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An Urban Sprawl Index Based on Multivariate and Bayesian Factor Analysis with 

Application at the Municipality Level in Valencia 

ABSTRACT 

Urban sprawl is now a common and threatening phenomenon in Europe, severely affecting 

environmental and economic sustainability. An analytical characterization and measurement 

of urban sprawl is required to gain a better understanding of the phenomenon and to 

proposed possible solutions. Traditional factor analysis techniques, especially Principal 

Component Analysis and Factor Analysis, have been commonly used. In this paper, we 

additionally test Independent Component Analysis with the aim of obtaining a 

multidimensional characterization of the sprawl phenomenon. We also use Bayesian Factor 

Analysis to obtain a single (unidimensional) measuring index of sprawl, which also allows 

us to obtain the uncertainty of the inferred index, in contrast to traditional approaches. All 

these techniques have been applied to study the phenomenon of urban sprawl at the 

municipality level in Valencia, Spain using a wide set of variables related to the 

characteristics and patterns of urban land use. 

 

1. Introduction  

Urban sprawl is the spread of human populations from central urban areas to outlying 

residential areas with lower population densities and more open spaces, where single 

family homes and low-rises predominate, and to which residents tend to travel by car. This 

urban model is characterized by low-density urban expansion patterns, producing a patchy, 

scattered, discontinuous and strung-out urban development, often under a lax planning 

control. This kind of urban land development is typical of the United States but is more 
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recent in Europe, where cities have traditionally grown around historical settlements, and 

even more so in the Mediterranean region, which has been characterized by compact cities 

until only a few years ago. Urban sprawl is a global challenge, and now a common 

phenomenon in Europe, where there has recently been great interest in studying it 

(European Environment Agency (EEA), 2016). This is also the case in Spain, where growth 

in urban areas has created a situation that is becoming critical because of its impact on the 

environmental and economic sustainability of cities (EEA, 2006). Therefore, it is necessary 

to improve the framework and tools to control urban sprawl, through urban policies, which 

requires a more extensive knowledge of the phenomenon under study.  

The sprawl pattern is a complex construct, difficult to conceptualize and measure, with 

many different conditions involved related to the density, uses, form and structure, as well 

as to economic and social aspects, of urban areas. Sprawl is not directly observable, but 

there are several indicators related to it that can be defined and measured, so that their 

correlation structure and the latent dimensions (underlying factors not directly observable or 

measureable) can be extracted by factorial statistical techniques (Johnson and Wichern, 

2007). Latent dimensions can be a useful multi-dimensional measure of sprawl, and a 

better understanding of the problem can be achieved by interpreting their correlation 

structure.   

Traditional factor analysis techniques, such as Principal Component Analysis (PCA) and 

Factor Analysis (FA), are commonly used for the purpose of extracting the correlation 

structure and the latent dimension from a set of indicators. FA is well suited for a 

multidimensional characterization, since it identifies the underlying latent factors in the input 

variables by minimizing the linear correlation among latent factors (Frenkel and Ashkenazi, 

2008). The first component of PCA, which results from the first eigenvector and eigenvalue 

of the covariance matrix of the input set of variables, represents the common factor that 
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maximizes the variability; therefore, it is commonly used for unidimensional 

characterizations. Both techniques are based on linear model structures and assume 

normality of the input variables. Many environmental variables may not be normally 

distributed, which can be handled through transformation, so the results must be interpreted 

in terms of the transformed variables. In contrast, Independent Component Analysis (ICA) 

(Stone, 2004) does not require normally distributed variables and results in statistical 

independence between the latent variables where the joint probability of the latent factors 

can be factorized (Shlens, 2005). As far as we know, there is no application of this 

technique in urban studies. 

FA performed by means of Bayesian hierarchical models is a very powerful method for 

computing the unidimensional common factor that maximizes variability (Mezzetti and 

Billari, 2005; Conti et al., 2014) and does not assume any specific probability distribution for 

the variables. Furthermore, the non-linear covariance structure over the common factor, 

such as spatial and/or temporal covariance, can be easily specified (Mari-dell’Olmo et al., 

2011), and credible intervals (uncertainty) can be inferred from the posterior distributions of 

the common factor parameter estimated in each municipality. Finally, the treatment of 

missing values is handled more appropriately, which are estimated during the Markov Chain 

Monte Carlo (MCMC) simulation method.  

Thus, the first objective of this study is to extract the latent dimensions that underlie the 

input set of variables by means of the application of the ICA method, thus obtaining a 

multidimensional analytical characterization at the municipality for Valencia in Spain. A 

comparison between the ICA, FA and PCA solutions is also performed. The second 

objective is to compute a unidimensional measurement index as the common factor to all 

input variables using Bayesian hierarchical models (Ntzoufras, 2009). Although the 

underlying multidimensional information is lost, the phenomenon is simplified and facilitates 
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the measurement and interpretation of the spatial distribution of sprawl throughout the 

territory, especially for professionals from different disciplines who may find it difficult to deal 

with multiple dimensions.  

2. Brief background  

Even though there is abundant literature, it is difficult to find a definitive consensus. 

Following Galster et al. (2001), urban sprawl is one name for many conditions. Most 

definitions are based on the assumption of a traditional compact city understood as the 

ideal model and the starting point to define the opposite model (Chin, 2002; EEA, 2006). 

For the EEA (2006), sprawling cities are characterized by a physical pattern of low-density 

expansion of large urban areas growing into the surrounding agricultural areas, which 

produces a patchy, scattered and strung-out urban development, with a tendency to 

discontinuity. According to Fulton et al. (2001), sprawl is associated with a land 

consumption higher than the population growth, and its commonly used indicator is the per 

capita consumption of land. 

