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ABSTRACT 

When mound breakwaters are placed on steep sea bottoms in combination with very 

shallow waters, the design of the toe berm becomes a relevant issue. Toe berms built 

close to the water surface on a steep sea bottom must withstand such high wave loads 

that their design may not be feasible with available quarrystones. In this study, a new 

design method was developed to reduce the rock size by increasing the toe berm width. 

The analysis involved specific 2D small-scale tests with toe berms of different rock sizes 

and widths, placed on a m = 1/10 bottom slope with the water surface close to the toe 

berm crest. Two new concepts were introduced to better characterize damage to wide 

toe berms: (1) the most shoreward toe berm area which effectively supports the armor 

layer, in this study referred to as the primary or “nominal” toe berm and (2) the most 

seaward toe berm area which serves to protect the nominal toe berm, in this study 
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called the secondary or the “sacrificial” toe berm.  Damage to the nominal toe berm was 

used to describe hydraulic stability of wider toe berms. Given a standard toe berm of 

three rocks wide (nominal toe berm), an equivalent toe berm with damage similar to 

the nominal toe berm was defined by increasing the berm width and decreasing the rock 

size. The reduction in rock size showed an inverse 0.4-power relation with the relative 

berm width.  

Keywords: hydraulic stability; mound breakwater; nominal toe berm; sacrificial toe 

berm; shallow water; steep sea bottom; toe berm. 

Highlights: 

a) Toe berm is a relevant design element of mound breakwaters placed on steep 

sea bottoms combined with very shallow waters. 

b) Toe berm damage is critical when the still water level is near the toe berm crest. 

c) Toe berms may require rocks larger than the size available at the construction 

site. 

d) Rock size for the toe berm can be reduced by increasing the toe berm width.  

 

1. Introduction 

The design of rubble mound breakwaters usually focuses on the main armor layer. When 

concrete armor units are used, it is common to construct a rock toe berm of three to 

four rocks wide to provide support for the armor layer (see CIRIA/CUR/CEFMEF, 2007).  

Toe berm stability depends mainly on design wave storm characteristics, water depth 

and the sea bottom slope existing at the construction site. Toe berms in very shallow 
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waters behave in manner a completely different from those built in non-breaking 

conditions (see Hovestad, 2005). On gentle sea bottoms, it is common to design deep 

submerged rock toe berms. However, on rocky coastlines with steep sea bottoms, 

coastal structures may require emerged toe berms with heavy rocks; toe berm hydraulic 

stability may be even more critical than armor stability.  Herrera and Medina (2015) 

conducted laboratory tests with a steep bottom slope (m = 1/10) and concluded that 

most damage occurs when the still water level (SWL) is near the crest of the toe berm. 

In these conditions, for certain wave storms, the required nominal diameter (Dn50) may 

be so large that it is not possible to design standard toe berms with rocks from available 

quarries. In these cases, Besley and Benechere (2009) and Herrera and Medina (2015) 

recommended moving the toe position to deeper or shallower waters where it is 

feasible to construct the toe berm with rock sizes available at the construction site. 

Nevertheless, if the toe position cannot be moved due to environmental, economic or 

operational requirements, this design change is not possible. Other design changes for 

toe berms are given in the literature; authors such as Burcharth and Liu (1995) or Van 

Gent and Van der Werf (2014) proposed using concrete units for the toe berm, while 

USACE (2006) suggested excavating trenches, drilling piles or anchoring bolts to the sea 

bottom to support the toe stones on rocky coastlines.  

The most popular formulas to predict damage to rock toe berms were obtained from 

small-scale tests with different toe berm geometries. However, toe berm widths (Bt) and 

thicknesses (tt) were not usually introduced as explicative parameters of the observed 

toe berm damage. Eq. (1) is equivalent to the formula given by Gerding (1993), which is 

based on laboratory tests with a bottom slope m = 1/20, two toe berm widths (Bt = 3Dn50 
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and 12Dn50), two toe berm thicknesses (tt = 2.3Dn50 and 8.8Dn50), and different water 

depths at the toe (7.5Dn50≤ hs ≤29.4Dn50). 

