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Abstract 

Total acid number (TAN) has been considered an important indicator of the oil quality of used 

oils. TAN is determined by potentiometric titration, which is time-consuming and requires 

solvent. A more convenient approach to determine TAN is based on infrared (IR) spectral data 

and multivariate regression models. Predictive models for the determination of TAN using the IR 

data measured from ashless dispersant oils developed for aviation piston engines (SAE 50) have 

been developed. Different techniques, including Projection Pursuit Regression (PPR), Partial 

Least Square, Support Vector Machines, Linear Models and Random Forest (RF), have been 

used. The used methodology involved a five folder cross validation to derive the best model. 

Then a full error measure over the whole dataset was taken. A backward variable selection was 

used and 25 highly relevant variables were extracted. RF provided an acceptable modelling 

technology with grouped dataset predictions that allowed transformations to be performed that 

fitted the measured values. A hybrid method considering group of bands as features was used for 

modelling. An innovative mechanism for wider features selection based on genetic algorithm has 

been implemented. This method showed better performance than the results obtained using the 

other methodologies. RMSE and MAE values obtained in the validation were 0.759 and 0.359 for 

PPR model respectively. 
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1. Introduction  

Determining the condition of engine oil is critical for aviation safety and operation thereof. 

Therefore, periodic analyses of engine oils are mandatory. The conditions of aging fluids that 
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require regular monitoring are total acid number (TAN), viscosity index (VI), wear rate and 

depletion of antioxidants [1] . These parameters (TAN and VI) can be determined by standard 

physicochemical methods. However, the main motor oil physicochemical characteristics are 

covered by the American Standards for Testing and Materials (ASTM) guides. Viscosity index 

and TAN of oils are usually measured according to standard ASTM D445 [2] and ASTM D664 

[3] , respectively. TAN determination is based on potentiometric titration with a base to a fixed 

endpoint. It is time-consuming and requires environmentally problematic solvents and reagents.  

In recent years, efforts have been made to replace analytical methods based on the FTIR 

technique. In order to obtain analytical information in a rapid, non-destructive way, mid-infrared 

spectroscopy has been largely applied to study motor oils for different purposes: quantifying 

contaminants [4] [5] , or oxidation process [6] [7] , adulteration [8] [9] [10] , determining the 

antioxidant concentration [11] , determining physicochemical values (TAN [8][12] [13] , VI [14] 

[15] and TBN [12] [14] ), and classifying them according to their origins [16] . 

It is well-known that hydrocarbon oxidation is an autocatalytic process governed by the initiation 

of a free radical chain reaction, chain propagation, chain branching, and the termination of the 

radical chain reaction [17] . These multiple free radical pathways produce a complex mixture of 

possible oxygenated products, such as hydroperoxides, alkyl peroxides, dialkyl peroxides, 

alcohols, carboxylic acids, esters, ketones, diketones, aldehydes, hydroxyketones, ketoaldehydes 

and unsaturated oxygenated compounds [18] . All these molecules introduce functional groups 

that provide characteristic FTIR spectral bands. Therefore, oil oxidation should generate visible 

changes in the following vibration bands: (3100–3600 cm-1; 2500– 3200 cm-1; 1650–1730 cm-1; 

1680–1710 cm-1; 1700–1740 cm-1; 1050–1450 cm-1 and 1000–1250 cm-1) [6] . 

Recently, multivariate calibration has been applied to determine the antioxidant concentration 

[11] , and physicochemical values (TAN [8][12] [13] , VI [14] [15] and TBN [12] [14] ), based on 

the FTIR technique. Multivariate calibration is an effective calibration method in which the 

chemical information (absorption, emission, transmission, etc.) of a set of standard mixtures 

recorded at different variables (wavenumbers) is related to the concentration of the chemical 

compounds present in the mixtures [19] . The popular form of calibration used in chemical 

analyses is univariate calibration, in which the chemical information of a set of solutions recorded 

at one variable (i.e., wavenumber) is related to the solute concentration in the solution. The most 

applied multivariate methods are classical least squares (CLS) [14] , principal-component 

regression (PCR) [14] and partial least squares (PLS) [7] [8] [11] [14] [15] .  

In the present study, the TAN (total acid number) of turbine engine oils from military aircrafts 

was estimated by FTIR spectroscopy with multiple regression by using two different strategies. 