Some studies are conducted from a descriptive point of view, while others take a more 

morphological perspective, and others focus on the dynamics of changes. Therefore, it is 

clear that measuring sprawl is a complex task, because of its multiple characteristics or 

dimensions. Some authors choose socio-economic data for analysis because their 

definition of sprawl demands this kind of data support; other authors, using a more 

morphological definition, prefer spatial measures. Table 1 shows the different characteristics 

considered to measure sprawl.  
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Density X X X X X X X X X X X X X X 

Changes-Dynamics X    X  X X   X X  X 

Land consumption-Footprint X X   X  X X  X X  X X 
Fragmentation    X  X X  X X X X X X 
Concentration  X X X         X  

Nuclearity  X  X           
Mixed use   X X  X X  X      

Centrality  X  X   X  X    X X 

Proximity  X  X          X 

Open space         X      
Accessibility-Connectivity   X    X  X     X 

Complexity      X    X    X 

Social       X        

Table 1. Factors used to measure sprawl in the literature 

There are important differences in these characteristics yet all authors consider density as 

an essential feature to measure sprawl. Sprawl has static as well as dynamic components 

associated with population growth or expansion of urban land. Another essential 

characteristic is the land consumption or the footprint caused by sprawl development. 

Furthermore, factors linked to how dispersed urban land is are present in almost all studies 

with various forms (such as fragmentation, concentration and nuclearity) and different 

metrics, most of them derived from landscape ecology, such as the Shannon entropy index 

(Torrens, 2008; Colannino et al, 2011; Zeng et al., 2014), the degree of landscape division 

or the Gini index of concentration (Colannino et al., 2011). Many studies also considered a 

composition dimension and the consequent possible relations between uses: proximity, 

mixed use, accessibility, open space or connectivity. Finally, some authors considered other 

characteristics, like complexity, with the use of other landscape metrics, such as Fractal 
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dimension or Shape Index (Frenkel and Ashkenazi, 2008; Colannino et al., 2011; Zeng et 

al., 2014), or social factors (Torrens, 2008). 

Moreover, the observed variables may differ according to the scale of the study (Torrens, 

2008; Zeng et al, 2014). Sprawl is a multi-scale phenomenon, with different characteristics, 

so measuring dispersion requires a multiple-level approach in accordance with the function 

of the scale (Zeng et al., 2014). The macro-scale measurements, when analysis units 

correspond to regional or metropolitan areas, normally use socio-economic census 

indicators (Galster et al., 2001; Ewing et al., 2002; Cutsinger and Galster, 2006; Arribas-Bel 

et al., 2011). Measuring sprawl at a micro or meso-scale, corresponding to a local 

characterization, requires a more accurate analysis of the spatial characteristics of the 

urban land use pattern, as spatial or morphological metrics (Frenkel and Ashkenazi, 2008; 

Colannino et al., 2011). 

In Table 2, different approaches are summarized according to the type of variables used in 

the studies, the type of output index produced, and the methodology used.  

 Type of variables Output-index Methodology 

Fulton et al., 2001 - Socio-economic census 
indicators 

Multidimensional - 

Galster et al., 2001 - Socio-economic census 
indicators 
- Spatial metrics 

Unidimensional Aggregate standardization 

Ewing et al., 2002 - Socio-economic census 
indicators 

Unidimensional Aggregate standardization 
Principal Component Analysis 

Cutsinger and Galster, 
2006 

- Socio-economic census 
indicators 

Multidimensional - 

EEA, 2006 - Socio-economic census 
indicators 

Multidimensional - 

Frenkel and Ashkenazi, 
2008 

- Spatial metrics Unidimensional Factor analysis 

Torrens, 2008 - Spatial metrics Multidimensional - 

Patacchini and Zenou, 
2009 

- Socio-economic census 
indicators 

Multidimensional Principal Component Analysis 

Arribas-Bel et al., 2011 - Socio-economic census 
indicators 

Multidimensional Artificial neural network 

Colannino et al., 2011 - Spatial metrics Multidimensional Factor analysis  

Kew et al., 2013 - Socio-economic census 
indicators 

Unidimensional Standardization procedure 
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Jaeger and Schwick, 
2014 

- Spatial metrics Unidimensional Aggregate weighted 
standardization 

Paulsen, 2014 - Socio-economic census 
indicators 

Multidimensional - 

Zeng et al., 2014 - Socio-economic census 
indicators 
- Spatial metrics 

Multidimensional - 

Table 2. Methods used to measure urban sprawl  

Some researchers have obtained a multidimensional output index without using any 

statistical procedure, only using the original variables simultaneously to conceptually 

categorize the sprawl (Fulton et al., 2001; Cutsinger and Galster, 2006; EEA, 2006; Torrens, 

2008; Paulsen, 2014; Zeng et al., 2014). Others have obtained a unidimensional index only 

by means of an aggregate standardization of various input variables. 

PCA, FA and Neuronal Networks are the statistical models commonly used in the literature 

either for unidimensional or multidimensional characterizations of sprawl. The work of 

Frenkel and Ashkenazi (2008) obtains a unidimensional index from FA with only one factor, 

which is equivalent to the first component of PCA. No work has been found in the literature 

in which ICA or a Bayesian factor approach have been used for characterizing sprawl. 

Regarding its impacts, urban sprawl development has left a very large footprint in Spain 

(EEA, 2006). The Corine Land Cover project and the Spanish Land Use Information 

System (SIOSE) reaffirmed these trends, even after the end of the housing boom in 2010 

(Zornoza, 2013). Also, the European Parliament, by passing the Auken resolution, points at 

the impact of extensive urbanization in Spain. 

