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Abstract 

The new generation of videogame interfaces such as Microsoft’s Kinect opens 

the possibility of implementing exercise programs for physical training, and of 

evaluating and reducing the risks of elderly people falling. However, applications such 

as these might require measurements of joint kinematics that are more robust and 

accurate than the standard output given by the available middleware. This paper 

presents a method based on particle filters for calculating joint angles from the positions 

of the anatomical points detected by PrimeSense’s NITE software. The application of 

this method to the measurement of lower limb kinematics reduced the error by one order 

of magnitude, to less than 10º, except for hip axial rotation, and it was advantageous 

over inverse kinematic analysis, in ensuring a robust and smooth solution without 

singularities, when the limbs are out-stretched and anatomical landmarks are aligned. 

Keywords: particle filter, human movement analysis, video games 



©Human Kinetics. Published in Journal of Applied Biomechanics 30(2): 294-299. http://dx.doi.org/10.1123/jab.2013-0062 

 

Introduction 

The benefit of “exergames” in stimulating sensorimotor learning processes
1
 has 

encouraged the creation of therapy programs based on new-generation videogames, 

using motion capture devices that reduce the distance between biomechanical research, 

clinical practice, and home-based interventions.  

Besides Nintendo’s Wii,
2–4

 Microsoft’s Kinect is a popular videogame platform 

used for balance-recovery programs.
5–7

 In addition to motivating and guiding the user, 

Kinect can also be used to monitor the exercises for assessment and feedback purposes. 

A successful application, however, requires a trade-off between the amount and quality 

of motion data, and the accuracy that the sensors can provide. Many studies have used 

the OpenNI interface to the Kinect sensor, and PrimeSense’s NITE toolbox.
8
 This 

solution yields position errors of 1-to-10 cm,
9,10

 which can be acceptable for the 

proposed applications. Microsoft’s Software Development Kit, which uses “randomized 

decision forests,”
11

 has similar margins of error.
12–14

 There are few studies about the 

errors of joint rotations, which are also given by modern versions of those interfaces. 

The only published study that we have found reported mean errors of less than 10°;
15

 

however, NITE’s documentation warns about the important noise of joint orientations, 

and their indetermination when limb segments are aligned.
8
 

This paper investigates an alternative resolution of the inverse kinematic 

problem for the “iStoppFalls” balance-training and assessment program,
16

 using particle 

filters (PF). This technique is normally used to analyze complex images, formed by 

point clouds and volumes. The present study will explore its application to the analysis 

of higher-level, simpler positional data provided by NITE, and test whether it can 

improve the angle estimations given by that middleware. 

 

Materials and methods 

Skeleton and PF model 

Since the program of exercises focused on the motion of limbs, the model took 

the trunk as the root segment, from which the arms and legs stemmed as two-segment 

linkages (Figure 1, left). Three rotational degrees of freedom were assigned to trunk, 

shoulders and hips, and one to elbows and knees. 
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Trunk displacement was irrelevant for the purposes of the study. Thus, the 3D 

positions of the remaining 12 joints were represented by their distance to the trunk joint, 

with their 36 coordinates gathered in vector yt for each instant t. Human joint rotations 

are usually represented as Euler sequences,
17,18

 but for computational purposes, we used 

vector θt, which contained the 19 coordinates of the joint relative attitude vectors.
19

 

Given the body segments’ length, the relation between “error-free” measurements of yt 

and θt was determined by the direct kinematic model: 

 ),( tt θy K  (1) 

A PF was used to calculate θt from yt. Both vectors were considered random 

variables, whose dynamic behavior was modeled by a Markovian Stochastic Process: 

  ,|~ 1tt f θθθ  (2) 

  .|~ tt g θyy  (3) 

The values of θt were obtained recursively as the average of 512 particles 

 512

1it

i
θ , which were propagated by the “sample-resample” technique, as follows. An 

initial population of particles with fixed values  0θ
i

 was first defined. In each later 

instant t, the a priori distribution of θt was estimated by sampling the values  ti
θ
~

 out of 

(2), given  1t

i
θ . Then, the a posteriori distribution was estimated by assigning weights 

 

Figure 1 – Left: skeleton model in the reference posture (null rotation of all 

joints). Right: set of markers used for motion capture with marker sets of body 

segments highlighted. 
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to  ti
θ
~

 after (3) and the observed value of yt. Then  ti
θ  were resampled with 

replacement from  ti
θ
~

, according to those weights. This algorithm ensures that 

particles remain in regions of high probability, avoids accumulation of errors over time, 

and gives stable results.
20

 