Instead of using the classic PCA for dimension reduction, we used both the PCA and the 

Independent component analysis (ICA), which slightly outperforms the PCA. By employing this 

backward variable selection, 25 highly relevant variables were extracted. After this variable 

selection, predictive models were built by different techniques, including Projection Pursuit 

Regression (PPR), Partial Least Square (PLS), Support Vector Machines (SVM), Linear Models, 

Generalized Linear Models (GLM) and Random Forest (RF). In addition, an innovative 

mechanism for wider features selection based on genetic algorithm has been implemented, which 

outperforms the previously used techniques. 

 

 



2. Material and methods 

2.1. Oil Samples. 

Oil samples have been used in airplanes with fixed or reciprocating piston engines installed on a 

private aircraft (not including freight or passenger) with a maximum certified take-off weight of 

up to 5700 kg. These aircrafts are included in the Schedule of Condition Based Maintenance 

(SCBM) of the Venezuelan National Institute of Civil Aviation (Instituto Nacional de 

Aeronáutica Civil, INAC). INAC provides an alternative to extend the service up to 8 more years 

for these engines for a 12-year calendar time to perform reconditioning or overhaul, but which 

have not yet reached the limit in flight hours (1200–1700 hours) specified by the manufacturers.  

Oils were used in engines of the brands Teledyne Continental Motors and Textron Lycoming. The 

owners of these aircrafts operate their units at fewer than 100 hours per year, and make engines 

work under tropical climate conditions (heat and moisture). This tends to accelerate oxidation 

processes and oil degradation, thus promoting corrosion and rust formation, mainly in those parts 

exposed to engine elements, such as cylinders. The SCBM program includes some preventive and 

predictive parameters, such as compression checks, boroscopic inspection, and the flow testing of 

cylinders, oil filters inspection, oil consumption verification, complete engine inspection, plus the 

prior inclusion of an oil analysis that the inspector should have before aircraft assessment begins.  

Eighty ashless dispersant oils (AeroShell W 100, SAE 50) were collected from aviation piston 

engines used during the 2009–2012 period of engines of the brands Teledyne Continental Motors 

with operation times within the 600–2000 hour range and oils with a 50-hour operation. Table 1 

shows the complexity of the samples in a variety of engines, times of operations and acidity. 

 

Owners Types 

of 

engines 

No. 

samples 

Average 

oil 

operation 

(hours) 

Average 

engine 

operation 

(hours) 

Period 

Sampling 

TAN range 

(mg KOH /  

g oil) 

1 6 17 30.7 1015.3 2009–12 0.28–3.53 

2 2 9 7.3 660.8 2010–12 0.21–5.05 

3 2 3 27.1 774.0 2010–11 0.18–1.76 

4 5 8 23.8 601.1 2010–12 0.81–2.13 

5 1 3 64.0 2092.0 2011–12 0.67–2.34 

6 1 1 50.0 616.7 2010 1.30 

7 1 1 60.6 1264.0 2010 1.24 

8 1 1 50.0 1048.1 2011 2.95–2.95 

9 1 2 33.5 1279.6 2010–11 0.94–1.57 

10 2 3 52.8 1270.0 2012 1.08–1.95 

11 1 1 47.4 742.9 2010 1.20 

12 8 13 39.9 928.7 2010–12 0.64–3.14 

13 1 5 33.1 1102.8 2010 0.49–1.22 

14 3 7 39.6 1097.4 2010–12 0.98–2.07 

15 3 6 37.5 1086.6 2010–11 0.48–1.96 

Table 1. Oil samples 

 

2.2. Infrared spectra. 

Infrared spectra were obtained in a Fourier Transform spectrometer, Perkin Elmer model 

Spectrum 100, within a spectral range of 450–4000 cm-1, with a resolution of 1 cm-1 and 16 scans 



per sample, corresponding to 3551 data points per spectrum (original variables). The cells used 

were zinc selenide (ZnSe) transmission cells and path length was fixed at 0.1 mm.  

The FTIR equipment was kept in a cabin at low humidity (under 45%) and was usually purged 

with nitrogen gas every 6 months. The background analysis and cleanliness of cells were 

performed between each determination in an estimated time of 5 minutes. 