There are interesting reviews in the literature of the effects of sprawl in Johnson (2001), 

Ewing et al. (2002), Burchell et al. (2003), Ewing (2008) or Wilson and Chakraborty (2013). 

Urban sprawl threatens sustainability, transforming natural and rural environments, raising 

noise pollution over the safety limits, and creating more greenhouse gases, which affect 
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climate change (EEA, 2006; Wilson and Chakraborty, 2013). There are also public and 

private costs associated with sprawl as outlined in Burchell et al. (2003).  

Despite the commonly known negative effects of sprawl (e.g. the private cost associated 

with congested roads), urban sprawl also generates some benefits to people individually. In 

fact, these benefits are generally the causes of sprawl: people look for a better quality of 

life, more open space, wish to live in houses with gardens, etc. However, the balance 

seems to be negative on the community (Chin, 2002; Pichler, 2007; Garbiñe, 2007; Miralles 

et al., 2012).  

From an economic perspective, urban sprawl is an expensive model of urban development 

(EEA, 2006) and is clearly inefficient (Garbiñe, 2007). The sprawled city has economic 

costs with a significant impact on public local finance because of the public services 

assumed by municipalities, as demonstrated in many studies in the United States (RERC, 

1974; Speir, 2002; Burchell et al., 2003; Carruthers and Ulfarsson, 2003). In Spain, some 

authors have also addressed this issue (Garbiñe, 2007; Solé-Ollé and Hortas-Rico, 2008; 

Hortas-Rico, 2010; Benito et al., 2010). In any case, all of them provide very different 

results, depending on which expenditure is considered and where it has been studied. 

Therefore, the discussion on the compact or dispersed city requires more studies on 

measuring and evaluating the cost of sprawl in order to be able to give the correct 

responses and make the correct decisions on which urban model to choose. It is important, 

therefore, to continue increasing the knowledge about how to measure urban sprawl, 

especially in the Spanish context, where important economic effects may arise due to the 

urban development occurred in recent decades. 

3. Scope of the study and information sources 
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The study area is the autonomous community of Valencia, located on the Mediterranean 

coast in southeast Spain. More than 5 million people currently live there, in a total of 542 

municipalities and an area of 23,255 km². The territory is administratively divided into three 

provinces: Castellon, Valencia and Alicante. From a geomorphological point of view, the 

Valencian Community can also be divided into three different geographical areas: coastal, 

intermediate and rural areas (Figure 1).  

80% of the population is concentrated in the coastal area, in an area equivalent to 25% of 

the total. The territory is flat with less than 100 meters above sea level, and a densely 

populated area (696.48 people per hectare), where 85% of the GDP of the region is 

concentrated. It is characterized by coastal urban areas and metropolitan areas, with a 

predominance of irrigated agriculture and a greater economic weight of services, especially 

tourism. The intermediate area represents 17% of the population of Valencia on 37% of its 

surface with a lower density (101.80 people per hectare) and only 13% of the region’s GDP. 

It corresponds to an intermediate zone between the coast and the mountains, with medium-

sized cities and predominance of industry and rain-fed agriculture. Thirdly, the rural area 

(38% of the territory) is a mountain area, with small towns in which only 2% of the 

population lives. This area only represents 2% of the region’s GDP, with forested areas and 

an economy based on agriculture and services. 

In regard to urban occupation, there are large differences between areas: in the coastal 

area, 70% of the total urban development is concentrated in Valencia with 37% and 3.3% in 

the intermediate and rural areas, respectively. The type of settlement also varies: 40% of 

the urban development in the coastal area is contiguous, while 60% is not. In the 

intermediate area, more than 70% of the urban development is not contiguous. Lastly, 67% 

of the urban development in the rural area is characterized by a contiguous urban 

development. 

Page 9 of 48

https://mc04.manuscriptcentral.com/epb

Environment and Planning B: Urban Analytics and City Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

Figure 1. Geographical areas of the Valencian Community 

Mediterranean cities were examples of compact cities for a long time, “historically 

characterized by the archetypal image of density, urban complexity and social diversity” 

(Munoz, 2003). However, recently, this paradigm has changed, due to urban development, 

especially in coastal areas. This is also the case for Valencia.  

In Spain, this phenomenon is the result of three expansive economic cycles associated with 

corresponding housing bubbles (Miralles, 2014): a first cycle, in 1959-1972, which created 

the first tourist developments on the coast; a second cycle, from 1985 to 1990, which 

generated a major urban development on the Mediterranean coast; and a third cycle, from 
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1997 to 2006, which resulted in new investments in the real estate construction sector. In a 

context marked by greater access to private transport, helped by falling transport costs 

(Muniz, 2006), at least during the first two cycles, as well as a change in the lifestyle of 

people, asking for more space (Jaeger, 2014), and poor control mechanisms in the 

legislation of land use planning, cities became more dispersed. Fortunately, the passing of 

the Valencian Community Territorial Strategy in 2011 introduced some rationality in urban 

growth, for a sustainable and compact city. 

The main information sources used were: the Population and Housing Census, the 

boundary limits, both from the National Statistics Institute, and the SIOSE (the Spanish 

Land Use and Cover Information System), a high-resolution GIS database on land cover 

and use, at a 25.000 scale, from the Valencian Cartographic Institute. We focused on 

residential buildings included in a composite coverage known as Mixed Urban. Each cover 

is defined according to the sum of different types of artificial simple uses (houses, streets, 

gardens, pools, etc.). There are three Mixed Urban covers: the old area, the expansion area 

(new parts), and the discontinuous area or suburbs. In addition, these covers are 

characterized by attributes about the residential building type: isolated block of apartments 

or non-isolated block of apartments, single-family detached home, houses in rows or semi-

detached houses. 