Model training 

For the sake of simplicity and computational efficiency, the functions defined in 

(2) and (3) were based on multivariate normal distributions. Their means were defined 

on theoretical grounds, such that  1| tf θθ  described a random walk, and  tg θy |  was 

centered around the value of the direct kinematic model: 

    ,| 11   ttfE θθθ  (4) 

    ).(| ttgE θθy K  (5) 

Limb lengths, required by )(θK , were obtained by an initial calibration, 

through measuring distances between joints in the first static instants.  1| tf θθ  was 

trimmed to retain the possible values of θt within the ranges of motion of healthy 

adults.
21,22

 

The covariance matrices of both distributions (Σθ, Σy) were obtained 

experimentally with a volunteer. The work was approved by the ethical committee of 

the Universitat Politècnica de València, and the subject gave informed consent to 

participate. 

Two 10-second static measurements were taken with Kinect, in order to estimate 

the covariance of  tg θy | . Medium-to-high correlations were observed between the 

variations of some coordinates of yt; therefore, a full matrix was defined for Σy. 

Then, cyclic rotations around the different axes of each joint, starting in the “T-

posture,” were recorded separately in 10-second measurements, using the Kinescan-IBV 

photogrammetry system with 10 high-resolution cameras, and 42 markers that 

facilitated the calculation of joint positions from a well-defined kinematic model 

(Figure 1, right).
23

 Thus, the size of the difference θt - θt-1 was considered to model the 

variability of  1| tf θθ . Σθ was assumed diagonal. 
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The stochastic behavior of the model was assumed symmetric. This property 

was forced by averaging the variances of the left and right joints for both covariance 

matrices. 

Comparison of joint rotations 

The joint rotation errors of the NITE and PF algorithms were compared for the 

main movements that must be done by the user during the “iStoppFalls” exercises: 

“back knee” (alternate knee flexion while standing), “sit+front knee” (sit and alternate 

leg elevation), “side hip” (alternate lateral leg elevation while standing), and “step”, 

based on the Otago strengthening program,
24

 plus “near tandem” (keep standing with 

one foot in front of the other) from the “Quick-Screen” fall risk assessment.
25

 

These exercises were done by the volunteer and recorded simultaneously by 

Kinect and Kinescan-IBV. In each exercise, the subject started in the “T-posture,” to 

calibrate limb lengths and set the initial value of θ0. In all cases, the exercise was done 

with the right-hand side of the body, in order to evaluate whether the results varied 

depending on the level of motion. 

Overall, there were three sets of results: (1) the “gold standard” of Kinescan-

IBV, (2) the values obtained by the NITE algorithm from Kinect data, and (3) the 

results of the PF. The output of NITE, given as rotation matrices, was transformed into 

attitude vectors for comparison. As data analysis revealed frequent axial “flips” of the 

limbs, as if an axial rotation of 180° along their long axes had been added, an opposite 

rotation was introduced at such discontinuities, in order to avoid error inflation. 

The errors of the two Kinect-based results were modeled as motion artifacts 

added to the “correct” movement represented by the gold standard.
26

 This resulted in the 

“error attitude vectors” 
j

t

A
ε , with different values for each joint j and for each algorithm 

A. The analysis was focused on hips and knees, the joints of interest for the target 

application. 

These errors were represented as Euler angles for the standard sequence of lower 

limbs (flexion-abduction-axial rotation). For a more concise comparison of the total 

amount of error in each joint, the difference between the modules of 
j

t

A
ε  was also 

calculated at each instant: 

  .j

t

PFj

t

NITEj

t εε   (8) 
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These variables were a measure of the “improvement” provided by the PF. To 

verify that such an improvement was significant, a Wilcoxon signed-rank test was 

applied to the distributions of j

tε . Their values were also calculated with a four-times 

smaller or larger set of particles (128 or 2048), in order to evaluate the potential impact 

of changing the ratio between the variability of the model and the number of particles. 

All the calculations were done with GNU Octave.
27

 

Results 

Standard deviations of  1| tf θθ  and  tg θy |  were between 1° and 6°, and 

between 6 and 40 mm, respectively, with the remarkable exception of the error in the 

position of the hand, which was over 150 mm in the camera plane (Table 1). 