Oil samples were subjected to ultrasonic agitation for a time longer than 5 minutes, but shorter 

than 10 minutes, and 6 mL were extracted with a Pasteur pipette and analysed. No dilution was 

employed. Cells were cleaned with N-heptane before each determination. Spectra were collected 

in duplicate per sample and the % of transmittance and absorbance of the spectra were recorded 

with the FTIR software. 

2.3. TAN Determination 

TAN values were measured according to the ASTM D664 method [3] . For potentiometric 

titration, previously standardized potassium hydroxide (0.1 mol/L) was used to neutralize all the 

acidic constituents. Titrations were carried out in a mixture of toluene, isopropanol and water 

(volumetric ratio of 500:495:5). The amount of acidic constituents is given in mg of potassium 

hydroxide (KOH) per g of oil. A sample pretreatment was done by heating to 60°C and filtering 

through 100 µm mesh filters. Each analysis was done 3 times to determine an average. The 

standard deviation was established in 0.08 mg/KOH. 

3. Results and discussion 

3.1. Spectroscopic results 

The FTIR spectra of the motor oil samples were recorded within the 450-4000 cm−1 range and are 

illustrated in Figure 1. To obtain clearer FTIR graphics, the full spectra were divided into three 

regions: 3000–2850, 1800–1500 and 1000–450 cm−1. The spectra of the motor oils clearly 

overlapped within the entire spectral region and no certain wavenumber was found. Figure 1 

shows three typical infrared spectra of engine oils which corresponded to oils with different 

acidities, low, medium and high, and characteristic changes due to acidity and oxidation. 

Gracia et al. [6] reported a large absorption band between the absorption bands for (C=O) 

corresponding to esters (1740 cm-1) and cyclic esters (lactones, 1780 cm-1). These changes 

indicate typical oxidation products and aging products caused by contaminants in oil. Other 

authors have considered simplifying the spectrum and have eliminated several spectral ranges 

using criteria such as regions with total absorbance, regions with bands from strong C-H and C-C 

vibrations from hydrocarbons contained in base oil (typically 3100–2750 cm-1, 1500–1300 cm-1, 

and 800–700 cm-1) and regions with no significant absorbances (typically 2750–2000 cm-1,1600–

1500 cm-1, and 700–600 cm-1) [13] .  

3.2. Data analysis methods 

This section presents the data analyses carried out. The available dataset involved 76 oil samples. 

For all these samples, the FTIR spectra from 4000 to 450 cm-1 were available, as well as the TAN 

in accordance with ASTM D-664 [3] . 

The research program focused on overcoming the main hurdle that the quantitative FTIR analysis 

of lubricants faced, the need for a reference oil. This stumbling block was overcome by applying 



differential spectroscopy in conjunction with a specific stoichiometric reaction. By recording the 

oil spectrum twice, once before and once after reagent addition, and examining the differential 

spectrum obtained by subtracting one spectrum from another, quantifiable information on a 

particular constituent can be obtained. 

The main goal in this section was to build up a model to help determine TAN within a confidence 

range because it can reduce the cost and time required for this analysis. This is relevant because 

this determination is a must in most of the aircraft regulatory body as it determines the acid 

contamination of used oils. Having a quick and averaged procedure for TAN estimations is 

greatly appreciated by maintenance staff. 

To determine such models, and in accordance with the literature, there are two different main 

methodologies. The first looks at reducing the number of independent variables (Figure 1). In 

order to build an effective and robust classification model the spectra data (that have up to 3500 

independent variables) should be reduced, given the limited number of spectra available. Two 

common ways to reduce data are spectra averaging (up to 8 times), which is a bias-prone 

technique in combination with the principal component analysis (PCA), which is the most 

universally applied [20] The second methodology looks at identifying the most relevant 

individual wavelengths to explain the most desired variable. Different strategies are available, 

like expert judgment, forward or backward variable selection, genetic algorithm-based variable 

selection, etc. [13] . 

In this work, the above mentioned strategies were used to analyse the quality of the solution and a 

hybrid solution was introduced.  

For the first methodology, instead of using the classic PCA for dimension reduction, we used both 

the PCA and the Independent component analysis (ICA), which slightly outperforms the PCA. 

After dimension reduction, a model based on non-lineal regression by Support Vector Machines 

(SVM) with a Gaussian kernel was implemented. However, the techniques based on variable 

selection outperformed this solution. 