4. Methodology 

The first step was to obtain as many characteristics of urban sprawl as possible. Using the 

datasets outlined above, a set of urban sprawl indicators were calculated as outlined in the 

next section. 

4.1 Indicators 
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Based on our morphological definition of sprawl, we define a set of 12 representative 

indicators concerning density, land use, form and structure of the urban patches, which are 

based on an extensive literature review and the data available for Valencia (Table 3).  

Density is the most popular measure of sprawl. The Net housing density indicator (NetDen) 

is the area-weighted average of housing density of all the urban patches in a municipality. 

However, sprawl is characterized by low housing density in single-family homes and 

discontinuous urban areas, so we also define an Urban form indicator (CCont) that 

assesses the proportion of continuous urban typology from the total urban surface. 

Likewise, the Dwelling type indicator (CEdif) evaluates the proportion of the multiple family 

homes from the total amount of homes. The Open space density indicator (FSpace) refers 

to green areas and street density in a municipality. Sprawled settlements are usually 

characterized by private gardens, swimming pools, bigger parks, parking areas and streets. 

The Shape index (Shape) and Fractal dimension (Fractal) are indicators of shape 

complexity based on the relationships between the perimeter and the area of the urban 

patch (Colannino et al., 2011). Sprawl models tend to have irregular shapes in urban areas. 

The Fragmentation degree (Frag) and Index of concentration (Gini) are indicators related to 

fragmentation (Marmolejo and Stallbohm, 2008) and concentration of urban land 

(Colannino et al., 2011). The Distance to center (Dist) indicator refers to the area-weighted 

average of distances from the urban patches to the city center. The Standard deviation of 

the distance to center (sdDist) measures the variability of the Dist indicator. In addition, we 

have computed the coefficient of variation of the Dist indicator (cvDist), which represents 

the variability independently of the magnitude of the mean. Finally, to account for the 

importance of the sprawl model in a municipality, we have computed the Discontinuous 

area indicator (Disc), which is the proportion of discontinuous urban surface in the 

municipality.  
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Indicator Formula Indices 

Net built-up density (unit: 
m2/m2) ������ = ∑ �∑ 	
��∗������� �� ����� �  ��� built-up area of type 

a in urban patch i and ��number of floors of 
building type a 
(Cantarino et al., 2014) �� area of urban patch i � number of urban 
patches 

D discontinuous urban 
area 

T area of municipality 

C continuous urban area  

M multi-family housing 
area 

F single-family dwelling 
area 

Z green area 

R roads area 

H the number of houses 
in municipality 

pi perimeter of urban 
patch 

Qi is the cumulative 
percentage of area of 
patch i over total area ��  built-up area in 
urban patch i 

di distance from i to 
center city i 

Discontinuous surface 
(unit: %) 

���� = �  
Urban form  
(unit: %) 

!!"�� = !! + � 
Dwelling type  
(unit: %) 

!$%�& = '' + ( 
Open space density (unit: 
m2/dwelling) 

(�)*�� = + + ,-  

Shape Index  
(unit: none) �ℎ*)� = ∑ � /�01�� ∗ �������∑ 2��3����  

Fractal dimension (unit: 
none) (4*��*5 = ∑ 67∗8�29,7;∗/�38�2��3 ∗ ��<���� ∑ 2��3����  

Fragmentation degree 
(unit: none) 

(4*= = −1 ∗@A ��∑ ������ ∗ B5�	2 ��∑ ������ 3DE�
���  

Index of concentration 
(unit: none) F��� = ∑ 21 − G�3���9 �  

Distance to center  
(unit: meters) ���� = ∑ �%� ∗ 
�∑ 2
�3H��� ����9 �  

Standard deviation of the 
distance to center 
(unit: meters) �%���� = I∑ J%� − ∑ KL�∗ M�∑ 	M��H��� NH��O � P7���9 � − 1  

Coefficient of variation of 
the distance to center 
(unit: meters) 

�Q���� = �%����∑ KL�∗ M�∑ 	M��H��� NH��O �
 

Table 3: Selected sprawl indicators 

4.2 Multivariate Factor Techniques 

Three factor multivariate techniques were then used to explore the correlation structure of 

the set of indicators and extract their underlying dimensions: ICA, which handles non-
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normally distributed variables (Hyvärinen and Oja, 2000), FA (Bartholomew, 2007) and PCA 

(Abdi and Williams, 2010), where the latter two approaches require normally-distributed 

variables. As some of the indicators showed non-normal distributions, they were 

transformed prior to the application of FA and PCA; more details are provided in the 

Supplementary Material. 

ICA aims to extract the latent factors that are statistically independent of each other. This is 

achieved by a mutual-based information method, which has a form of nonlinear optimization 

minimizing the information mutually shared among the extracted latent factors (Hyvärinen 

and Oja, 2000). The ICA method models the set of original indicators as a linear 

combination of new statistically independent components, as 

R2S∗T3 = �2S∗�3 ∙ V2�∗T3          (1) 

Where R is a matrix 2W ∗ X3 containing each one of the original indicators Y measured for 

each one of the municipalities �, � is a matrix 2W ∗ �3 containing each one of the 

independent components Z, and V is a matrix 2� ∗ X3 containing the contributions or 

loadings of the linear combination. The estimation of the matrix � and V by the mutual 

information-based method is carried out so that � is composed of independent components. 

In this work, the package PearsonICA of the statistical software R (R-Development Core 

Team, 2010) has been used to perform this method. 