  (1) 

 

in which Nod is the damage number, Ns = Hst/(ΔDn50) is the stability number, Δ = 

(ρr−ρw)/ρw is the relative submerged mass density of rocks, ρr is the mass density of 

rocks, ρw is the mass density of sea water, Hst is the significant wave height at the toe of 

the structure, and ht is the water depth above the toe berm.   

Eq. (2) is equivalent to the formula proposed by Van der Meer (1998), based on the data 

given by Gerding (1993), but using the dimensionless parameter ht/hs.  
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Ebbens (2009) and Baart et al. (2010) proposed Eq. (3) to estimate the toe berm damage 

from laboratory tests with three bottom slopes (m = 1/20, 1/50 and 1/10), two toe berm 

widths (Bt = 3.7Dn50 and 5.3Dn50), two toe berm thicknesses (tt = 2.2Dn50 and 3.2Dn50), and 

different water depths at the toe (2.7Dn50≤ hs ≤18Dn50).  
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in which N% is the percentage of damage, ξ0p
*= m/(Hst/L0p)1/2 is the surf similarity 

parameter where m is the bottom slope, and L0p = gTp
2/2π is the deep water wave length 

corresponding to the peak period, Tp.  
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Eq. (4) is equivalent to the formula proposed by Muttray (2013), based on experiments 

conducted by different authors, including the data given by Gerding (1993) and Ebbens 

(2009).  
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Van Gent and Van der Werf (2014) obtained Eq. (5) from laboratory tests with a bottom 

slope m = 1/30, two toe berm widths (Bt = 3Dn50 and 9Dn50), two toe berm thicknesses (tt 

= 2Dn50 and 4Dn50), and different water depths (8.6Dn50<hs<27.4Dn50 and 7Dn50≤ ht 

≤25Dn50). Eq. (5) explicitly considers the influence of Bt and tt on toe berm stability. 
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Van Gent and Van der Werf (2014) also proposed multiplying the design Nod value by a 

factor fB (see Eq. 13) when 3Dn50< Bt  ≤9Dn50, as described in Section 6.  

Finally, Eq. (6) proposed by Herrera and Medina (2015) is based on laboratory tests with 

a steep bottom slope (m = 1/10), one toe berm width (Bt = 3Dn50), one toe berm thickness 

(tt = 2Dn50), and water depths at the toe berm in the range of -0.5Dn50≤ hs ≤5.01Dn50.  
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in which Hs0 is the significant deep water wave height. Herrera and Medina (2015) 

described the two toe berm damage definitions, Nod and N%, used in Eqs. (1) to (6).  

50n

od
DB

N
N                                                                                                                                          (7)  

in which N is the number of displaced rocks and B is the total width of the wave flume. 

Herrera and Medina (2015) found that N% is usually one order of magnitude lower than 

the damage number Nod. Both Nod and N% take into account the total number of rocks 

displaced from the toe (N). However, N is not suitable to measure the damage to toe 

berms with different geometries, since a larger N is required to significantly damage 

larger toe berms. When increasing the toe berm width (Bt > 3Dn50), rocks situated in the 

most seaward area do not directly contribute to support the armor, but only to protect 

the most shoreward area of the toe berm. Since toe berm stability should be considered 

together with the stability of the main armor layer (see Lamberti, 1994), the most 

seaward area of the toe structure can be considered as a “sacrificial” toe berm, and the 

most shoreward area of three nominal diameters wide, as the “nominal” toe berm 

necessary to support the armor layer (see Fig. 1).  
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Fig. 1. Sketch of sacrificial and nominal toe berms.  

This study analyzes the influence of the nominal diameter (Dn50) and the toe berm width 

(Bt = nDn50) on the hydraulic stability of the nominal toe berm, where n is the number of 

rock rows placed on the upper layer of the toe berm. To this end, 2D physical tests were 

conducted using small-scale models of breakwaters with double-layer randomly-placed 

cube armors and rock toe berms, placed on a steep bottom slope (m = 1/10). Different 

pairs of (Dn50, Bt) were tested with the SWL close to the crest of the toe berms. The 

required rock size given by Eq. (6) for a nominal toe berm (Bt = 3Dn50) was modified to 

account for wider toe berms (n > 3) based on damage measurements of the nominal toe 

berm. In this paper, the experimental setup is described in Section 2. Tests with different 

toe berm sizes and widths are analyzed in Section 3. Section 4 describes a design method 

based on a new equation with its confidence intervals, providing an integrated graph to 

design rock toe berms. A practical application is given in Section 5. Formulas given in the 

literature are compared in Section 6. Finally, conclusions are drawn in Section 7.  

