Universidad Politécnica de Valencia / Campus de Alcoy

Departamento de Ingeniería Textil y Papelera
Grado en Ingeniería Química

“Utilización de sustancias tipo húmicas para un proceso de eliminación de contaminantes por membranas - Tratamiento fotoquímico”

Autor:
Jordi Gramage Doria
DNI: 48603007-M

Director:
D. Antonio Arques Sanz

Alcoy, Julio de 2017
1) INTRODUCCIÓN ... 7
 1.1. EL AGUA COMO RECURSO INDISPENSABLE ... 7
 1.2. RECURSOS HÍDRICOS DISPONIBLES ... 9
 1.3. CONTAMINANTES EMERGENTES ... 11
 1.3.1. Metales pesados y sus compuestos .. 12
 1.3.2. Arsénico y sus compuestos ... 13
 1.3.3. Cianuro y derivados .. 13
 1.3.4. Organohalogenados (AOX) ... 14
 1.3.5. Biocidas y Fitosanitarios ... 14
 1.3.6. Organofosforados ... 15
 1.3.7. Organoestánicos .. 16
 1.3.8. Sustancias tóxicas y bioacumulables .. 16
 1.4. PROCESOS DE OXIDACIÓN AVANZADA .. 17
 1.4.1. Clasificación de los procesos de oxidación avanzada .. 18
2) OBJETIVOS .. 25
3) METODOLOGÍA EXPERIMENTAL .. 26
 3.1. REACTIVOS .. 26
 3.1.1. Contaminantes emergentes ... 26
 3.1.2. Sustancias bio-orgánicas .. 27
 3.1.3. Otros reactivos .. 29
 3.2. PLANTA .. 30
 3.2.1. Planta de ultrafiltración por membranas poliméricas ... 30
 3.2.2. Planta de ultrafiltración por membrana cerámica .. 34
 3.2.3. Planta piloto de fotocatálisis solar de 4L .. 37
 3.3. CONDICIONES DE ENSAYO ... 38
 3.3.1. Ensayos realizados en las plantas de ultrafiltración .. 38
 3.3.2. Ensayos realizados en la planta piloto ... 38
 3.4. EQUIPOS DE ANÁLISIS Y TÉCNICAS ANALÍTICAS ... 39
 3.4.1. Cromatógrafo líquido de ultra alta resolución ... 39
 3.4.2. Analizador de Carbono Orgánico Disuelto .. 40
 3.4.3. Espectrofotometría UV-Visible .. 42
 3.5. OTROS EQUIPOS .. 43
 3.5.1. Sistema de purificación de agua Milli.Q ... 43
 3.5.2. Balanza analítica ... 45
 3.5.3. Ultrasonidos .. 45
 3.5.4. pH-metro ... 46
 3.6. MÉTODOS DE ANÁLISIS .. 47
 3.6.1. Método para la medición de la concentración del contaminante ... 47
 3.6.2. Método para la medición de la radiación solar ... 49
 3.6.3. Método para la medición Fe$^{2+}$.. 50
 3.6.4. Método para la medición del H$_2$O$_2$.. 51
 3.6.5. Método para la medición del Carbono Orgánico Total ... 51
4) RESULTADOS Y DISCUSIÓN .. 52
4.1. Concentración de la disolución de Tiabendazol utilizando una planta de ultrafiltración con membranas poliméricas .. 52
4.2. Eliminación del contaminante mediante fotocatálisis solar 56
4.3. Diseño de una planta de ultrafiltración y de una planta piloto de fotocatálisis solar (FOTO-FENTON), para el tratamiento de 1 m³·dia⁻¹ de agua residual 58
 4.3.1. Diseño de la planta (ultrafiltración y fotocatálisis solar) 58
 4.3.2. Presupuesto para el diseño de la planta de fotocatálisis solar 72
5) CONCLUSIONES ... 78
6) BIBLIOGRAFÍA ... 79
7) ANEXO .. 84
Resumen

En el presente Trabajo de Fin de Grado se estudió la posibilidad de utilizar las sustancias bio-orgánicas para implantar un sistema de membranas de ultrafiltración para poder concentrar y posteriormente eliminar mediante fotolisis, un contaminante emergente, como es el Tiabendazol.

En primer lugar, se realizará un estudio para la concentración de la disolución de Tiabendazol inicial. Esta concentración se llevará a cabo con la utilización de unas sustancias bio-orgánicas procedentes de Italia. Con esta concentración, se intentará facilitar y reducir el volumen empleado en el proceso Foto-Fenton.

Con el concentrado procedente de la planta de ultrafiltración, se realizará un experimento Foto-Fenton a pH 5. A su vez, se mejorará el rendimiento del proceso, debido a la presencia de las sustancias bio-orgánicas incorporadas previamente en la ultrafiltración. Estas SBO, actuarán como complejante del hierro y disminuirán el pH ácido del proceso, facilitando su eliminación con condiciones más suaves.

Seguidamente, se realizará un escalado y un posterior diseño de una planta de fotocatálisis con un tratamiento previo de membranas de ultrafiltración, para el tratamiento de 1 m3.dia$^{-1}$ de aguas residuales provenientes de una industria. En este punto, se calcularán los costes de inversión y explotación para llevar a cabo el diseño de la planta.

Finalmente se calculará el coste del agua por metro cúbico tratado.
Resum

En el present Treball de Fi de Grau es va estudiar la possibilitat d'utilitzar les substàncies bio-orgàniques per a implantar un sistema de membranes d'ultrafiltració per a poder concentrar i posteriorment eliminar per mitjà de fotòlisi, un contaminant emergent, com és el Tiabendazol.