FA resolves the linear combination of the new components, following the same expression 

in (1), by formulating a linear model that relates the original set of indicators R and the 

latent factors	�, taking into account the correlation structure of the variables in the 

formulation of the model and the method of maximum likelihood to estimate the model 

parameters (Graffelman, 2013). The R package Robustfa has been used to apply this 

method.  
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PCA performs Singular Value Decomposition of the correlation matrix of the set of 

variables. Using the same expression (1), this procedure leads to new latent factors 

determined by the eigenvectors and eigenvalues of the correlation matrix (Shlens, 2005). 

The R package FactoMineR has been used to apply this method. The first latent factor (first 

eigenvector and eigenvalue) will therefore be a common factor among all the variables that 

explain the maximum variability. The others (the other eigenvectors and eigenvalues) will 

then be consecutively orthogonal to each other. Consequently, as the first latent factor is 

the maximum-variance consensus among all the variables, this can include potentially 

different dimensions. 

4.3 Bayesian Factor Analysis 

This section aims to define a single index for urban sprawl, which is the common factor 

maximizing the variability contained in the set of variables. Although the multidimensional 

information is lost, the phenomenon is simplified and facilitates the interpretation of the 

spatial distribution of sprawl throughout the territory.  

In this study Gaussian models were used for all the variables, which were previously 

transformed into normal distributions (see Supplementary Materials). The Bayesian factor 

model for inferring only one single latent factor is based on finding the linear combination 

between scores and loadings that maximize the likelihood of the model (Marí-Dell’Olmo et 

al., 2011). If the likelihood is considered as Gaussian, then the procedure is equivalent to 

traditional FA. Furthermore, the Bayesian approach allows us to estimate the uncertainty of 

the inferred latent factors and to incorporate the process of imputing the missing-values of 

the set of variables at the same time as the resolution of the Bayesian factor model and the 

estimation of its parameters. 
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The Bayesian factor model is performed using hierarchical models. Let [�\ be the value of 

the indicator Y, Y = 1,… ,12, in municipality �, � = 1,… ,542. 

[�\ 	~	�"4b*5	c�\ , d\7� c�\ = e\ + �� ∙ f\ e\ 	~	�"4b*520,10003 ��	~	�"4b*520, d�73 d�7 = 1 f\ 	~	�"4b*520,10003 d\	~	WF*bb*20.001,0.0013 
e\ is the general mean for each indicator Y, �� is the common factor of all the indicators in 

municipality �, f\ is the loading which quantifies the contribution of the indicator Y to the 

common factor, and finally d\7 is the residual variance of the model for each indicator Y. As 

Marí-Dell’Olmo (2011) suggests, to avoid identifiability problems between the scales of �� 
and f\, the variance of � is fixed to one (d�7 = 1). Also, the product �� ∙ f\ needs to be 

restricted (1) to a unique solution, since different and equivalent solutions may be obtained 

by simply changing their sign (Marí-Dell’Olmo et al., 2011), 

f\ = i					f\							�&						f� ≥ 0	−f\ 							�&						f� < 0  

(1) 

�� = i					��							�&						f� ≥ 0	−��							�&						f� < 0  

For the general means e\ and loadings f\, prior non-informative normal distributions 

(normal distributions with a very large variance) are defined. For the variance parameters 
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d\7, prior non-informative Inverse Gamma distributions (with very low Gamma parameters) 

are defined (Kass and Wasserman, 1995). 

Once the complete Bayesian hierarchical model has been formulated, a learning process 

based on MCMC can be applied to estimate the posterior distributions of the parameters of 

the model. We have used the WinBUGS software (Lunn et al., 2000) to run the MCMC on 

the proposed model (Ntzoufras, 2009). From the posterior distributions of the estimated 

parameters, their mean and variance can be inferred. The variance represents the 

uncertainty of the estimated parameter. 

5. Results 

5.1 Results of the Multivariate Factor Analysis 

Table 4 shows the loadings of each extracted dimension to each of the original variables for 

the ICA solution. With the analysis of the loadings matrix, the variables can be 

discriminated, with higher weights over each extracted dimension, so that the greater the 

contribution, in absolute values, the greater the presence in the dimension. In this way, it is 

possible to know which variables make up the different dimensions or extracted latent 

factors. 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Disc 0.15 0.16 -0.08 0.13 0.94 

CCont -0.77 -0.24 -0.12 -0.16 -0.36 

CEdif -0.65 -0.22 0.02 -0.03 -0.49 

NetDen -0.65 -0.21 -0.02 -0.11 -0.05 

FSpace 0.90 -0.06 0.07 0.14 0.20 

Frag 0.38 0.69 -0.17 0.19 -0.01 

Shape 0.12 0.30 -0.03 0.94 0.19 

Fractal 0.14 0.14 0.01 0.91 0.06 

Dist -0.07 -0.25 0.95 -0.07 -0.11 

sdDist 0.03 0.05 1.00 -0.10 0.09 

cvDist 0.24 0.69 0.24 0.03 0.48 

Gini 0.25 0.77 -0.11 0.06 0.14 

Table 4: Results of ICA 
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With the aim of checking and contrasting the dimensions revealed by ICA, FA has also 

been tested on the data, expecting both solutions to be congruent. Table 5 shows the 

resulting loadings for the FA. Both generate similar resulting latent factors and are only 

different from Disc. In the case of FA, Disc contributes to Dimensions 1, 2 and 5; however, 

in ICA, this is only present with a high weight in Dimension 5.  

The ICA method seems to produce the best results and the clearest interpretation of the 

latent factors. It should be noted that the individual weights (loadings) of the dominant 

variables in each of the latent factors are more balanced in ICA than in FA solution. 