 

2. Physical model tests  

2D physical model tests were conducted in the wind and wave test facility (30m x 1.2m 

x 1.2m) of the Laboratory of Ports and Coasts at the Universitat Politècnica de València 
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(LPC-UPV) with a piston-type wavemaker and a steep sea bottom (m = 1/10).  Fig. 2 

shows a longitudinal cross section of the LPC-UPV wave flume with the location of the 

wave gauges used in this study.  

 

Fig. 2. Longitudinal cross section of the LPC-UPV wave flume (dimensions in meters). 

The test model depicted in Fig. 3 corresponds to a conventional cotα = H/V = 3/2 non-

overtopped mound breakwater, protected with a double-layer, randomly-placed cube 

armor with nominal diameter Dn(cm) = 3.97 and weight W(g) = 141.5. The cube armor 

was built on a filter layer with Dn50(cm) = 1.78 and Dn85/Dn15 = 1.35. The granulometric 

characteristics of the core material were Dn50(cm) = 0.68 and  Dn85/Dn15 = 1.64. 

 

Fig. 3. Configuration of the cube armored model (dimensions in centimeters).  
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Toe berms were tested with three rock sizes, Dn50(cm) = 3.04, 3.99 and 5.12, with a mass 

density ρr(g/cm3) = 2.70. Three toe berm widths (n = 3, 5 and 12) were applied with 

Dn50(cm) = 3.04 and 3.99; the nominal toe berm was considered as the most shoreward 

area of the berm with a width of three times the rock nominal diameter (Bt = 3Dn50). The 

nominal toe berm was placed first; later, the sacrificial toe berm was placed, using rocks 

painted in a different color to be easily distinguished. Only the nominal toe berm (n = 3) 

was tested with Dn50 (cm) = 5.12. In all cases, the toe berm thickness was fixed at tt = 

2Dn50, and the water depth was hss(cm) = 8, measured at the toe of the nominal toe berm 

(n = 3) for all configurations (see Fig. 4). With hss(cm) = 8, the SWL was very close to the 

crest of the toe berms (1.5≤ hss/Dn50  ≤2.6). Note that hs = hss only when Bt = 3Dn50. 

  

 

Fig. 4. Configuration of tested toe berms: (a) Bt = 3Dn50, (b) Bt = 5Dn50 and (c) Bt = 12Dn50. 

Random wave runs of 500 waves were generated following JONSWAP (ϒ= 3.3) spectrum, 

and the AWACS Active Absorption System was activated to avoid multi-reflections. Test 

series were conducted following the methodology described by Herrera and Medina 

(2015). Five different peak periods were considered, Tp(s) = 1.20, 1.50, 1.80, 2.20 and 

2.40; for each Tp, values of significant wave height at the wave generating zone (Hsg) 



10 

 

were increased from no damage to wave breaking in front of the wavemaker. Hsg was 

increased in steps of 2cm in the range of 8≤ Hsg (cm) ≤20. The toe berm was rebuilt after 

each test series defined by the water depth at the toe of the nominal toe berm (hss), the 

rock size (Dn50), and the toe berm width (Bt = nDn50).  

Two damage parameters were measured after each test: (1) Nod, corresponding to the 

total damage of the toe berm of width Bt = nDn50 (n ≥ 3); and (2) Nod* corresponding only 

to the damage of the nominal toe berm. Fig. 5 shows a model with Dn50 (cm) = 3.99 and 

Bt = 5Dn50; blue rocks correspond to the nominal toe berm and brown rocks correspond 

to the sacrificial toe berm. Table 1 summarizes the test conditions and the range of 

parameters used in this study. 

 

Fig. 5. Nominal (blue rocks) and sacrificial (brown rocks) toe berms with Bt = 5Dn50. 