Many feature selection routines use a "wrapper" approach to find appropriate variables, such as 

an algorithm that searches the feature space and repeatedly fits the model with different predictor 

sets. The best predictor set is determined by some measure of performance (i.e., RMSE, R2, 

classification accuracy, etc.). Examples of search functions are genetic algorithms, simulated 

annealing and forward/backward/stepwise selection methods. In theory, all these search routines 

can converge to an optimal set of predictors. Then, predictive models were built by different 

techniques, including Projection Pursuit Regression, Partial Least Square, Support Vector 

Machines, Linear Models, Generalized Linear Models and Random Forest. The used 

methodology involved a five folder cross validation to derive the best model. Then a full error 

measure over the whole dataset was taken. 

Since the authors were not satisfied with the application of the existing techniques, they wanted to 

combine both strategies in order to produce a better one. The main motivation was being 

convinced that not only a few variables (absorbance at different wavelengths) would be 

exclusively related to the TAN property but specific regions in the spectra as well. Actually, their 

opinion was that the relevance will arise when comparing the ratio between specific regions being 

sensible to the effect being studied, and other regions where such sensitivity does not happen.   

One feature to be considered hereinafter will be described in equation 1. 



𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 = ∫ (1 −
𝑓(𝜆)

𝐹𝑐𝑜𝑛𝑡
𝑖 ) ∙ 𝑑𝜆

𝜆2
𝑖

𝜆1
𝑖      (1) 

Where f(λ) denotes the absorbance at the wavelength λ and Fi
cont is the average absorbance 

between λi
cont;1 and λi

cont;2. It is assumed that (λi
cont;1 , λi

cont;2)  (λi
1 , λi

2) =  . 

In the following subsections, specific details about the applied strategies will be provided. 

3.2.1. Dimension Reduction 

An independent component analysis (ICA) was used, its definition being found in different papers 

[21] [22]  

According to the work by Gonzalez-Marcos [23] the ICA slightly outperforms the PCA for data 

compression when used for regressing specific functions, especially when the Signal to Noise 

ratio is relatively low. Therefore, the ICA with different dimensions, between 5 and 10, has been 

explored, and models have been regressed in order to estimate the TAN value from the projected 

space. As presented later in this work, the performance of this strategy was unfortunately not very 

high, given the limited amount of available samples and the internal variability of the sample set. 

Instead of trying to reduce data dimensions by projection, we used backward stepwise variable 

selection. In this work, we used the backward variable selection and we extracted 25 highly 

relevant variables (see Figure 2). Then predictive models were built with different techniques, 

including Projection Pursuit Regression, Partial Least Square, Support Vector Machines, Linear 

Models and Random Forest. The used methodology involved a five folder cross validation to 

derive the best model. Then a full error measure over the whole dataset was taken. The selected 

variables are shown in Table 2 (in cm-1). 

 

Variable 

Number 

1 2 3 4 5 

0 X1711 X1710 X1709 X1712 X1713 

5 X1715 X1456 X1714 X469 X1707 

10 X1706 X1708 X2924 X450 X454 

15 X1717 X1716 X1631 X452 X1705 

20 X722 X1718 X2954 X451 X953 

Table 2. Wavelength of the relevant variables regarding the data projection for ICA. 

 

Interpretations of the meaning of such wavelengths can be found, like carboxylic acids with ν (O–

H) overtone [7] , ν (O–H), δ (C–O–H), and δ (O–H); aldehydes with ν (C=O); unsaturated 

hydrocarbons with ν (C=C), and several nitro compounds with ν (NO2). The aging of some 

detergents may give signals in the fingerprint region. Oxidation products from aromatic 

compounds increase the intensity of ν (C=C). All these compounds influence the TAN value [13]  

3.2.2. Random forests model 

Random forests [24] , which are a combination of tree predictors using both the bagging and 

randomization approaches (ensemble of models), have received considerable attention in recent 

years and they combine many trees to form a forest for analyses. An individual tree represents a 

model describing the characteristics of an input feature present in a subset of the whole dataset. 

The accuracy of RF has proven competitive with many other data-mining techniques ([24] [25] ). 



Biau and Devroye [26] discussed the links between the layered nearest neighbour estimate and 

RF estimates, and proved the universal consistency of the bagged nearest neighbour method for 

regression and classification. The results indicate that besides RF’s comparable accuracy and 

mathematical simplicity, they are computationally fast and robust to noise. In our case, the forest 

was designed to use 500 trees and each tree randomly involved three input variables.  