En primer lloc, es realitzarà un estudi per a la concentració de la dissolució de Tiabendazol inicial. Esta concentració es durà a terme amb la utilització d'unes substàncies bio-orgàniques procedents d'Itàlia. Amb esta concentració, s'intentarà facilitar i reduir el volum empleat en el procés Foto-Fenton.

Amb el concentrat procedent de la planta d'ultrafiltració, es realitzarà un experiment Foto-Fenton a pH 5. Al seu torn, es millorarà el rendiment del procés, a causa de la presència de les substàncies bio-orgàniques incorporades prèviament en la ultrafiltració. Estes SBO, actuaran com complejante del ferro i disminuiran el pH àcid del procés, facilitant la seua eliminació amb condicions més suaus.

A continuació, es realitzarà un escalat i un posterior disseny d'una planta de fotocatálisis amb un tractament previ de membranes d'ultrafiltració, per al tractament d'1 m³·dia-1 d'aigües residuals provinents d'una indústria. En este punt, es calcularan els costos d'inversió i explotació per a dur a terme el disseny de la planta.

Finalment es calcularà el cost de l'aigua per metre cúbic tractat.
ABSTRACT

In this study, the possibility of using bio-organic substances to implant an ultrafiltration membrane system was studied in order to be able to concentrate and subsequently eliminate by photolysis an emerging contaminant, such as thiabendazole.

First, a study will be performed for the concentration of the initial thiabendazole solution. This concentration will be carried out with the use of bio-organic substances from Italy. With this concentration, we will try to facilitate and reduce the volume used in the Photo-Fenton process.

With the concentrate from the ultrafiltration plant, a Photo-Fenton experiment will be carried out at pH 5. In turn, the process performance will be improved, due to the presence of the bio-organic substances previously incorporated in the ultrafiltration. These SBOs will act as iron complexing and will decrease the acid pH of the process, facilitating its elimination with softer conditions.

Subsequently, a scaling and subsequent design of a photocatalysis plant with a pretreatment of ultrafiltration membranes will be carried out for the treatment of 1 m3 · day-1 of waste water from an industry. At this point, the investment and operating costs will be calculated to carry out the plant design.

Finally, the cost of water per cubic meter treated will be calculated.
1) Introducción

1.1. El agua como recurso indispensable

El agua es el recurso más importante para vivir, ya que entre el 55% y el 60% de la masa corporal de una persona adulta, es agua. A continuación, se observa el porcentaje de agua que existe en un cuerpo adulto, en el cual, el contenido de agua varía desde un 83% en la sangre hasta solo un 10% en los tejidos adiposos (H4h Iniciative, 2017).

![Figura 1.1.1 - Composición en agua de los tejidos y órganos por peso (H4h Iniciative, 2017).](image)

Por otra parte, el agua no solo se necesita para beber y para formar parte de nuestro cuerpo, sí no también para mantener nuestra higiene personal y evitar cualquier enfermedad. Según la OMS (Organización Mundial de la Salud), la cantidad óptima de consumo de agua por una persona, como mínimo es de 100 L/persona/día.
Del mismo modo, se va a necesitar agua para producir energía y así como, para emplearla en diferentes procesos industriales, tales como las industrias químicas (25% del consumo total de agua), industrias agroalimentarias y explotaciones ganaderas (17%) y otras como la producción y transformación de metales (13%). Simultáneamente, al aumento de la población mundial que ocurrió hace aproximadamente cien años (pasando de 1600 a 7400 millones de habitantes, entre 1900 y 2016), se obtuvo un aumento del consumo de agua de más de diez veces, el consumo que había en el año 1900, debido al desarrollo industrial y el elevado consumo en la agricultura. A continuación de muestra un gráfico del consumo de agua entre 1900 y 2000 en el mundo:

![Figura 1.1.2 – Aumento de consumo de agua entre 1900 y 2000](image)

Tal y como se ha explicado el elevado uso de agua en el mundo, la sociedad es consciente de la importancia que este recurso tomará en cien años, si se sigue con el aumento de la población, así como del consumo de agua.
1.2. Recursos hídricos disponibles

La importancia del agua de nuestro planeta se debe a la siguiente explicación: el 70,8% de la superficie de la tierra está ocupada por agua. De esta agua, tenemos el 97% de agua salada, que lo componen océanos y mares, mientras que el 3% restante corresponde al agua dulce. De este 3% del agua dulce, el 69% está inmovilizada en los glaciares y el 30% son aguas que discurren por el subsuelo. Con esto, solo el 1% de esta agua dulce, se encuentra en la superficie y es la que realmente se puede utilizar y que se divide a su vez, en un 87% en los lagos, un 11% en los pantanos y un 2% en los ríos. A continuación, se muestra una imagen, donde se observa de forma más clara la distribución del agua en la Tierra.

Figura 1.2.1 – Distribución del agua en la Tierra (ORT Campus Virtual, 2013)

La distribución del agua en la naturaleza, se mantiene gracias a la existencia del ciclo del agua. De los océanos, se capta la mayor cantidad de agua que formará parte de las precipitaciones en la Tierra y que ayudarán a satisfacer, de la forma más uniforme posible, las necesidades de los seres vivos.

No obstante, la distribución del agua mediante el ciclo del agua no se realiza de la forma más uniforme que esperamos, debido a que existen numerosos factores físicos que influyen negativamente en esta causa. Esta escasez, en parte es de los factores físicos, pero otro problema es la excesiva utilización de agua en sectores como la industria, agricultura o el uso doméstico.
De esta manera, cada vez más, se construyen plantas de desalación que satisfacen, de una manera muy fácil y barata, las necesidades de muchas ciudades cercanas a mares u océanos y que, sin esta herramienta, no podría seguir viviendo allí.