Table 1. Test conditions. 
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Parameter Symbol Value 

Slope angle (-) cotα 3/2 

Bottom slope (-) m 1/10 

Cube armor size (cm) Dn 3.97 

Rock filter size (cm) Dn50 1.78 

Rock core size (cm) Dn50 0.68 

Rock toe size (cm) Dn50 3.04, 3.99 and 5.12 

Rock toe density (g/cm3) ρr 2.7 

Relative toe width (-) Bt/Dn50 3-12 

Relative toe thickness (-) tt/Dn50 2 

Relative water depth at toe berm (-) hs/Dn50 1.5-3.5 

Relative water depth at the nominal toe berm (-) hss/Dn50 1.5-2.6 

Relative significant wave height at generating zone (-) Hsg/hss 1.0-2.5 

Wave steepness at generating zone (sgp=2πHsg/gTp
2) (-) sgp 0.01-0.07 

Stability number at generating zone (Ns=Hsg/ΔDn50) (-) Ns 1.0-3.8 

Damage level of the nominal toe berm (-) Nod* <4.8 

Total damage level (-) Nod <11.1 

 

Water surface elevation was measured using eleven capacitive wave gauges. One group 

of wave gauges (G1, G2 and G3) was placed near the wavemaker while ten wave gauges 

(G4 to G11) were placed along the wave flume (see Fig. 2). The LASA-V method described 

by Figueres and Medina (2004) was used to estimate incident and reflected waves at the 

generating zone (wave gauges G1, G2 and G3).  

3. Data Analysis 

http://www.sciencedirect.com/science/article/pii/S002980181400225X#bib11
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3.1. Wave analysis 

Using the water surface elevation, waves were characterized with a time and frequency 

domain analysis. When dealing with waves breaking on a m = 1/10 bottom slope 

combined with shallow waters, it is not easy to obtain reliable incident wave 

characteristics. The deep water wave conditions are the most reliable reference in these 

cases.   

In this study, waves were characterized in deep water conditions following the 

methodology described in Herrera and Medina (2015). The average of the highest one-

third incident waves (Hi,1/3) measured at G1, G2 and G3 was used to estimate the deep 

water significant wave height (Hs0) using the shoaling coefficients given by Goda (2000). 

Fig. 6 shows the measured H1/3,i versus the deep water significant wave height (Hs0) 

estimated using the methodology given in Goda (2000).  

 

Fig. 6. Measured H1/3,i at the wave generating zone versus deep water significant wave 

height, Hs0.  
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The deep water significant wave height (Hs0) and the deep water wave length obtained 

from the peak period (L0p = gTp
2/2π) were used to characterize the toe berm damage. 

According to Herrera and Medina (2015), (Hs0 L0p)1/2 seems to be the best explicative 

variable to represent toe berm damage in very shallow waters combined with steep sea 

bottoms. 

3.2. Damage analysis 

Toe berm stability was analyzed using the total toe berm damage (Nod), along with the 

nominal toe berm damage (Nod*). After each test, the total number of rocks displaced 

from the toe berm (N) were counted and the damage parameter, Nod, was determined 

using Eq. (7). Nod corresponded to the damage to both the sacrificial and nominal toe 

berms. The damage parameter, Nod*, was also determined using Eq. (7) but considering 

only the number of rocks displaced from the nominal toe berm (Fig. 7).  Both damage 

parameters considered the cumulative damage of each test series.  

 

Fig. 7. Total toe berm damage (Nod) and nominal toe berm damage (Nod*).  

Figs. 8 and 9 show total and nominal toe berm damage corresponding to Dn50 (cm) = 

3.04, 3.99 and 5.12 and different toe berm widths (n = 3, 5 and 12). Only the maximum 

cumulative damage obtained after test runs characterized by Tp is plotted here.  
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3.2.1. Total toe berm damage (Nod) 

Fig. 8 shows the measured Nod as a function of the variable (Hs0 L0p)1/2 for the seven 

tested models. Nod increased almost linearly with the variable (Hs0 L0p)1/2 in all cases. 

Given n, Nod was larger when reducing Dn50. Given Dn50, Nod increased when increasing 

n. Smaller rock sizes and wider toe berms led to larger values of total toe berm damage 

(Nod).  