The absolute values of the Euler angle errors had a great dispersion. Their 

distributions were mainly concentrated between 1° and 10°, but NITE errors were one 

order of magnitude greater (tens of degrees) for hip abduction and for knee flexion of 

both sides (Figure 2). When all the measures were taken together, the NITE average 

error for right hip flexion was also greater than the corresponding PF error, although 

both distributions had the same order of magnitude (Table 2). On the other hand, the PF 

did not improve the error of NITE in hip axial rotation, and in fact, it was substantially 

increased for the left-hand side. 

 

 

Table 1. Standard deviations (SD) used to model the 

distributions of the particle filter. 

 SD (f(θ|θt)) (º)  SD (g(y|θt)) (mm) 

 x y z  x y z 

Trunk 1.60 2.44 1.16  — — — 

Shoulder 2.88 5.64 2.8  9.1 6.7 12.7 

Elbow 2.44 — —  29.8 25.2 20.3 

Hand — — —  151.5 181.7 14.5 

Hip 2.76 3.28 3.36  6.0 6.5 10.1 

Knee 1.31 — —  8.8 16.8 35.1 

Foot — — —  19.8 25.2 38.1 
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Considering the set of all measurements, the improvement provided by the PF to 

hips and knees (
H

tε  and 
K

tε , respectively) was clearly positive for the right-hand 

side, but small for the left-hand side (Table 2). Wilcoxon’s test showed that the average 

of those variables was significantly positive (W>10, P<.001) in all cases, except for the 

left hip, where the (also positive) difference was not significant (W=1.35, P=.176). 

When the individual exercises were considered, PF errors were often similar to 

NITE errors, although there are relatively more cases when NITE errors were greater 

and fewer cases when PF errors were greater. For side hip and tandem, the PF 

performed generally better, especially for the right-hand side. On the other hand, left hip 

axial rotation presented greater PF errors in all exercises. The values of 
H

tε  and 
K

tε  

were small in most cases, but again, tended to be positive. Their interquartile ranges 

were fully positive in 8 cases, and only slightly negative in 1 out of 20 cases (left 

K

tε for the side hip exercise). 

 

Figure 2 – NITE vs. particle filter (PF) errors in Euler angles of hips and 

knees for all the exercises. Absolute values in degrees (axes in logarithmic scales). 

Points in the right bottom sectors represent instants where NITE error was higher 

than PF error, and vice versa. 
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Table 2. Summary of joint rotation errors associated with the NITE and particle filter 

algorithms. Mean values are given for each joint angle and the difference of attitude 

errors ( H

tε , K

tε ), together with the interquartile ranges (25th and 75th percentiles), 

given the strong non-normality of the distributions. All values in degrees. 

 Hip flex.  Hip abd.  Hip rot.    Knee flex.   

 NITE PF  NITE PF  NITE PF  H

tε  
 NITE PF  K

tε  

Right-hand side                

Back knee                

mean 7.7 5.0  1.6 1.7  6.3 12.3  -2.9  10.4 10.1  0.3 

p25 4.6 2.8  0.4 0.6  3.0 9.7  -8.6  6.3 1.7  -9.5 

p75 10.7 6.8  2.4 2.7  9.3 14.7  2.6  13.3 16.7  10.6 

Sit + front knee                

mean 11.1 8.1  8.3 3.5  8.9 19.9  -4.2  8.5 8.9  -0.4 

p25 3.1 3.0  6.4 2.1  2.7 18.1  -10.3  5.5 4.3  -5.6 

p75 17.6 12.1  9.5 5.0  11.9 22.7  1.6  11.9 13.2  4.0 

Side hip                

mean 46.1 6.8  36.9 2.2  28.2 14.7  56.5  37.3 2.8  34.5 

p25 13.2 5.2  12.7 0.7  21.6 7.0  20.6  3.7 1.4  1.1 

p75 55.8 8.2  65.9 2.9  32.0 20.0  110.5  30.5 4.0  26.6 

Step                

mean 7.8 6.4  3.8 3.5  6.9 12.1  -1.7  8.0 5.3  2.8 

p25 2.9 4.7  1.1 2.1  2.8 8.0  -4.7  5.7 3.4  0.2 

p75 11.7 8.2  4.7 4.6  10.9 16.1  3.0  10.4 7.0  5.3 

Tandem                

mean 9.2 4.2  12.6 4.3  12.5 5.9  14.4  31.8 4.0  27.9 

p25 2.9 2.6  12.1 3.6  4.6 1.8  6.0  29.0 1.4  23.3 

p75 10.6 5.6  13.9 5.2  13.3 10.6  18.9  37.0 4.9  34.6 

All measures                

mean 16.6 6.2  13.0 3.2  12.8 12.7  13.1  19.3 5.6  13.7 

p25 3.7 3.8  2.1 1.4  4.0 6.8  -3.9  5.9 2.1  -0.1 

p75 14.4 8.1  13.5 4.6  18.0 17.8  18.3  17.7 7.2  21.8 

                