Although in ICA solution the explained variances of each of the latent factors are not shown, 

they are expected to be quite similar to the FA.  

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Disc 0.49 0.57 -0.16 0.13 0.41 

CCont -0.77 -0.28 -0.12 -0.19 -0.41 

CEdif -0.65 -0.34 -0.02 -0.07 -0.07 

NetDen -0.95 -0.18 0.03 -0.13 0.22 

FSpace 0.71 0.19 0.04 0.15 0.12 

Frag 0.40 0.52 -0.29 0.22 0.07 

Shape 0.16 0.24 -0.12 0.88 0.05 

Fractal 0.16 0.06 -0.05 0.98 0.02 

Dist -0.03 -0.35 0.92 -0.13 0.01 

sdDist 0.10 0.22 0.97 -0.05 -0.02 

cvDist 0.23 0.87 0.23 0.13 0.03 

Gini 0.34 0.68 -0.19 0.14 0.03 

 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

SS-

loadings 3.36 2.40 1.91 1.96 0.34 

Variance % 28.0 20.0 15.9 16.3 2.8 

Cumulative 

Variance % 28.0 44.0 64.0 80.3 83.1 

Table 5: Results of FA 

In summary, five clear dimensions were extracted. The weakest dimension is probably 

Dimension 5, with only around 6% of the explained variance. Dimension 1 is composed of 
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CCont, CEdif, NetDen and FSpace, all of which are variables related to intensity of use, i.e. 

density and concentration of housing and population. Dimension 2 is composed of Frag, 

cvDist, and Gini, all related to spatial fragmentation, dispersion and concentration of urban 

patches. Dimension 3 is composed of Dist and sdDist, related to the mean and variance of 

distance from the urban patch to the center of town. Dimension 4 is composed of the Shape 

and Fractal shape complexity indicators. Dimension 5 is related to the Disc variable, which 

measures the relative importance of the discontinuous land. 

Finally, we compare the results with PCA (Table 6), which shows that Dimension 1 is a 

consensus of all the variables. The fact that Dimensions 2 and 3 are clearly dominated by 

Dist and sdDist and by Shape and Fractal, respectively, means that these two dimensions 

have different information from the common factor of all the variables, especially Dimension 

2, which is composed of Dist and sdDist. 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Disc 0.84 -0.11 -0.24 0.07 -0.17 

CCont -0.87 -0.22 0.06 0.20 0.12 

CEdif -0.76 -0.15 0.20 0.27 -0.45 

NetDen -0.82 -0.15 0.08 0.37 -0.18 

FSpace 0.74 0.20 -0.06 -0.40 -0.41 

Frag 0.80 -0.25 -0.13 0.18 0.06 

Shape 0.64 -0.29 0.68 0.08 0.02 

Fractal 0.54 -0.22 0.79 -0.06 0.03 

Dist -0.24 0.91 0.25 -0.02 0.04 

sdDist 0.25 0.90 0.15 0.29 0.00 

cvDist 0.73 0.22 -0.09 0.52 -0.04 

Gini 0.79 -0.18 -0.20 0.38 0.04 

 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Eigenvalue 5.84 2.05 1.34 0.95 0.46 

Variance % 48.69 17.08 11.21 7.95 3.83 

Cumulative 

Variance % 48.70 65.77 76.98 84.93 88.76 

Table 6: Results of PCA 
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5.2 Results of the Bayesian Factor Analysis 

Table 7 shows the loading (as the mean of the estimated parameter Lm) of each indicator j 
on the estimated common factor Sp, as well as its uncertainty (as the standard deviation of 

the estimated parameter Lm). The variables with the smallest contribution (weight) are sdDist 

and Dist, which form the distance to center dimension (Dimension 3), followed by Shape 

and Fractal, which form the complexity dimension (Dimension 4). All the other variables 

associated with Dimensions 1 (intensity of use), 2 (fragmentation and dispersion) and 5 

(magnitude) have high weights in the common factor; they are the ones which best 

characterize the sprawl phenomenon. Figure 2 shows, for each municipality �, spatial 

representation of sprawl index (common factor) and Figure 3 its uncertainty. His histograms 

are shown in Figure 4 and Figure 5, respectively.  

The uncertainty is around 10% of the index, which seems to be admissible for the 

phenomenon under study. Furthermore, its variation is very small. It varies from 0.25 to 

0.33, which shows the good consistency of the model. Only two groups of municipalities 

with anomalous values can be seen, showing a lack of fit in the model. The values higher 

than 0.33 correspond to municipalities in inland and rural areas, whose behavior in their 

urban models is quite different to most of the other municipalities, with a much smaller or 

non-existent sprawl model. In most cases, they are small municipalities with a single urban 

patch. The municipalities with an uncertainty higher than 0.45 have additional missing 

values in their indicators, which is the reason for the high uncertainty.  

Indicator Loading Error 

Disc 0.90 ±0.042 

CCont -0.88 ±0.043 

CEdif -0.74 ±0.046 

NetDen -0.78 ±0.037 

FSpace 0.70 ±0.039 

Frag 0.79 ±0.040 

Shape 0.57 ±0.042 
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Fractal 0.46 ±0.042 

Dist -0.23 ±0.044 

sdDist 0.22 ±0.049 

cvDist 0.70 ±0.039 

Gini 0.78 ±0.042 

Table 7: Loadings of latent factor (common factor) from Bayesian Factor Analysis 

 

Figure 2. Map of sprawl index  
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Figure 3. Map of uncertainty of sprawl index  

 

Figure 4. Histograms of sprawl index 
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Figure 5. Histograms of the uncertainty of the sprawl index 

5.3 Understanding Urban Sprawl in Valencia 

Using multivariate factor techniques, we extracted five different dimensions from the set of 

original indicators to achieve a better understanding of urban sprawl in Valencia.  