As the main goal was to predict TAN values, regression was considered the proper problem type 

to be dealt with. Then several regression techniques were tested to determine which was the most 

successful to be used hereinafter. RF is a useful tool for regression studies and has the potential to 

model linear and non-linear multivariate calibration as it offers good behaviour if compared to 

many other techniques [27] . Our analysis also supports the same conclusion, even when accuracy 

is significantly higher (see supporting). 

RF accuracy is represented in Figure 3. It can be concluded that Random Forest provides 

acceptable modelling technology with grouped dataset predictions to allow the performance of 

transformations to fit the measured values. The standard method [3] indicates that for the oils 

used in Potentiometric Titration, reproducibility can reach an error of 44%, and the developed 

model can predict within these limits for almost all the samples, except for a few samples (less 

than 10%) in which they were higher.  

In Figure 4, it becomes clear that the size considered in this particular application for the Random 

Forest technology is properly dimensioned as the error becomes stabilized. Indeed in order to 

speed it up, just 400 trees seems enough, but stability is clearly exhibited. 

Individual variables were considered relevant in this analysis, according to the strategy adopted in 

this work, which was the backward stepwise variable selection. Permutation importance, and 

similar schemes for variable selection and for providing statements of the "significance" of a 

predictor variable (instead of a merely descriptive ranking of the variable importance scores), are 

common. Sometimes, however, they produce low statistical significance. This is because some 

authors have proposed the backward elimination strategy, which we have used here. 

A relevant factor is the importance of the variables. As it is possible to take a predictive measure 

(Mean Square Error: MSE) with the original data set, we can see that node impurity is related to 

each variable. Then at each split, how much this split reduces node impurity is calculated (for 

regression trees, indeed, the difference between the residual sum of squares (RSS) before and 

after the split), and then with the 'permuted' dataset, and a comparison can be made over them 

somehow. In particular, it is expected that the original MSE is smaller, so the difference can be 

taken. Finally, in order to make the values comparable over variables, they are scaled (Table 3). 

Figure 5 presents some of the trees involved in the decision process based on the ensemble 

method. It is possible to realize that variables involved changes in different trees but also the 

sequence changes. The p values for every decision node were plotted making possible to 

understand uncertainty related to the sequence of decisions as well as the normalized range of the 

dependent y-value (predicted TAN). As theory establishes appropriate combination of decisions 

promoted by different trees builds the final prediction, but it also makes possible to establish 

variable relevance in relationship with the dependent variable. This effect was summarized in 

Figure 6. 

 



Variable %IncMSE IncNodePurity 

X1711 3.5 1.7 

X1710 2.5 1.3 

X1709 4.4 1.7 

X1712 4.4 1.5 

X1713 4.3 1.7 

X1715 3.2 1.7 

X1456 2.0 2.6 

X1714 3.4 1.6 

X469 1.5 1.9 

X1707 2.6 2.0 

X1706 3.6 1.7 

X1708 4.0 1.7 

X2924 0.6 3.6 

X450 1.9 1.4 

X454 -1.5 1.9 

X1717 3.1 1.5 

X1716 4.6 1.8 

X1631 3.8 1.7 

X452 4.5 3.0 

X1705 2.7 1.8 

X722 2.5 1.6 

X1718 3.3 1.4 

X2954 0.7 1.7 

X451 2.3 2.2 

X953 1.8 1.4 

Table 3. Importance of relevant variables. 

 

3.2.3 Band-based featured regression models. 

As previously mentioned (section 3.2.2) the success rate for TAN estimation was not good 

enough even though Figure 4 exhibits a rather good performance. Unfortunately, it was just the 

average figure for the full set of data after using the cross-validation technique but it is not 

enough when sets of data never seen before are considered. 

The authors believe that such situation is due to the extremely sensitiveness of the models against 

absorbance at specific wavelengths. In order to increase robustness, regions instead of single spot 

signals have been considered. Also, a concept of ratio between responses for different regions 

was considered just to increase the robustness against different gains from different hardware.  