A continuación, se muestra la distribución y disponibilidad de agua que tienen los países del mundo, desde aquellos que presentan una fuerte escasez (color rojo), hasta aquellos que tienen agua en abundancia (color azul).
1.3. Contaminantes emergentes

Los denominados contaminantes emergentes (CE) son un conjunto de compuestos químicos que han sido detectados en las aguas naturales y preocupan por las posibles consecuencias que pueden acarrear. La detección de estos contaminantes en el medio ha sido posible gracias a los grandes avances experimentales en técnicas de análisis que se han llevado a cabo en estos últimos años. Algunos ejemplos de estos compuestos emergentes son principalmente los fármacos, ya que los medicamentos que se toman la gente se expulsan directamente a las aguas residuales. Otros compuestos emergentes y también muy importantes son los productos de higiene personal, así como los detergentes.

En los últimos años, se han tomado consciencia de una nueva clase de contaminantes emergentes: los nanomateriales. Estos contaminantes se producen en las industrias de producción de nanomateriales de carbono (fullerenos y nanotubos) y de metales (nanopartículas de plata y oro y óxidos metálicos). También han surgido los microplásticos, conocidos anteriormente en el medio marino, pero que han surgido también problemas por su gran impacto en el sistema endocrino de los peces de río.

La introducción de estos contaminantes emergentes es, principalmente, las aguas residuales, pero también cabe destacar el papel de la agricultura y ganadería con la incorporación de grandes cantidades de pesticidas y antibióticos, respectivamente. En la mayoría de los casos, la gente creyó que, mediante las estaciones depuradoras de agua residual convencionales, el problema desaparecería. Pero esto no ha ocurrido, puesto que la digestión de estos contaminantes no era completa y siempre han quedado gran cantidad de partículas que han causado y causarán graves problemas.
A continuación, se muestra una tabla (figura 1.3) con los contaminantes emergentes más importantes y dañinos que existen en las aguas residuales y que gravemente nos están perjudicando cada día más.

![Tabla de contaminantes emergentes](image)

Figura 1.3 – Contaminantes emergentes importantes presentes en las aguas residuales (Rafael Marín, 2016).

Seguidamente, se realizará una breve explicación de todos los componentes emergentes que contaminan las aguas naturales.

1.3.1. Metales pesados y sus compuestos

Los metales pesados son sustancias de la naturaleza, con un peso molecular alto, muy difundidos y en numerosos casos muy útiles. Debido a la alta contaminación, tienen efectos en la salud y afectan directamente a algunos órganos.
El más conocido es el plomo y afecta directamente a las neuronas de nuestro cerebro, afectando también a la médula ósea o incluso en el riñón. El cadmio también afecta directamente al riñón (Scielo Bolivia, 2009).

De la figura 1.3.1, observamos distintos metales pesados que existen como contaminantes emergentes y todos ellos se usan en la industria (limpieza de metales, recubrimientos, fabricación de baterías...), hogares (pintura, bombillas...) y en zonas mineras.

1.3.2. Arsénico y sus compuestos

El arsénico es un elemento natural que tiene propiedades físicas y químicas de metales y de no metales. Como derivados más tóxicos del arsénico, existen las arsinas, seguidas de cerca por los arsenitos (compuestos orgánicos trivalentes) (BVSDE, 2007).

Los plaguicidas de arsénico están prohibidos debido a su alta toxicidad. Por otra parte, el arsénico se utiliza en forma sólida para objetos como semiconductores, curtido, etc.

1.3.3. Cianuro y derivados

Estrictamente, el cianuro es un ión de fórmula \(\text{CN}^- \) que se presenta en forma de sales. Existen en numerosos compuestos químicos, siendo el más común el ferrocianuro férrico, que es la base de pigmentos azules muy conocidos denominados Azul de Prusia.

En la industria química orgánica, aparece en muchos materiales plásticos, como por ejemplo el acrilonitrilo.

También está presente en las pepitas de duraznos, semillas de manzanas y en las almendras amargas.

Por último, también se utiliza en la industria de los medicamentos, vinculado a la vitamina B12, haciendo que esta sea más estable y por ello, más efectiva (Miguel Ángel Blesa, 2012).
1.3.4. Organohalogenados (AOX)

Los compuestos AOX son sustancias químicas orgánicas que contienen uno o varios átomos de un elemento halógeno (generalmente cloro). Pueden ser sustancias simples y volátiles como el triclorometano (cloroformo) o moléculas como las dioxinas y los furanos.

El foco principal de estos compuestos, tiene su origen en la industria del papel, donde se utiliza la clorina para el blanqueo de las fibras de celulosa. Otra causa de contaminación, tiene lugar en la desinfección con cloro del agua potable de las piscinas.

La toxicidad de estas sustancias en los seres humanos, dependerá del tipo de sustancia y de la duración de exposición de la misma. En el caso de los organismos acuáticos, tendrán más toxicidad, debido a un único problema, la bioacumulación de estos compuestos en el interior de estos organismos (Mapama, 2007).

1.3.5. Biocidas y Fitosanitarios

Los biocidas son sustancias activas, preparados o microorganismos que tienen el único objetivo de destruir, contrarrestar, neutralizar o impedir la acción de otros organismos nocivos por medios químicos o biológicos.

Por otro lado, los fitosanitarios son mezclas químicas que contienen sustancias activas que protegen los vegetales y sus productos de organismos nocivos. Estas dos sustancias aumentan los rendimientos en la agricultura y ayudan a asegurar una buena calidad en los alimentos (Mapama, 2017).