First underlying dimension (Figure 6) is composed of the following variables: net housing 

density (NetDen), proportion of continuous urban typology (CCont), proportion of multiple 

family homes (CEdif) and density of net open space (FSpace), associated with the intensity 

of residential use and load capacity of the territory, which are clearly dependent on urban 

typology and density, both of which are planning policy parameters. The development of 

this dimension appears especially in western municipalities in the metropolitan area of 

Valencia and Castellon, favored by the expansion of the cities and the development of 

bedroom communities in middle-class towns. It also appears intensively throughout the 

province of Alicante and in the north coast of the province of Castellon due to a low density 

urban model promoted by tourism. However, this dimension is not developed in most of the 

coastal municipalities due to the high concentration and densification of buildings and 

population, caused by the appeal of the beach. In the more rural and mountainous areas, it 

is clear that this dimension does not have a significant effect.  
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Second dimension is associated with the dispersion and fragmentation of urban land. The 

variables making up this dimension are Frag, Gini and cvDist, i.e. measures of division, 

concentration and dispersion of urban land. The presence of this second dimension shows 

how the sprawl phenomenon creates fragmented and dispersed urban patterns. Basically, 

this dimension adds coastal municipalities to the areas affected by the first dimension 

(Figure 7), due to the growing demand to occupy coastal areas, producing highly 

fragmented patterns in these areas. In addition, some large rural or intermediate 

municipalities seem to have high fragmentation values. In any case, these first two 

dimensions are linked to the morphological aspects of the urban model.  

Third dimension reflects distance or proximity to the center of town and is measured by the 

distance to the center (Dist) plus the variability of these distances (sdDist). Mapping this 

dimension (Figure 8), a quite different behavior from the first two dimensions may be noted. 

The combination of both high distances and a variability in these distances appears mainly 

in the medium and large rural areas, due to the fact that they probably have few and distant 

urban patches. On the coast, the larger distances between urban patches are located in the 

northern municipalities of the provinces of Alicante and Castellon. 

Fourth dimension deals with the Shape and Fractal shape complexity indicators, which 

measure the complexity of the geometric shape of urban patches. Normally, high 

complexity corresponds to low density, dispersed and fragmented urban areas, while 

compact areas tend to have simpler and more regular shapes. Nevertheless, modern 

residential areas tend to be regularly shaped, whereas older and usually denser areas may 

present complex shapes. Although this dimension is usually associated with sprawl, it can 

also be a characteristic of compact areas. This ambiguous behavior is reflected in the 

results of PCA analysis, since these variables, apart from contributing to the common factor 

(Dimension 1 in PCA), are also present in dimension 3. Mapping this dimension (Figure 9), 
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this ambiguous behavior may also be noted, showing high complexity values in many 

coastal municipalities, which are areas with sprawl models, and in many rural and mountain 

municipalities characterized by irregular older urban areas. 

Finally, fifth dimension is associated with the Disc variable, which is the relative importance 

of discontinuous land in the municipality. This dimension is related to the magnitude of the 

phenomenon, which explains why it appears in a separate dimension. However, as can be 

seen in PCA and the Bayesian common factors, this variable is part of the common factor. 

As shown in Figure 10, the relative high importance of discontinuous urban occupation 

appears in the whole coast of the province of Alicante, in the western municipalities of the 

metropolitan area of the city of Valencia and in the entire metropolitan area of the city of 

Castellon. Furthermore, high values may appear in some inland and rural municipalities of 

the province of Castellon, due to the fact that the land use database characterizes urban 

centers of small rural settlements as discontinuous. 

Dimensions 1 (Intensity of use), 2 (Fragmentation) and 4 (Complexity) seem to be 

morphological characteristics of sprawl, while Dimensions 3 (Distance to center) and 5 

(Magnitude) are rather related to the expansion and magnitude of sprawl. Regarding the 

importance of each dimension, Dimensions 1 (Intensity of use), 2 (Fragmentation) and 5 

(Magnitude) contribute substantially to the common factor (Dimension 1 in PCA or Bayesian 

common factor), and therefore seem to be better dimensions to characterize sprawl. The 

complexity dimension (Dimension 4) contributes less to common factor, as shown in 

loadings from Bayesian Factor Analysis (Table 7), and seems to have a more ambiguous 

behavior (Dimension 3 in PCA). However, Dimension 3 (Distance to center) does not seem 

to characterize sprawl, at least for our study area and with the variables formulated: it 

appears in a separate PCA dimension and contributes almost nothing to the common factor. 
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Figure 6. Map of Dimension 1, Intensity  

 
Figure 7. Map of Dimension 2, Fragmentation  
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Figure 8. Map of Dimension 3, Distance  

 
Figure 9. Map of Dimension 4, Complexity  
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Figure 10. Map of Dimension 5, Magnitude  

In addition, a single unidimensional measurement of each municipality has been obtained 

by computing the common factor of all the indicators, which quantifies the degree of sprawl 

in each municipality as shown in Figure 2. Significant values of the Sprawl Index appear 

from south to north, on the coast and in the intermediate area in the province of Alicante, 

especially in the north of Costa Blanca, in the western metropolitan area of the city of 

Valencia, in the metropolitan area of the city of Castellon and in some parts of the coast in 

the province of Castellon. These results reflect the consequences of urban planning in 

recent decades, in which the Valencian Community has experienced significant changes, 

from a dense and compact urban area to large low-density urban areas, probably as a 

consequence of higher living standards and the increased demand for second homes and 

tourist accommodation, especially in the coastal areas. At the other end, low sprawl values 

appear mostly in inland and rural areas where there is no demand for urban growth, and in 
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some coastal locations which mainly belong to small municipalities with severe space 

restrictions for urban development.  