Therefore, the concept of feature described in previous sections was introduced and regions of   

10 cm-1 were defined. The algorithm involves checking different potential regions for signal as 

continuum type of signals. In order to avoid confusions, any positive intersection between signal 

and continuum regions was forbidden. Finally, and in order to gain generalization capability, it 

was allowed to consider a vector of features as the basis for developing the decision model. In 

this practical case, vectors of ten features have been considered. 

After describing the design criteria established to build the new modelling approach, it is 

necessary to indicate that the idea is to assess different type of models (the same being used in 



supporting) on the new features. Now, a wide set of potential features to select from is available. 

To make possible a convenient way of solving procedures, the authors have introduced a Genetic 

Algorithm by selecting features that improve the quality of a linear regression based on those 

features. The specific selected criterion for the model was the Bayes Information Criteria (BIC). 

In practical terms, the authors have developed an implementation of the R (http://www.r-

project.org) package Genetic Algorithm (GA) to be run in an High Performance computing the 

UPM owns (CESVIMA), making possible the feature identification. 

According to Gracia et al. [6] interpretations of the meaning of signal ranges and continuum 

ranges (Table 4) can be found as well as ketones/aldehydes, carboxylic acids and esters with ν 

(C=O) (4 and 8 in Table 4) in the signal range versus no signal or saturated hydrocarbons with δ 

(C–H) in the continuum range. And according to Abbas et al. [28]  interpretations of the meaning 

of signal ranges and continuum ranges (Table 4) can be found; aromatic compounds with ν (C–O) 

(6 and 9 in Table 4) in the signal range versus aliphatic compounds (CH2)n) and aromatic 

compounds with ν (C=C) in the continuum range. Additionally aromatic compounds with δ (C–

H) (5 in Table 4) can be found in the signal range versus no signal in the continuum range.  

 

 Signal range (cm-1) Continuum range (cm-1) 

1 1110–1119 2180–2189 

2 2225–2234 710–719 

3 2165–2174 1380–1389 

4 1820–1829 2020–2029 

5 815–824 1330–1339 

6 1270–1279 715–724 

7 1565–1574 745–754 

8 1880–1880 1365–1374 

9 1015–1024 1470–1479 

10 1135–1144 1465–1474 

Table 4. Feature list identified by the GA.  

 

After identifying the features, 66% of laboratory samples were randomly selected for training the 

algorithms and 33% were preserved for independent data validation. As those samples were never 

used during the modelling epoch, model building started over with the training samples by using 

the same kind of models used (see Supporting). 

As the TAN values for the validation samples were known, after producing the models, validation 

in terms of accuracy was performed. The naïve assessment or reference point was considered as 

the 2 distance criteria between full spectra. An estimation based on the ICA projection method 

was also performed. In these both cases, the TAN value was selected from the closest spectrum 

available in the training set.  

The criteria representing the error of both RMSE and MAE were used (Figure 6 and section B in 

Supporting). RMSE values in the validation were from 1.197 for GLM model until 0.759 for PPR 

model; meanwhile MAE values in the validation were from 0.733 for GLM model until 0.359 for 

for PPR model. Although RMSE values are very similar, when validation was used the results 

obtained from PPR model were better. The PPR model was able to predict TAN values reducing 

the RMSE by 37% (compared to GLM model) and the MAE by 51% (compared to GLM model). 

http://www.r-project.org/
http://www.r-project.org/


It can be observed that ICA outperforms the very first approach, which is distance, and that the 

Project Pursuit Regression technique (see Figure 8) preserves maximum generalization capability 

over other techniques. In those, the initial advantage for bagging used by Random Forest 

progressively reduces as the features now are much more aggregated than in the previous 

strategy. In the TAN range lower to 2.5 (mg KOH / g oil) the model had the chance of learning 

with more samples and it had a better prediction. On the other hand, in the TAN range over 2.5 

(mg KOH / g oil) with a lower quantity of samples, the model does not have the elements 

required in order to learn and interpolate.  

Conclusions 

Total acid number (TAN) has been considered an important indicator of oil quality of used oils. 

TAN is determined by potentiometric titration. A more convenient approach for the determination 

of TAN is based on infrared (IR) spectral data and multivariate regression models.  

The spectra of motor oils markedly overlapped within the entire spectral region and no certain 

wavenumber can be found. These spectra of engine oils corresponded to oils with different 

acidities, low, medium and high, and showed characteristic changes due to acidity and oxidation. 