Al mismo tiempo, su mala o elevada utilización puede tener efectos desfavorables en la producción vegetal y entrañar incluso riesgos en los seres humanos, animales y en el medio ambiente.
1.3.5.1 Tiabendazol

El tiabendazol es un compuesto químico con propiedades fungicidas. Pertenece a la familia de los fitosanitarios, dentro de los CE.

El TBZ, con fórmula estructural C_{10}H_{7}N_{3}S_{1} y nombrado como 2-(4-Tiazolil) benzimidazol (según la IUPAC), presenta la siguiente estructura química:

![Estructura química del Tiabendazol](Colaboradores de Wikipedia, 2014).

Se utiliza como fungicida para las frutas y también como conservante en la industria alimentaria con el código: E 233.

Se utiliza contra infecciones producidas por lombrices, como la ascariasís.

Actúa inhibiendo la enzima fumarato-reductada, que es específica de las mitocondrias de algunos helmintos (Colaboradores de Wikipedia, 2014).

1.3.6. Organofosforados

Son compuestos derivados del ácido fosfórico que contienen carbón. Tanto los Organofosforados (OF), como los carbamatos son inhibidores de la colinesterasa.

Se emplean como insecticidas en agricultura, ganadería, hogar… o para combatir plagas de piojos en el ser humano.

Además, se utilizan como plastificantes, reactivos químicos, lubricantes, etc.

Tienen un índice alto de toxicidad, pero no plantean problemas de acumulación.

Se utilizaron como armas químicas muy potentes (gases de guerra) llamadas sarín, somán y agente VX (agentes nerviosos) (Intoxicaciones Online, 2012).
1.3.7. Organoestánnicos

Los compuestos organoestánnicos son aquellos que presentan un enlace estaño-carbono, con el estaño con estado de oxidación +4. La emisión de estos compuestos emergentes es muy diversa y depende del proceso de fabricación empleado. El óxido estannoso se origina en la galvanoplastia y en la manufactura del vidrio. El óxido estánnico forma parte de los colorantes y de cuerpos refractarios y dieléctricos, así como para pulir el mármol. También existe el tributilestaño, que se empleaba como biocida en pinturas para embarcaciones. Más tarde, se prohibió por la CE debido a su elevada toxicidad para los organismos acuáticos y por si persistente y bioacumulación que podían en estos (Colaboradores de Wikipedia, 2016).

1.3.8. Sustancias tóxicas y bioacumulables

Los contaminantes orgánicos persistentes (COP) son sustancias químicas que actúan negativamente en la salud humana y en el medio ambiente debido a las siguientes causas:

- Son resistentes a la degradación, por ello permanecen en el medio ambiente.
- Son bioacumulables, por lo que se introducen en el interior de los tejidos de los seres vivos, aumentando la concentración de la sustancia con el tiempo.
- Pueden transportarse a larga distancia sin degradarse y sin perder su toxicidad hasta regiones que no se habían producido.

Firmado en mayo de 2001 y en vigor desde el 17 de mayo de 2004, el Convenio de Estocolmo sobre Contaminantes Orgánicos Persistentes del PNUMA, se puso en marcha para proteger la salud humana y el medio ambiente, reduciendo o eliminando la producción de estos contaminantes para garantizar un futuro sin COP (Mapama, 2017).
1.4. Procesos de oxidación avanzada

La gran preocupación por los temas relacionados con la contaminación de los seres humanos y del medio ambiente, han dado lugar a la búsqueda de métodos más eficientes para la eliminación de sustancias contaminantes (CE) generadas por la actividad industrial. Entre una gran variedad de procesos, se encuentra la utilización de la radiación solar como fuente para el desarrollo de procesos químicos para oxidar los contaminantes. Se basa en la utilización de la luz solar o fuentes luminosas para la eliminación de compuestos orgánicos presentes en los efluentes líquidos o en suelos contaminados.

Existen dos métodos que utilizan la radiación solar:

1. La utilizan como fuente de calor para la oxidación térmica de los contaminantes. Para este método se requieren grandes dispositivos que concentren la luz solar para alcanzar elevadas temperaturas.

2. La utilizan como luz UV-visible para la oxidación fotoquímica de los contaminantes. No se necesitan estos grandes dispositivos como en la oxidación térmica, ya que este método comprende un proceso de oxidación avanzada donde se generan especies fuertemente oxidantes capaces de oxidar los compuestos orgánicos no biodegradables y convertirlos en compuestos inorgánicos e inocuos.

Este segundo método es el más utilizado y en los últimos años se ha disparado el número de publicaciones científicas que se han realizado de los procesos de oxidación avanzada, debido a su efectividad.

De forma más técnica, los procesos de oxidación avanzada (AOP), se definen como aquellos procesos fotoquímicos capaces de ocasionar fuertes cambios en la estructura de los contaminantes. Mediante estos procesos, se consigue la eliminación de los contaminantes disueltos en un agua y la generación de especies transitorias poderosas, principalmente el radical hidroxilo (OH\(^-\)) (Gomis J, 2015).
1.4.1. Clasificación de los procesos de oxidación avanzada

Existen una gran cantidad de procesos de oxidación avanzada, ya que existen muchas combinaciones entre los procesos generales de oxidación avanzada (tabla 1.4.1.1). En este caso, se ha clasificado en función de la participación de la luz en el proceso.