 

Fig. 8. Total toe berm damage (Nod) as a function of toe berm width (Bt = nDn50) and rock 

size (Dn50).  

3.2.2. Nominal toe berm damage (Nod*) 

Fig. 9 shows the measured nominal toe berm damage (Nod*) as a function of the variable 

(Hs0 L0p)1/2. Given a toe berm width (Bt = nDn50), Nod* was larger when reducing Dn50. 
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Given a rock size (Dn50), Nod* increased when reducing the toe berm width (n). Thus, 

larger rock sizes as well as wider toe berms led to less nominal toe berm damage (Nod*). 

 

Fig. 9. Nominal toe berm damage (Nod*) as a function of toe berm width (Bt = nDn50) and 

rock size (Dn50).  

3.2.3. Comparison of total and nominal toe berm damage measurements 

Fig. 10 compares measured total toe berm damage (Nod) and nominal toe berm damage 

(Nod*). The wider the toe berm, the lower the Nod* but the higher the Nod. Given a rock 

size (Dn50), a wider toe berm would reduce Nod*, although the Nod would increase. Thus, 

the total toe berm damage (Nod) is not a good estimator of the hydraulic stability of toe 

berms when comparing different berm widths (Bt > 3Dn50); the Nod* corresponding to 

the damage to the nominal toe berm, which is actually supporting the armor layer, is 

the toe berm damage which should be taken into account when analyzing breakwater 
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hydraulic stability. Damage observed on the sacrificial toe berm is not relevant when 

analyzing the hydraulic performance of mound breakwaters.  

 

Fig. 10. Comparison of measured total toe berm damage (Nod) and measured nominal 

toe berm damage (Nod*).  

Hereafter, only the damage to the nominal toe berm, Nod*, is considered. Eq. (6), 

proposed by Herrera and Medina (2015), is extended here to design toe berms with 

3Dn50≤ Bt ≤12Dn50 and tt=2Dn50, placed on steep sea bottoms (m = 1/10) when the SWL is 

close to the crest of the toe berm (1.5≤ hss /Dn50 ≤2.6), 0.02≤ s0p ≤0.07 and 0.4≤ hss/Hs0 

≤1.0. 

4. New design method for toe berms in shallow water and m =1/10 
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Fig. 9 shows that several tests with different Dn50 and n provided similar values of Nod* 

for specific wave conditions, (Hs0 L0p)1/2. Under the same wave conditions (Hs0, Tp), the 

toe berm with Dn50(cm) = 3.99 and n = 5 provided almost the same Nod* as the toe berm 

with Dn50(cm) =5.12 and n=3. Analogously, the toe berm with Dn50(cm) = 3.04 and n = 5 

gave values of Nod* similar to those of the toe berm with Dn50(cm) = 3.99 and n = 3. These 

findings suggest that the rock size can be reduced by increasing the toe berm width. It 

is possible to keep Nod* constant by reducing Dn50 and increasing n, or vice versa. The 

relationship between Dn50 and Nod* can be described by Eq. (8), using as a reference the 

nominal toe berm (n = 3) with rock size Dn50 = Dn50,3.  
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where Dn50,3 is the nominal diameter of rocks for the nominal toe berm (n = 3), Dn50,n is 

the nominal diameter of rocks for wider toe berms (3< n ≤12), and k is a positive 

parameter to be calibrated using the test results described above (k = 0.4). Eq. (8) 

indicates that given a nominal toe berm with n = 3 and Dn50 = Dn50,3, an equivalent toe 

berm can be defined with higher n (n > 3) and lower Dn50  (Dn50,n < Dn50,3) to provide 

similar Nod*.  

Because Eq. (6) is valid to design toe berms using rocks with n = 3, the estimated Nod 

given by Eq. (6) corresponds to the nominal toe berm damage (Nod*), and Eqs. (6) and 

(8) can be combined as follows: 
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                       (9)   

The best agreement between the measured Nod* and the estimated Nod* given by Eq. 

(9) was found for k = 0.4. The goodness of fit between measured and calculated values 

and the 90% confidence interval are described below.  