These changes indicate typical oxidation products and aging products caused by contaminants in 

oil. 

We have built predictive models to determine TAN using IR data measured from ashless 

dispersant oils developed for aviation piston engines (SAE 50). Different techniques, including 

Projection Pursuit Regression, Partial Least Square, Support Vector Machines, Linear Models and 

Random Forest, have been used. Instead of using the classic PCA for dimension reduction, we 

have used both the PCA and the Independent component analysis (ICA), which slightly 

outperforms the PCA. After dimension reduction, a model based on non-linear regression by 

Support Vector Machines (SVM) with Gaussian kernel was implemented. In this work, we have 

used the backward variable selection and we have extracted 25 highly relevant variables. Then 

predictive models have been built by different techniques, including Projection Pursuit 

Regression, Partial Least Square, Support Vector Machines, Linear Models and Random Forest. 

The methodology used involved a five folder cross validation to derive the best type of model. 

Then a full error measure over the whole dataset was taken. When wider ranges of spectra were 

considered as feature candidates and the forecast methodology extends to consider fully separated 

sets for training and validation, including the five cross validation strategy for training, the 

situation changes slightly, as Random Forest downgrades its performance but Project Pursuit 

Regression still keeps its performance levels. RMSE and MAE values obtained in the validation 

were 0.759 and 0.359 for PPR model respectively. The PPR model was able to predict TAN 

values reducing the RMSE by 37% (compared to GLM model) and the MAE by 51% (compared 

to GLM model). 

It appears as evident that benefits can be expected from increasing the density of data, especially 

for training of models since otherwise the risk for outliers significantly grows. 
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Figure captions 

Figure 1. IR spectra of three typical used oil samples, low acidity (0.86 mg KOH) (thin line), 

medium acidity (2.02 mg KOH) and high acidity (3.53 mg KOH) (thick line), showing 

characteristic changes in the spectrum due to acidity and oxidation.  

Figure 2. Relevance of variables to identify the number of relevant variables. 

Figure 3. Predicted, using a Random Forest type model, vs. measured values for TAN 

values. 

Figure 4. Error evolution against the number of trees included in the ensemble regressor. 

Figure 5. Trees involved in the decision process in the Random Forest model for a) tree 

number 1; b) tree number 10 and c) tree number 20. 

Figure 6. Performance of models for validation dataset. a) RMSE error estimation and b) 

MAE error estimation. Continuous line for 2 regression and dashed line for ICA 

regression  

Figure 7. Forecasting of PPR model when validation data was considered. It becomes clear 

that more samples are required for high TAN values, otherwise, they will become outliers. 
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SUPPORTING INFORMATION 

 

A. Regression Models 

As the main goal was to predict TAN values, regression was considered the proper problem 

type to be dealt with. Then several regression techniques were tested to determine which was 

the most successful to be used hereinafter. 

From our point of view, Linear regression and Projection Pursuit Regression (PPR) can be 

regarded as two extremes; one is totally rigid in its adherence to an assumed structure, while the 

other is completely flexible and allows a linear piecewise approach. Projections of the observed 

data to their latent structure by PLS were developed by H. Wold (S1). Therefore, both have 

been used, keeping in mind the ridge expression for the linear model in order to reduce the 

multicollinearity problems. 

Partial Least Squares (PLS) have been used as well, even though they account for a wide range 

of methods that describe the relations between sets of observed variables by means of latent 

variables. The underlying assumption of all the PLS methods is that the observed data are 

generated by a system or process driven by a small number of latent (not directly observed or 

measured) variables. PLS-regression (PLSR) is the PLS approach in its simplest form, and the 

two-block predictive PLS is the most widely used in chemistry and technology. PLSR has the 

desirable property that the precision of the model parameters improves with an increasing 

number of relevant variables and observations (S2). The PLSR implemented herein was the 

multipredictive and single explained variable (TAN), which is frequently called the PLS1 

model. The best number of latent variables was found in one according to the root mean squared 

error (RMSE) criterion. 

Support vector machines (SVMs) have been widely applied in regression analysis, therefore, 

they were taken into consideration as well. SVMs are a very specific class of algorithms 

characterized by allowing the usage of kernels, absence of local minima, sparseness of solution 

and capacity control achieved by acting on the margin, or on a number of support vectors, etc. 