<table>
<thead>
<tr>
<th>Procesos no fotoquímicos</th>
<th>Procesos fotoquímicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozonización</td>
<td>Ultravioleta de vacío</td>
</tr>
<tr>
<td>Ozonización con H₂O₂</td>
<td>UV / H₂O₂</td>
</tr>
<tr>
<td>Procesos Fenton (Fe²⁺ / H₂O₂ y relacionados)</td>
<td>UV / O₃</td>
</tr>
<tr>
<td>Oxidación electroquímica</td>
<td>UV / H₂O₂ / O₃</td>
</tr>
<tr>
<td>Radiólisis y tratamiento con haces de electrones</td>
<td>Fotocatálisis homogénea (Foto-Fenton)</td>
</tr>
<tr>
<td>Plasma no térmico</td>
<td>Mecanismo de fotocatálisis con TiO₂</td>
</tr>
<tr>
<td>Oxidación en agua sub y supercrítica</td>
<td></td>
</tr>
</tbody>
</table>
1.4.1.1 Procesos no fotoquímicos

Los procesos de oxidación avanzada no fotoquímicos son aquellos que originan especies muy reactivas, como el radical hidroxilo. Estos radicales se producen por la transformación de especies químicas o mediante la utilización de fuentes de energía (no luminosa).

- **Ozonización**: Se define como el proceso de oxidación que genera un elevado número de radicales hidroxilo que tienen como función, interaccionar con los compuestos orgánicos del medio. En este proceso intervienen dos mecanismos:
 1. **Reacción directa donde el ozono disuelto es el agente oxidante principal**
 \[O_3 + \text{sustrato} \rightarrow \text{productos de oxidación} \]
 Ec.- 1.4.1.1.1
 2. **Reacción indirecta en la que se generan especies reactivas (OH-), cuando el ozono reacciona en medio acuoso**
 \[O_3 + H_2O \rightarrow 2 OH\cdot + O_2 \]
 Ec.- 1.4.1.1.2

La vía predominante dependerá del pH de la disolución a tratar. A pH < 4 predominará la vía directa, mientras que a pH > 9 prevalecerá la ozonización indirecta (Carolina A, 2014).

- **Ozonización con H\textsubscript{2}O\textsubscript{2}**: Se realiza en medio alcalino para mejorar la velocidad de descomposición del ozono y de esta manera aumentar la velocidad de formación de radicales hidroxilo (Carolina A, 2014).

- **Procesos Fenton (Fe2+ / H\textsubscript{2}O\textsubscript{2})**: Es uno de los métodos más económicos y efectivos, que consiste en la adición de sales de Fe2+ en medio ácido para producir la descomposición catalítica del peróxido en radicales OH-. Estos radicales, son los que se encargan de oxidar la materia orgánica y compuestos inorgánicos presentes en el medio (Carolina A, 2014).

- **Oxidación electroquímica**: Clasificado como proceso avanzado de oxidación debido a que los electrones se transfieren al compuesto orgánico mediante la actuación de los radicales hidroxilo. La principal ventaja es que evita la introducción de reactivos en disolución, ya que no produce radicales hidroxilo; en su lugar, lo que oxida la materia orgánica son unos oxidantes moleculares que se generan electroquímicamente en
los cátodos, produciendo peróxido de hidrogeno a partir del O₂ disuelto en el agua (Carolina A, 2014).

- **Radiólisis y tratamiento con haces de electrones**: Proceso dirigido para el tratamiento de compuestos orgánicos volátiles (VOCs) y semivolátiles (SVOCs), presentes en aguas residuales, potables, etc. Se utilizan cuando los radicales hidroxilo no son lo suficientemente fuertes para eliminar estos compuestos. La única desventaja que existe en este método es que, si se trabaja con dosis bajas, se pueden formar aldehídos, ácidos orgánicos o SVOCs resistentes, compuestos que pueden interferir en el experimento y variar el pH de la disolución (Carolina A, 2014).

- **Plasma no térmico**: Se trata de una tecnología emergente que consiste en la eliminación de diferentes tipos de compuestos como los compuestos orgánicos volátiles (VOCs), olores, materiales orgánicos clorofluorcarburos (CFC) y los gases de combustión (NOx y SOx). La tecnología consiste en la creación de un medio ionizado mediante el establecimiento de un campo eléctrico impulsado a través de los gases a tratar. Un plasma no térmico es un gas parcialmente no ionizado en el cual la energía de los electrones es considerablemente mayor que la de los iones y moléculas del gas, a temperatura y presión ambiente (Carolina A, 2014).

- **Oxidación en agua subcrítica u Oxidación con aire húmedo**: Consiste en la mezcla de agua residual con aire a presión y temperatura elevada para producir la degradación en la fase líquida. También se puede emplear un catalizador, rebajando la temperatura de entre 120ºC y 310ºC hasta 15ºC y 60ºC, manteniendo la presión a la de la saturación del agua (Carolina A, 2014).

- **Oxidación con agua supercritica o método OXAS**: Aprovecha las propiedades únicas del agua y es aplicable por encima de su punto crítico, a una temperatura de 374ºC y una presión de 22,1 MPa. Presenta ventajas como el tamaño contacto, costo competitivo, altas eficiencias de destrucción para los gases de combustión (NOx y SOx). Presenta una eficiencia de oxidación del 99,99% (entre 5 y 60 segundos). Como
desventajas en este proceso, tenemos las condiciones severas de operación y la posible formación de compuestos tóxicos como los dibenzofuranos y dioxinas (Carolina A, 2014).

1.4.1.2 Procesos fotoquímicos

Estos procesos se basan en la acción de la radiación solar sobre un fotocatalizador (sistema sensible a los fotones). Cuando la disolución está foto estimulada, se produce la reacción química de degradación de las sustancias contaminantes.