Eq. (9) extends the application range of Eq. (6) to deal with wider toe berms. Eq. (9) with 

k = 0.4 provides the required rock size for toe berms with 3Dn50≤ Bt ≤12Dn50 and tt=2Dn50, 

placed on a m = 1/10 sea bottom with 1.5≤ hss/Dn50 ≤2.6, 0.02≤ s0p ≤0.07, 0.4≤ hss/Hs0 

≤1.0, using the damage parameter Nod*.When designing with Nod*, common values for 

acceptable damage may be directly used. In this study, the criterion proposed by Herrera 

and Medina (2015) was considered: no significant movement of toe berm rocks (Nod* < 

0.5), significant rock movements (Nod* = 1.0), moderate damage but toe berm still 

providing support to the armor (Nod* = 2.0), and toe berm failure (Nod* = 4.0).  

4.1. Confidence intervals 

Assuming a Gaussian error distribution, the 90% confidence interval for the toe berm 

damage estimation given by Eq. (9) is: 

83.0** %95
%5  odod NN                                                                    (10) 
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Fig. 11 compares measured Nod* and that estimated given by Eq. (9) with the 90% 

confidence interval given by Eq. (10). The few outliers for small Nod* shown in Fig. 11 are 

on the safe side, estimated Nod* > measured Nod*. 

 

Fig. 11. 90% confidence interval of estimated Nod* given by Eq. (9) with k = 0.4. 

In order to measure the goodness of fit between the Nod* measured in the tests and that 

estimated by Eq. (9), the relative mean squared error (rMSE) and the correlation 

coefficient (r) were calculated: 
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in which MSE is the mean squared error, Nt is the number of observations, ti is the target 

value, ei is the estimated value, VAR  is the variance of target values, and t  and e  are 

the average of target and estimated values, respectively. 0≤ rMSE ≤1 estimates the 

proportion of variance in the observed values not explained by Eq. (9); the lower the 

rMSE, the better the predictions. 0≤ r ≤1 measures the degree of correlation between 

measured and estimated values of Nod*; the higher the r, the better the predictions. Eq. 

(9) with k = 0.4 provided rMSE = 0.187 and r = 0.91.  

4.2. Design approach for equivalent toe berms  

Given an acceptable level of damage (e.g. Nod* = 0.5 or 1.0), Eq. (6) is used first to 

calculate the rock size for a nominal toe berm, Dn50, 3, and Eq. (9) can be used later to 

define wider toe berms (3< n ≤12) with smaller rocks (Dn50, n).   

 

Fig. 12. (a) Nominal toe berm (n = 3) and (b) equivalent wider toe berm (3< n  ≤12). 

 

A practical application of this process is given by the design graph shown in Fig. 13, which 

is valid for Nod* = 0.5 and 1.0. Fig. 13a shows the nominal diameter of rocks for a nominal 

toe berm (Dn50,3), estimated with Eq. (6), as a function of the deep water wave 

conditions, (Hs0 L0p)1/2, for hss/Dn50,3 = 1.5, 2.0 and 2.5. Fig. 13b shows the relation 

between nominal diameters (Dn50,3 and Dn50,n) as a function of the toe berm width (3≤ n 

≤12). Dn50,n can be selected by the designer considering the rock sizes available at the 
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construction site. The ranges of application of Eq. (6) in Fig. 13 are 0.02< s0p <0.07, -0.15< 

hss/Hs0 <1.5, and -0.5≤ hss/Dn50 ,3 ≤5.01.  

 

Fig. 13. (a) Dn50,3 estimated with Eq. (6) and (b) Dn50,n as a function of Dn50,3 and the toe 

berm width (n). 

Red arrows in Fig. 13 indicate the relationship considered in the example given below. 