The system’s capacity is controlled by parameters that do not depend on the dimensionality of 

the feature space. In our case, the selected approach was the non-linear SVM with a radial 

kernel. The parameters selected were sigma=0.0816 and RMSE was used to select the C 

parameter, 0.25 in our case. We fixed the epsilon parameter to the classical value of 0.1. Our 

design used a bootstrap strategy and there were 72 support vectors.  

Multivariate Adaptive Regression Splines (MARS) is a non-parametric non-linear regression 

procedure that makes no assumption about the underlying functional relationship between 

dependent and independent variables. The method is based on the "divide and conquer" 

strategy, which partitions the input space into regions, each with its own regression equation. 



For this example, the number or regions was fixed to six. A boosted regression is a recent data 

mining technique that has been proven considerably successful in predictive accuracy and it was 

selected to compare against other more complex nonaggregated strategies. It is based on the 

idea that it is easier to find and average many rough rules of thumb than a single, highly 

accurate prediction rule (S3). In this case, the boosting method was used in combination with a 

gradient technique to provide the relevance of all the variables shown in Table S1. 

Random forests (S4), which are a combination of tree predictors using both the bagging and 

randomization approaches (ensemble of models), have received considerable attention in recent 

years and they combine many trees to form a forest for analyses. An individual tree represents a 

model describing the characteristics of an input feature present in a subset of the whole dataset. 

The accuracy of RF has proven competitive with many other data-mining techniques (S5, S6). 

Biau and Devroye (S7) discussed the links between the layered nearest neighbour estimate and 

RF estimates, and proved the universal consistency of the bagged nearest neighbour method for 

regression and classification. The results indicate that besides RF’s comparable accuracy and 

mathematical simplicity, they are computationally fast and robust to noise. In our case, the 

forest was designed to use 500 trees and each tree randomly involved three input variables.  

Variable Relevance 

X454 17.2 

X450 11.5 

X2925 10.9 

X954 6.8 

X2864 6.6 

X451 6.5 

X1454 5.9 

X1475 4.4 

X452 4.1 

X2863 3.7 

X1710 3.6 

X2924 3.2 

X1718 2.6 

X1706 2.6 

X1711 2.5 

X1715 2.4 

X1717 2.4 

X1709 1.2 

X1712 1.1 

X1708 0.3 

X1713 0.2 

X1716 0.1 

X1705 0.1 

X1707 0.1 

X1714 0.0 

Table S1. Importance of relevant variables. 

 

Figure S1 shows the averaged relative error obtained after applying different types of models. In 

Figure S1 results on training data and on cross-validation test data are shown As it can be seen 

from the figure S1, training errors are higher than the test ones because the value reported for 

the test is based on the best model found but, represented training error is the averaged errors of 

all the models considered during the cross-validation. The lower the error over the test set, the 



better the behaviour displayed by the model. Therefore, RF is a useful tool for regression studies 

and has the potential to model linear and non-linear multivariate calibration as it offers good 

behaviour if compared to many other techniques. Our analysis also supports the same 

conclusion, even when accuracy is significantly higher, as exhibited in Figure S1. 

 

 
Figure S1. Error for different types of models. 

 

For this particular technique, model accuracy is represented in Figure 4: by way of comparison, 

the PLS type model was also evaluated and showed a lower correlation (R-square was 0.453), 

probably due to a poorer fit between the TAN and spectrum changes measured. Finally, the 

linear model with Tikhonov regularization (Ridge) was also evaluated (R-square was 0.197). 

Thus, it can be concluded that Random Forest provides acceptable modelling technology with 

grouped dataset predictions to allow the performance of transformations to fit the measured 

values. The standard method indicates that for the oils used in Potentiometric Titration, 

reproducibility can reach an error of 44%, and the developed model can predict within these 

limits for almost all the samples, except for a few samples (less than 10%) in which they were 

higher.  

  



 

B. Band-based featured regression models. 

 

 RMSE MAE 

gbm 0.842 0.459 

blackboost 0.885 0.544 

rf  0.876 0.476 

ppr 0.759 0.359 

glm 1.197 0.733 

svmRadial  0.848 0.396 

glmnet 0.851 0.512 

nnet  0.866 0.428 

kernelpls  0.947 0.483 

Table S2. Performance of models for validation dataset. RMSE error estimation and MAE 

error estimation.  
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