Algunas de las ventajas de los procesos fotoquímicos frente a los no fotoquímicos son:

- No es necesario la adición de una sustancia química para eliminar los contaminantes de un agua. Este proceso se emplea para compuestos que reaccionan lentamente con OH⁻.
- Evita la utilización del ozono, reduciendo de este modo los costos, riesgos para la salud y preocupaciones medioambientales.
- No se producen cambios drásticos del pH, ya que no se trabaja con ozono.
- Aumenta la velocidad de reacción con respecto a los procesos no fotoquímicos y la alta flexibilidad del sistema con el uso de gran variedad de oxidantes.
- Se generan OH⁻ con menor consumo de potencia, con lo que se reducen los costos de operación (Carolina A, 2014).

A continuación, se explican brevemente los procesos fotoquímicos más utilizados:

- **Ultravioleta de vacío**: En este proceso se aprovecha la irradiación de onda por debajo de los 190 nm, utilizando para ello lámparas de Xenón con una longitud de onda de 172 nm. A esta longitud de onda se produce la degradación de la materia orgánica y a su vez, también se produce la fotolisis del agua, con lo que se producen radicales hidroxilo y átomos de hidrógeno. Comúnmente, se utiliza para la degradación de contaminantes en aguas para la obtención de agua ultrapura y para el tratamiento de compuestos clorados y fluorados (Carolina A, 2014).
• **UV / H_2O_2:** Implica la formación de radicales hidroxilo por fotólisis del peróxido de hidrógeno y sus consiguientes reacciones de propagación. El mecanismo consiste en la ruptura homolítica de enlace O-O debido a la acción ultravioleta para formar los radicales hidroxilo. A continuación de muestra la reacción que se produce con el peróxido de hidrógeno y la radiación solar (Carolina A, 2014):

$$ H_2O_2 + h\nu \rightarrow 2 OH \cdot $$ \hspace{1cm} \text{Ec.- 1.4.1.2.1}

• **UV / O_3:** El ozono potencia su actividad cuando se le aplica una radiación UV, normalmente de 254 nm. Con esto, el ozono se descompone a través de una secuencia de reacciones que producen finalmente radicales hidroxilo.

$$ H_2O + O_3 + h\nu \rightarrow H_2O_2 + O_2 $$ \hspace{1cm} \text{Ec.- 1.4.1.2.2}

De este modo, el peróxido de hidrógeno a su vez reacciona con la luz ultravioleta para formar los radicales hidroxilo necesarios para la eliminación de los contaminantes en un agua.

Estos procesos se emplean en la potabilización de aguas y en el tratamiento de aguas de las industrias aceituneras, textil, papelera, etc (Carolina A, 2014).

• **UV / H_2O_2 / O_3:** La combinación de los tres oxidantes a la vez, aceleran considerablemente la reacción entre el O_3 y el H_2O_2.

$$ O_3 + H_2O_2 \rightarrow 2 OH \cdot + O_2 + HO_2 \cdot $$ \hspace{1cm} \text{Ec.- 1.4.1.2.3}

La adición de la luz al proceso, incrementará la eficiencia. Este proceso se emplea para la potabilización de aguas con alta contaminación, en desinfección y decoloración de aguas de la industria del papel o incluso en la degradación de hidrocarburos alifáticos clorados.

El uso del ozono, incrementa siempre los costos de capital y equipamiento adicional para la destrucción del mismo, así como los problemas de seguridad y de salud (Carolina A, 2014).

1.4.1.3 Fotocatálisis solar

La fotocatálisis solar, permite aprovechar directamente la energía solar procedente de la superficie terrestre, ocasionando la aceleración de una reacción
fotoquímica, con la presencia de un catalizador, que darán lugar a la eliminación de la materia orgánica y los metales pesados disueltos en las aguas residuales. El contaminante, por sí solo, no es capaz de capturar los fotones. Para ello, se necesita un sensibilizador que absorba la energía radiante y que actúe como catalizador para la reacción de oxidación del contaminante. La aplicación de la radiación solar en los procesos fotoquímicos, solo es posible con la utilización de cationes hierro o dióxido de titanio (catálisis homogénea o heterogénea, respectivamente) (Carolina A, 2014).

- **Fotocatálisis homogénea (Foto-Fenton):** Se basa en el proceso Fenton, al cual se le aumenta su eficiencia empleando la iluminación, que produce la fotólisis de hidroxocomplejos de Fe$^{3+}$.

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{OH} \cdot \\
\text{Fe(OH)}^{2+} + \nu \rightarrow \text{Fe}^{2+} + \text{OH} \cdot
\]

Ec. - 1.4.1.3.1

Ec. - 1.4.1.3.2

El Fe$^{2+}$ fotogenerado, produce radicales OH· adicionales. El proceso es catalítico debido a que, después la oxidación del Fe$^{2+}$ en Fe$^{3+}$, se reduce otra vez a Fe$^{2+}$ por acción de la radiación.

Parámetros que influyen en el proceso Foto-Fenton:

- **Efecto del pH:** La actividad catalítica máxima en los procesos Fenton y Foto-Fenton es a un pH 2.8. A pH mayores de 4, la degradación disminuye considerablemente, apareciendo precipitados de hídronígo de hierro y disminuyendo la cantidad de Fe$^{2+}$.

- **Influencia de la concentración inicial de peróxido de hídronígo:** La velocidad de degradación aumenta con la cantidad de peróxido de hídronígo, debido a la mayor producción de radicales hidroxilo. A partir de una determinada concentración de peróxido, este puede descomponerse en oxígeno y agua.

- **Efecto de la cantidad de sal de hierro:** Al igual que lo que ocurre con el peróxido, la velocidad de degradación aumenta con la cantidad de sal empleada, pero a partir de una determinada cantidad de hierro, disminuye la eficiencia de la reacción. Esta disminución podría deberse al aumento de la turbidez que impida la absorción de la luz o a la reacción del Fe$^{2+}$ con los radicales hidroxilo del medio (Carolina A, 2014).
• **Mecanismo de fotocatálisis con TiO$_2$:** El dióxido de titanio es un producto que se utiliza como pigmento, bloqueador solar, como rellenable en comprimidos vitamínicos... El TiO$_2$ se puede encontrar en tres formas cristalinas: anastasa, rutilo y broquita.

