminal region Xf = O
Kf
∞ (U,X), an MPC scheme (5)-(7) will be

asymptotically stable.

5.2. Example 2

Consider the simplified model of the open-loop unstable dynamics of an
AFTI-F16 aicraft [21, 22]. The manipulated variables are the elevator and
flaperon angles, while the attack and pitch angles are the measured outputs
to be regulated. The model discretized with Ts = 0.5s is defined by the
following matrices:

A =









0.9993 −3.008 −0.1131 −1.608
−0.4703 · 10−5 0.9862 0.0478 0.385 · 10−5

0.3703 · 10−5 2.083 1.009 −0.4362 · 10−5

0 0.05258 0.04979 1









B =









−0.0804 −0.6347
−0.0291 −0.0143
−0.8679 −0.0917
−0.0216 −0.0022









C =

[

0 1 0 0
0 0 0 1

]

D =

[

0 0
0 0

]
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An MPC scheme for this system can be found as a case study in the MPC
toolbox for MATLAB [23] with the following saturation in the actuators and
output constraints:

Ū :=

{

−25 ≤ u1 ≤ 25
−25 ≤ u2 ≤ 25

}

X̄ :=

{

−0.5 ≤ y1 ≤ 0.5
−100 ≤ y2 ≤ 100

}

We consider here a case in which, as well as satisfying the previous con-
straints, the measured outputs have to be kept outside the region:

X
∗ :=

{

0.1 ≤ y1 ≤ 0.5
0 ≤ y2 ≤ 100

}

Once again, we aim to find the maximal closed-loop admissible set O
Kf
∞ (U,X)

for an LQR controller (8) for such a system with weighting matricesQ = CTC
and R = 0.1I.

In order to apply algorithm 1, the non-convex constraints sets have to be
calculated:

X1 :=























0 1 0 0
0 −1 0 0
0 0 0 1
0 0 0 1









x ≤









0.5
−0.1
0
100























X2 :=























0 1 0 0
0 −1 0 0
0 0 0 1
0 0 0 1









x ≤









0.1
0.5
100
100























If we apply algorithm 2, we obtain O
Kf
∞ (U,X) defined by 28 convex poly-

hedra. The algorithm needs to solve a number of 10539 LP, needing a total
CPU time of 38.6 seconds. On the other hand, when applying algorithm 1,
the region is defined by 773 polyhedra, the number of LP solved is 2619070,
and the total CPU time is 1866 seconds.

When the procedure for the union of regions is applied after algorithm
2 the number of convex polyhedra is reduced to 15 after solving 61456 LP
during a total time of 845 seconds. If the same procedure is applied after
algorithm 1, the final region is defined by 17 polyhedra, after solving 6769237
LP during 20717 seconds.

Once again, the use of the maximal closed loop admissible set as terminal
set, allows to prove stability of an MPC scheme for the proposed problem.
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6. Conclusions

In this work, we have proposed an efficient algorithm for the computation
of the maximal closed-loop admissible set for linear systems with non-convex
polyhedral constraints based on removing subsets of the maximal closed-
loop invariant set for the convex hull of the original constraints. We have
compared this new algorithm with a previous generic one, showing that, in a
worst-case scenario, the set obtained by our procedure is defined by a lower
number of regions than when it is obtained by the existing algorithm.

Next, we have proposed the use of this set as a terminal constraint for the
model predictive control of linear systems with non-convex polyhedral con-
straints, showing that it allows to establish the well known a priori stability
conditions.

Finally, two examples for which the proposed algorithm outperforms the
previous generic algorithm have been presented.
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