Left-hand side                

Back knee                

mean 2.8 6.0  20.9 4.1  5.2 14.9  4.2  6.9 3.8  3.1 

p25 1.1 4.8  20.0 2.4  2.3 5.3  -1.8  3.4 1.5  -1.1 

p75 4.3 7.2  21.5 5.2  8.1 22.6  11.4  9.5 5.5  6.6 

Sit + front knee                

mean 13.5 6.7  7.3 3.4  5.3 6.6  6.4  5.8 6.8  -1.0 

p25 4.9 1.5  5.2 1.9  2.6 4.5  0.4  2.9 4.4  -4.0 

p75 17.8 10.0  9.4 4.6  6.3 8.6  9.3  6.4 8.2  1.9 

Side hip                

mean 3.6 3.5  20.5 2.8  5.8 24.3  -1.9  3.2 3.1  0.1 

p25 0.5 1.8  21.1 1.5  3.9 11.3  -12.8  1.2 1.0  -2.5 

p75 4.2 4.9  26.7 4.1  7.4 38.9  9.0  5.1 5.1  3.0 

Step                

mean 7.4 5.4  4.5 5.0  5.2 14.1  -6.4  7.7 6.5  1.2 

p25 6.2 2.8  3.0 3.1  2.2 6.3  -9.5  7.0 5.1  -1.5 

p75 9.1 6.2  5.9 6.8  7.6 15.8  1.0  10.0 8.0  3.6 

Tandem                

mean 5.9 7.0  19.8 3.2  11.7 17.9  5.0  22.5 12.1  10.4 

p25 4.3 3.9  15.7 0.8  5.8 10.0  -1.0  12.8 4.1  6.8 

p75 6.5 9.3  24.7 6.1  10.1 18.5  11.3  31.1 19.8  12.6 

All measures                

mean 6.9 5.6  13.0 3.8  6.7 15.8  0.1  9.4 6.7  2.7 

p25 3.1 2.8  4.9 1.8  3.0 6.6  -6.4  3.2 3.3  -2.0 

p75 8.9 7.3  23.2 5.3  8.5 19.5  8.4  10.8 8.1  5.7 

Note: flex.: flexion-extension error; abd.: abduction-adduction error; rot.: axial rotation error. 
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The average improvement in hip rotations (but not of knee rotations) increased 

with the number of particles (Figure 3). However, even the gain in hips (around 6° from 

128 to 2048 particles) was small compared with the wide dispersion of errors that had 

been observed. 

Discussion 

This study presents an alternative to the methods used by Kinect middleware to 

calculate joint rotations. NITE errors often exceeded 10° (even after correcting 

accidental “flips”) except for hip flexion, unlike in previous studies.
15

 A possible 

explanation for this discrepancy is that the gold standard used by other authors was 

obtained by an inverse kinematic analysis of a simple skeleton model, formed by one-

dimensional lines linking joints. That model has the same problems of indeterminations 

and singularities reported for NITE algorithms, and could mask NITE errors. The gold 

standard of the present study was obtained from measurements with a greater number of 

markers and therefore, could be considered more valid. 

 

Figure 3– Mean and standard error of the difference between particle filter 

and NITE joint orientation errors ( j

tε ) for 128, 512, and 2048 particles. 

Values in degrees. 

 



©Human Kinetics. Published in Journal of Applied Biomechanics 30(2): 294-299. http://dx.doi.org/10.1123/jab.2013-0062 

 

The error of the PF was typically below 10°, except for hip axial rotation. This 

was comparable with NITE errors and one order of magnitude lower for hip 

abduction/adduction and knee flexion. The rotations calculated by the PF were more 

reliable for joints in motion. 

PF and related techniques are often employed for motion tracking, using data 

from inertial sensors or more complex optical data from marker-less motion capture. 