 

5. Application example 

In this section, an example is given to design a rock toe berm placed on a m = 1/10 sea 

bottom combined with a SWL close to the crest of the toe berm (hss ≈ 2Dn50); the 

recommended design value of Nod* = 1, given by Herrera and Medina (2015) for Eq. (6), 
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is considered first. According to Eq. (6) and given a typical design storm for the Alboran 

Sea (Hs0(m) = 5, Tp(s) = 11, (Hs0 L0p)1/2 = 30.7 m and water depth at the nominal toe berm 

hss(m) = 4.5), the required rock size for a nominal toe berm (Bt = 3Dn50 and tt = 2Dn50) is 

Dn50,3(m) = 2.23, which corresponds to 30-tonne rocks if the mass density is ρr(g/cm3) = 

2.70. In order to reduce the size of the required rocks (if not available at quarry), Eq. (9) 

with k = 0.4 is applied. When considering a double toe berm width (n = 6), the required 

rock size is reduced to Dn50,n(m) = 1.7 (13-tonne rocks). If only 6-tonne rocks are available 

at the construction site, a wider toe berm with n = 12 is required. Fig. 14 depicts the rock 

weight (W) in tonnes depending on the toe berm width (n). Rocks with W(t) = 30, 13, 8.0 

and 5.7 (Dn50 (m) = 2.23, 1.7, 1.44 and 1.28) could be used when considering toe berm 

widths having n = 3, 6, 9 and 12, respectively.  

If Nod* = 0.5 rather than Nod* = 1.0 were considered as the design condition, the toe 

berms described above would withstand a design storm, (Hs0 L0p)1/2 = 25.0 m, which 

corresponds to a weaker design storm: Hs0(m) = 4 and  Tp(s) = 10). 

 

Fig. 14. Rock weight (W) depending on the toe berm width (Bt = nDn50). 
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6. Comparison with existing formulas 

As mentioned in Section 1, Van Gent and Van der Werf (2014) specifically introduced 

the toe berm width (Bt) as an explicative parameter of toe berm damage (Nod). For a 

certain amount of acceptable damage, the required rock size according to the study by 

these experts is given by Eq. (5), which was obtained from laboratory tests with a m = 

1/30 bottom slope, and no severe depth-limited wave breaking. Two toe berm widths 

were considered (Bt = 3Dn50 and 9Dn50), and only the total toe berm damage (Nod) was 

measured after each test. In order to consider that Nod increases with the toe berm 

width, these authors proposed multiplying the design Nod value by a factor fB when 

3Dn50< Bt  ≤9Dn50. 
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Thus, when Bt = 3Dn50, Eq. (5) is directly applicable with Ns = Hst/(ΔDn50) and Dn50=Dn50,3 . 

If 3Dn50< Bt =nDn50 ≤9Dn50 and tt = 2Dn50, Eq. (5) may be rewritten as follows: 
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Eq. (14) is equivalent to Eq. (5) for n = 3. Manipulating Eqs. (5) and (14) and replacing fB 

by the expression given by Eq. (13), the relation between the required nominal 

diameters for the design of a toe berm with 3< n ≤9  and a nominal toe berm with n = 3, 

can be calculated using Eq. (15).  
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Dn50,n/Dn50,3 follows the potential relationship given by Eq. (8) but with the shape 

parameter k = 2/17 instead of k=0.4 used in Eq. (9). Fig. 15 shows the Nod* measured in 

this study and that estimated by Eq. (9) when using k = 2/17 rather than k = 0.4. Eqs. (5) 

and (14) given by Van Gent and Van der Werf (2014) are valid for toe structures placed 

on a m=1/30 bottom slope, with an armor slope cotα =2.0, 3Dn50≤ Bt  ≤9Dn50, 2Dn50≤ tt  

≤4Dn50, 7Dn50< ht  ≤25Dn50, 1.2≤ hs /Hst ≤4.5 and 0.012≤ s0p ≤0.042. Eqs. (5) and (14) are 

beyond the range of variables tested in this study; this explains the poor agreement 

between the Nod* measured in this study and that estimated by Eq. (9) when using k = 

2/17 (instead of k=0.4). Further research is required to test the range of variables not 

included in Van Gent and Van der Werf (2014) or in the present study (e.g. 

3.5Dn50<hs<8.6Dn50 and 1/30<m<1/10). 

 

Fig. 15. Comparison of the Nod* measured in tests and that given by Eq. (9) using k = 

2/17 rather then k = 0.4.  
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Thus, the parameter k depends on the test conditions. The divergence between k = 2/17 

and 0.4 highlights the distinct performance of the toe berm when dealing with plunging 

waves breaking on a steep sea bottom (m = 1/10) combined with very shallow waters 

(as seen in the case of this study), or when dealing with gentler sea bottoms (m = 1/30) 

and no severe depth-limited wave breaking (as seen in Van Gent and Van der Werf, 

2014). These two cases indicate that rock size and toe berm width should be considered 

together when designing a rock toe berm. 