6. Discussion and Conclusions 

The purpose of this study was to characterize and understand urban sprawl in Valencia, 

Spain and to obtain a unidimensional global index variable using a combination of ICA and 

Bayesian Factor Analysis. 

By applying ICA, we identified five dimensions of sprawl: density, dispersion and 

fragmentation, distance to center, complexity and magnitude. On the basis of these 

dimensions, urban sprawl can be understood as a complex model of occupation of a 

significant part of the territory, characterized by a large low-density urban area and divided 

into many widely separated and complex parts. 

To study the spatial distribution of sprawl, we defined a simpler model using Bayesian 

Factor Analysis to reduce the identified dimensions to a single index, easy to represent and 

analyze, which has validated the research on urban development in Valencia. Over the past 

20 years, many municipalities have experienced a paradigm shift and have gone from being 

traditional compact areas to diffuse areas, e.g. the Sprawl Index shows higher values in 

most of the coastal areas, in the province of Alicante and around the three major cities in 

the region: Alicante, Valencia and Castellon de la Plana. 

It is also important to point out some limitations of the research. Firstly, the lack of more 

detailed information on the location of the population within the administrative boundaries 

prevents us from attributing exact data on population or housing to each urban patch, 

forcing us to work at the municipal level. The second problem arises from an over-

generalization of the database used (SIOSE) (Temes and Moya, 2016), which may give 
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anomalous information on land uses in some small municipalities. Despite these limitations, 

which have mostly been corrected using statistical techniques, the results are satisfactory. 

Another advantage of this approach is that the 12 indicators were built with simple 

formulations from public and online databases, ensuring that the study can be repeated.  

Secondly, the results from this study can be used to determine the costs of sprawl and 

therefore support decision-making and planning processes through comparative 

assessment of different development alternatives. Sprawl could be studied in relation to 

sustainability or used to complement existing studies on how sprawl patterns affect 

municipal costs and thus design a decision-making tool for municipal authorities.  
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Figure 1. Geographical areas of the Valencian Community  
Figure 1  
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Figure 2. Map of sprawl index  
Figure 2  

210x296mm (300 x 300 DPI)  

 

 

Page 37 of 48

https://mc04.manuscriptcentral.com/epb

Environment and Planning B: Urban Analytics and City Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 3. Map of uncertainty of sprawl index  
Figure 3  
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Figure 4. Histograms of sprawl index  
Figure 4  
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Figure 5. Histograms of the uncertainty of the sprawl index  
Figure 5  

177x177mm (300 x 300 DPI)  

 

 

Page 40 of 48

https://mc04.manuscriptcentral.com/epb

Environment and Planning B: Urban Analytics and City Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 6. Map of Dimension 1, Intensity  
Figure 6  
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Figure 7. Map of Dimension 2, Fragmentation  
Figure 7  
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Figure 8. Map of Dimension 3, Distance  
Figure 8  
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Figure 9. Map of Dimension 4, Complexity  
Figure 9  

210x296mm (300 x 300 DPI)  

 

 

Page 44 of 48

https://mc04.manuscriptcentral.com/epb

Environment and Planning B: Urban Analytics and City Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 10. Map of Dimension 5, Magnitude  
Figure 10  
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Supplementary Material: Transformation of Variables 

Preprocessing on the data to detect anomalous values as well as histogram 

transformations to adapt some variables to the needs of normality for Principal 

Component Analysis and Factor Analysis is done in this section.  

Due to the limitations of the information sources some municipalities have a zero value 

in some of the indicators. The reason for that is the precision of the data-bases, which 

assigns a zero value when it actually should be a little more. These are, in general, 

small municipalities in inland and rural areas with very small populations, in which there 

is scarcely any discontinuous urban development, and they may even be represented 

by only one single urban patch, usually pertaining to a compact, historic center. 

Moreover, when the indicators are derivative indices from the data, they can also 

accumulate values of zero and/or one.  

To avoid accumulating values of a certain quantity, we proceeded to remove these 

“anomalous” values, and treated them as missing values, which were then imputed from 

the Principal Component Analysis (PCA) in the case of (FA), Independent Component 

Analysis (ICA) and PCA. In the case of the Bayesian Factor Analysis, the imputation is 

implemented in the model and estimated at the same time as its resolution by the 

MCMC (Markov Chain Monte Carlo) technique (Hastings, 1970; Ntzoufras, 2009). 395 

out of 6492 indicator values belonging to 114 out of 541 different municipalities were 

anomalous values, and were removed and treated as missing values. 

What is more, most of observed indicators are not normal distributed; FA and PCA 

techniques assume normality in their input variables. Then, an appropriate 
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transformation over the observed indicators is needed before being used in the FA and 

PCA analysis. In Figure 1 non-normal variable distributions can be noted, as well as 

accumulated values of zero and one (“anomalous” values). 

 

Figure 1. Original variable histograms.  

The Disc, CCont, and CEdif observed indicators are proportions, so the logit 

transformation (Zij=log(Yij)-log(1-Yij)) has been applied to obtain normal distributions. 

Gini is a left-skewed variable to which the square transformation has been applied. 

FSpace is a density with right skewness to which logarithmic transformation has been 

applied. Dist and sdDist are continuous measures with right skewness and the root 
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square has been applied to them. The other indicators, Frag, cvDist, Shape and Fractal, 

can be considered as normal distributions. Finally, the resulting transformed variables 

are showed in Figure 2. 

 

Figure 2. Transformed variables histograms  
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