This study demonstrated that they can also be used with simpler, high-level data such as 

the position of a small number of anatomical landmarks. In addition to reducing errors, 

PF have the advantage of giving smooth angle trajectories, coherent with skeletons of 

fixed anthropometry. To obtain those properties with inverse kinematics, the analysis 

should be complicated with nonlinear optimization techniques.
28

  

A limitation of this study is that it was conducted with just one subject in a 

laboratory. The intended application of this technology involves measuring many 

people in various home environments, such that the dispersions of  1| tf θθ  and 

 tg θy |  may be larger than the values observed in the experiment. However, the PF 

might still converge if there are a sufficient number of particles.
29

 The results show that 

hip errors are more sensitive to the number of particles, especially if the degree of 

motion is small. The required computational resources grow proportionally with the 

number of particles, but other mathematical approaches could be attempted to 

counteract that problem, such as Unscented Kalman Filters.
30

 Better performance could 

also be obtained by using a state space based on positions, instead of joint angles, whose 

effect on the observed posture is accumulated across the kinematic chains.
31

 

This study was limited to the analysis of lower limb angles, as they were the 

ones of interest for the balance-assessment and training exercises considered in the 

present research framework. For less specific applications, the methodology could be 

easily applied to the analysis of upper limbs. 

Funding: This work has been undertaken within the framework of the 

iStoppFalls project, which has received funding from the European Community (grant 

agreement FP7-ICT-2011-7-287361) and the Australian Government. 

Conflict of interest disclosure: No conflict of interest exists for any of the 

authors of this paper. 



©Human Kinetics. Published in Journal of Applied Biomechanics 30(2): 294-299. http://dx.doi.org/10.1123/jab.2013-0062 

 

References 

1. Di Tore S, D’Elia F, Aiello P, Carlomagno N, Sibilio M. Didactics, movement and 

technology: new frontiers of the human-machine interaction. J Hum Sport Exerc 

- University of Alicante. 2012;7(1Proc):S178–S184. 

2. Pigford T, Andrews AW. Feasibility and Benefit of Using the Nintendo Wii Fit for 

Balance Rehabilitation in an Elderly Patient Experiencing Recurrent Falls. J 

Student Phys Ther Res. 2010;2(1):12–20. 

3. Young W, Ferguson S, Brault S, Craig C. Assessing and training standing balance in 

older adults: A novel approach using the “Nintendo Wii” Balance Board. Gait 

Posture. 2011;33(2):303–305. 

4. Agmon M, Perry CK, Phelan E, Demiris G, Nguyen HQ. A pilot study of Wii Fit 

exergames to improve balance in older adults. J Geriatr Phys Ther. 

2011;34(4):161–167. 

5. Garcia JA, Felix Navarro K, Schoene D, Smith ST, Pisan Y. Exergames for the 

elderly: towards an embedded Kinect-based clinical test of falls risk. Stud Health 

Technol Inform. 2012;178:51–57. 

6. Lloréns R, Alcañiz M, Colomer C, Navarro MD. Balance recovery through virtual 

stepping exercises using Kinect skeleton tracking: a follow-up study with 

chronic stroke patients. Stud Health Technol Inform. 2012;181:108–112. 

7. Smith ST, Schoene D. The use of exercise-based videogames for training and 

rehabilitation of physical function in older adults: current practice and guidelines 

for future research. Aging Health. 2012;8(3):243–252. 

8. PrimeSense Inc. Prime Sensor
TM

 NITE 1.3 Algorithms notes. 2010. 

http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf. Accessed January 25, 

2013. 

9. Chang C-Y, Lange B, Zhang M, et al. Towards pervasive physical rehabilitation 

using Microsoft Kinect. In: 2012 6th International Conference on Pervasive 

Computing Technologies for Healthcare (PervasiveHealth); 2012:159–162. 

10. Schonauer C, Pintaric T, Kaufmann H, Jansen - Kosterink S, Vollenbroek-Hutten 

M. Chronic pain rehabilitation with a serious game using multimodal input. In: 

2011 International Conference on Virtual Rehabilitation (ICVR); 2011:1–8. 

11. Shotton J, Fitzgibbon A, Cook M, et al. Real-time human pose recognition in parts 

from single depth images. In: 2011 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR); 2011:1297–1304. 

12. Clark RA, Pua Y-H, Fortin K, et al. Validity of the Microsoft Kinect for assessment 

of postural control. Gait Posture. 2012;36(3):372–377. 