El dióxido de titanio utilizado en fotocatálisis es el Degussa P-25, con un área superficial específica de 50 ± 15 m2 g$^{-1}$ y un diámetro medio de partícula de 21 nm. El 90% del material se encuentra formando agregados complejos de 0,1 μm de diámetro. Los potenciales de banda de valencia y de conducción del Degussa P-25, varían entre +2,9 y -0,3 V, respectivamente, a pH0. La adición de H$_2$O$_2$ aumenta considerablemente la velocidad de fotodegradación (aumento de OH$^-$) (Carolina A, 2014).
2) Objetivos

El objetivo general de este trabajo final de grado es la eliminación de un contaminante presente en el agua natural, en este caso el tiabendazol (TBZ). Para ello se plantea:

➢ Estudiar la posibilidad de introducir un proceso de membranas de ultrafiltración, para concentrar el contaminante y disminuir la superficie de trabajo de eliminación de éste, en una planta de fotolisis.

➢ Implementar un proceso Foto-Fenton en condiciones de pH más suaves, utilizando para ello las sustancias húmicas (SBO) como auxiliares químicos, para eliminar el contaminante de la disolución concentrada producida por la planta de ultrafiltración.

Para desarrollar el objetivo general de este trabajo final de grado se plantean los siguientes objetivos específicos:

- Determinar la mejor manera para disolver el TBZ en agua, debido a su baja solubilidad.
- Estudiar el aumento de la concentración del contaminante en el retentato en la planta de ultrafiltración.
- Determinar y estudiar la variación del flux en el módulo de ultrafiltración, para realizar el escalado de la planta.
- Determinar y estudiar la variación de la concentración y de la radiación acumulada, para elaborar el escalado de la planta de fotolisis.
3) Metodología Experimental

3.1. Reactivos
3.1.1. Contaminantes emergentes

En la realización del trabajo final de grado se ha empleado un único contaminante emergente. Se trata del Tiabendazol, un contaminante emergente de la familia de los fitosanitarios, utilizado como fungicida para las frutas y como conservante en la industria alimentaria, con el código E-233. El TBZ utilizado en el laboratorio proviene de la marca sigma y presenta una pureza del 99%. El bote es de 100 gramos y se muestra a continuación:

![Imagen del bote de Tiabendazol utilizado en el laboratorio](image)

Figura 3.1.1 – Imagen del bote de Tiabendazol utilizado en el laboratorio

Las propiedades básicas proporcionados por marca sigma son las siguientes:
Tabla 3.1.1 – Propiedades básicas del Tiabendazol utilizado en el laboratorio (SIGMA-ALDRICH, 2017)

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Clave del producto</th>
<th>WJCNZQLZVWNLKY-UHFFFAOYSA -N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo</td>
<td>≥ 99 %</td>
<td></td>
</tr>
<tr>
<td>Forma</td>
<td>Polvo</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Blanco</td>
<td></td>
</tr>
<tr>
<td>Solubilidad</td>
<td>DMF: soluble 50 mg/ml</td>
<td></td>
</tr>
<tr>
<td>Modo de acción</td>
<td>Inhibición de enzimas</td>
<td></td>
</tr>
<tr>
<td>Espectro de actividad antibiótica</td>
<td>Hongos y parásitos</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2. Sustancias bio-orgánicas

Las sustancias solubles bio-orgánicas (SBO) provienen de unos estudios realizados en Torino (Italia), que tenían como objetivo obtener productos de alto valor a partir de residuos urbanos. Estas sustancias provienen de la fracción húmeda de los residuos urbanos, con una composición característica como es la mezcla de macromoléculas con tamaños de partícula que varían entre 67 y 463 kg/mol. Estos compuestos se han utilizado para diversas aplicaciones como son: agentes surfactantes, materiales nanoestructurados, tratamientos de descontaminación de suelos, emulsionantes, etc. (Gomis J, 2015)

La composición química de los SBO, presentan una similitud con una materia natural orgánica (NOM) y en sucesivos estudios se ha podido demostrar su utilidad como fotosensibilizadores para la degradación de ácidos sulfónicos aromáticos. Las sustancias bio-orgánicas utilizadas en el laboratorio corresponden con unos residuos de jardinería que se mantuvieron en pilas de aireación durante 230 días (CVT230). (Gomis J, 2015)

La obtención de las SBO se obtuvo en una planta piloto (figura 3.1.2.1), propiedad de la empresa Studio Chiono & Associati en Rivarolo Canavase, Italia. La planta piloto presenta un reactor cilíndrico de 500 L (102 cm de longitud y 10,1 cm de diámetro) y provista de:

- Agitación mecánica
Calentamiento eléctrico
Membrana de ultrafiltración
Horno de secado con ventilación forzada

El diagrama de procesos para la obtención de las SBO se muestra en la figura 3.1.2.2. En primer lugar, se cargó el reactor con 300 L de una solución acuosa de KOH y 75 kg de biomasa sólida, con agitación a 65°C y un pH de 13. Tras 4 horas, se dejó reposar toda la noche. Del sobrenadante, se eliminó la fracción insoluble (aluminosilicatos). La fase líquida, se pasó por membranas de ultrafiltración, con un caudal de 40 L/h\(^{-1}\) y un flujo tangencial de 7 bar a la entrada y 4,5 bar a la salida, obteniendo un retenido de 5 – 10% de materia húmeda. Esta materia húmeda, se secó a 60°C. Por último, se obtuvo unas SBO sólidas con un rendimiento de 15 – 30% p/p, en relación entre materia inicial y materia seca (Gomis J, 2015).
3.1.3. Otros reactivos

El resto de reactivos empleados durante el presente trabajo, se muestran en la siguiente tabla (tabla 3.1.3.1). En esta tabla se indicará el producto utilizado, la fórmula química que tiene, su procedencia comercial, la riqueza que presenta y donde se ha empleado.