 

7. Summary and Conclusions 

Although the hydraulic stability tests of toe berms reported in the literature consider 

different bottom slopes, (1/50≤ m ≤1/10), toe berm widths (3Dn50≤ Bt ≤9Dn50) and toe 

berm thicknesses (2Dn50≤ tt ≤8.8Dn50), toe berm geometry is usually not taken as an 

explicative parameter of the toe berm damage. Only Van Gent and Van der Werf (2014) 

explicitly considered the influence of toe berm width (Bt = nDn50) on toe berm stability. 

When considering wide toe berms (n >3), common toe berm damage values (0.5≤ Nod 

≤4.0) cannot be directly applied since more rock displacements are required to 

significantly damage wider toe berms.  

This study proposes two new concepts to better characterize the hydraulic stability of 

wide toe berms (3< n ≤12): nominal and sacrificial toe berms. Two areas were 

distinguished for the toe berm: (1) the most shoreward area of the toe berm (nominal 

toe berm, n=3) which supports the armor layer and (2) the most seaward area (sacrificial 

toe berm) which protects the nominal toe berm. New physical tests were carried out at 

LPC-UPV with toe berms of different rock sizes (Dn50(cm) = 3.04, 3.99 and 5.12) and toe 
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berm widths (n = 3, 5 and 12). Tests were conducted with a m = 1/10 bottom slope and 

a SWL close to the top of the berm (1.5≤ hss/Dn50 ≤2.6). The toe berm damage was 

measured after each test considering: (1) the total toe berm damage (Nod), and (2) the 

damage to the nominal toe berm (Nod*). For wider toe berms (n >3), Nod* turned out to 

be a better descriptor of toe berm damage; Nod* decreased when increasing the toe 

berm width (n). When using Nod*, recommended design values of conventional toe berm 

damage can be directly used (0≤Nod*≤4).  

Given an acceptable level of damage to the nominal toe berm (Nod*) as a design 

condition, it is possible to significantly reduce the rock size (Dn50) by increasing the toe 

berm width (n) according to Eq. (8). For steep sea bottoms (m = 1/10) and shallow 

waters, this reduction in rock size showed an inverse 0.4-power relationship with the 

relative toe berm width. Using the formula given by Van Gent and Van der Werf (2014) 

with a gentle bottom slope m = 1/30 and a toe berm thickness tt=2Dn50, the reduction in 

rock size also followed Eq. (8) but showed an inverse 2/17-power relationship with the 

toe berm width. Thus, the shape parameter k = 2/17 and 0.4 given in Eq. (8) depends on 

the water depth and the sea bottom slope existing at the construction site, and it 

determines the breaking type and the wave impact affecting the toe berm.  

To design toe berms placed on m = 1/10 bottom slopes, the rock size reduction may be 

especially important when the wave conditions are so adverse that it is not possible to 

find the required rock sizes at the construction site. Thus, the proposed method can be 

used in these cases for the design of rock toe berms within the ranges m=1/10, 3Dn50≤ 

Bt ≤12Dn50, tt=2Dn50, 1.5≤ hss/Dn50 ≤2.6, 0.02≤ s0p ≤0.07, 0.4≤ hss/Hs0  ≤1.0 and 0≤ Nod* ≤4. 

The validity is limited to water depths close to the crest of the toe berm. Further 
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research is required to examine the transition area from shallow waters with m=1/10 

analyzed in this study, and the deeper waters and milder bottom slope tested by Van 

Gent and Van der Werf (2014). Also the effect of other slope angles and toe thicknesses 

should be investigated.  

In shallow waters combined with steep sea bottoms (m=1/10), when using sacrificial toe 

berms, it is convenient to regularly monitor the toe berm. After severe storms, the 

sacrificial toe berm may be partially washed away and additional dumping of rocks at 

the toe may be necessary to continue providing full support to the armor layer.    
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