13. Obdrzalek S, Kurillo G, Ofli F, et al. Accuracy and robustness of Kinect pose 

estimation in the context of coaching of elderly population. In: 2012 Annual 



©Human Kinetics. Published in Journal of Applied Biomechanics 30(2): 294-299. http://dx.doi.org/10.1123/jab.2013-0062 

 

International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC); 2012:1188–1193. 

14. Samejima I, Maki K, Kagami S, Kouchi M, Mizoguchi H. A body dimensions 

estimation method of subject from a few measurement items using KINECT. In: 

2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 

2012:3384–3389. 

15. Fernández-Baena A, Susin A, Lligadas X. Biomechanical Validation of Upper-Body 

and Lower-Body Joint Movements of Kinect Motion Capture Data for 

Rehabilitation Treatments. In: 2012 4th International Conference on Intelligent 

Networking and Collaborative Systems (INCoS); 2012:656–661. 

16. Wieching R, Kaartinen N, De Rosario H, et al. A New Approach for Personalised 

falls risk prediction and Prevention: Tailored Exercises. Unobtrusive Sensing & 

Advanced Reasoning. J Aging Phys Act. 2012;20(S):S120–S124. 

17. Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint 

coordinate system of various joints for the reporting of human joint motion—

part I: ankle, hip, and spine. J Biomech. 2002;35(4):543–548. 

18. Wu G, Van der Helm FCT, (DirkJan) Veeger HEJ, et al. ISB recommendation on 

definitions of joint coordinate systems of various joints for the reporting of 

human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 

2005;38(5):981–992. 

19. Woltring HJ. 3-D attitude representation of human joints: A standardization 

proposal. J Biomech. 1994;27(12):1399–1414. 

20. Cappe O, Godsill SJ, Moulines E. An Overview of Existing Methods and Recent 

Advances in Sequential Monte Carlo. Proc IEEE. 2007;95(5):899–924. 

21. Anon. Range of Motion Evaluation Chart. Washington State Department of Social 

& Health Services; 2003. http://www.dshs.wa.gov/pdf/ms/forms/13_585a.pdf. 

Accessed January 25, 2013. 

22. Soucie JM, Wang C, Forsyth A, et al. Range of motion measurements: reference 

values and a database for comparison studies. Haemophilia. 2011;17(3):500–

507. 

23. Page A, De Rosario H, Mata V, Atienza C. Experimental Analysis of Rigid Body 

Motion. A Vector Method to Determine Finite and Infinitesimal Displacements 

From Point Coordinates. J Mech Des. 2009;131(3):031005. 

24. Robertson MC, Campbell AJ. Otago Exercise Programme to Prevent Falls in Older 

Adults. Wellington: Accident Compensation Corporation; 2003. 

25. Tiedemann A, Lord SR, Sherrington C. The Development and Validation of a Brief 

Performance-Based Fall Risk Assessment Tool for Use in Primary Care. J 

Gerontol A Biol Sci Med Sci. 2010;65A(8):896–903. 



©Human Kinetics. Published in Journal of Applied Biomechanics 30(2): 294-299. http://dx.doi.org/10.1123/jab.2013-0062 

 

26. De Rosario H, Page A, Besa A, Mata V, Conejero E. Kinematic description of soft 

tissue artifacts: quantifying rigid versus deformation components and their 

relation with bone motion. Med Biol Eng Comput. 2012;50(11):1173–1181. 

27. Eaton JW, Bateman D, Hauberg S. GNU Octave Manual Version 3. Godalming, 

UK: Network Theory Limited; 2008. 

28. Schwarz LA, Mkhitaryan A, Mateus D, Navab N. Human skeleton tracking from 

depth data using geodesic distances and optical flow. Image Vis Comput. 

2012;30(3):217–226. 

29. 1. Crisan D, Doucet A. A survey of convergence results on particle filtering 

methods for practitioners. IEEE Trans Signal Process. 2002;50(3):736–746. 

doi:10.1109/78.984773. 

30. Larsen ABL, Hauberg S, Pedersen KS. Unscented Kalman Filtering for Articulated 

Human Tracking. In: Heyden A, Kahl F, eds. Image Analysis. Lecture Notes in 

Computer Science. Springer Berlin Heidelberg; 2011:228–237. 

31. Hauberg S, Sommer S, Pedersen KS. Natural metrics and least-committed priors for 

articulated tracking. Image Vis Comput. 2012;30(6–7):453–461. 