Tabla 3.1.3 – Reactivos secundarios empleados en el trabajo

<table>
<thead>
<tr>
<th>Producto</th>
<th>Fórmula química</th>
<th>Procedencia</th>
<th>Riqueza</th>
<th>Empleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrilo</td>
<td>CH₃CN</td>
<td>Panreac</td>
<td>Grado cromatográfico</td>
<td>UHPLC</td>
</tr>
<tr>
<td>Metanol</td>
<td>CH₃OH</td>
<td>Panreac</td>
<td>Grado cromatográfico</td>
<td></td>
</tr>
<tr>
<td>Ácido fórmico</td>
<td>HCOOH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución estándar de pH 4,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución estándar de pH 7,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disolución estándar de pH 9,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua ultrapura</td>
<td>H₂O</td>
<td>Millipore</td>
<td>4 ppb</td>
<td>Disolvente</td>
</tr>
<tr>
<td>Ácido sulfúrico</td>
<td>H₂SO₄</td>
<td>Panreac</td>
<td>96 % (Joan Roget, 2014)</td>
<td>Ajuste pH</td>
</tr>
<tr>
<td>Hidróxido sódico</td>
<td>NaOH</td>
<td>Scharlab</td>
<td>98,5 %</td>
<td></td>
</tr>
<tr>
<td>Peróxido de hidrógeno</td>
<td>H₂O₂</td>
<td>Panreac</td>
<td>33 %</td>
<td></td>
</tr>
<tr>
<td>Sulfato de hierro 7-hidratado</td>
<td>FeSO₄·7H₂O</td>
<td>Panreac</td>
<td>99,5 %</td>
<td></td>
</tr>
<tr>
<td>Sulfito sódico</td>
<td>Na₂SO₃</td>
<td>Montplet & Esteban SL</td>
<td>85 – 90%</td>
<td></td>
</tr>
<tr>
<td>Ácido ascórbico</td>
<td>C₆H₈O₆</td>
<td>Panreac</td>
<td>99 %</td>
<td></td>
</tr>
<tr>
<td>O-Fenantrolina</td>
<td>C₁₂H₈N₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampón ac. acético – acetato amónico</td>
<td>CH₃COOH/C₂H₇NO₂</td>
<td></td>
<td></td>
<td>Foto-Fenton</td>
</tr>
<tr>
<td>Metavanadato de amonio</td>
<td>NH₄VO₃</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2. Planta
3.2.1. Planta de ultrafiltración por membranas poliméricas

A continuación, se muestra la imagen (Figura 3.2.1) de la planta de ultrafiltración de membrana polimérica completa:

Figura 3.2.1 – Planta de ultrafiltración de membranas poliméricas

Seguidamente, se explicará de forma más detallada, los equipos utilizados en esta planta de ultrafiltración:

3.2.1.1 Tanque
En el tanque de aproximadamente 15 L, se introducirá la disolución preparada anteriormente (contaminante disuelto en agua y posteriormente, las sustancias húmicas en 10 litros). Éste estará enfriado por una camisa que se encargará de enfriar el tanque a una temperatura de 10ºC.
3.2.1.2 Permeado con balanza
En el permeado, se recogerá el líquido que pase por cada una de las membranas. Se medirá en un periodo de entre 30 y 50 segundos (variando según el experimento realizado) la masa del permeado. El permeado se recogerá en dos vasos separados de 2 L. Se recogerá en dos vasos diferentes, porque cada una de las membranas permeará con diferente flux.

3.2.1.3 Módulo con membranas
El módulo consta de 3 placas de plástico, en los que, entre ellas, se introducirán, por separado, las dos membranas poliméricas. Una vez dispuestas de manera que la capa activa de estas esté en contacto con la disolución a filtrar, se juntarán las 3 placas y se apretarán con los tornillos que se muestran en la figura 3.2.1.3, para evitar cualquier pérdida de líquido o de presión.

Figura 3.2.1.3 – Módulo con membranas de la planta de ultrafiltración de membranas poliméricas
3.2.1.4 Baño termostático
El baño tendrá la función de enfriar la disolución que recorre por toda la planta para mantenerla siempre a la misma temperatura (24ºC) y evitar precipitaciones de los compuestos utilizados.

3.2.1.5 Caudalímetro
Con el caudalímetro, se fijará el caudal óptimo para llevar a cabo la ultrafiltración. Se elegirá un caudal de entre 4,5 y 5,0 L/min, ajustándolo para tener la presión de trabajo elegida (2 bar).

3.2.1.6 Bomba
Con esta, se bombeará la disolución al caudal y a la presión necesaria para realizar correctamente la ultrafiltración.
Se trata de una bomba (figura 3.2.1.6), modelo 3CP1241 y de la marca “Cat Pumps” con las siguientes prestaciones:

Figura 3.2.1.6 – Bomba de la planta de ultrafiltración de membranas poliméricas

3.2.1.7 Barómetro
La presión de trabajo será de 2 bar. Esta se ajustará mediante el caudal y potenciómetro ubicado en el módulo electrónico de la planta.

3.2.1.8 Toma de datos
La toma de datos se llevará a cabo mediante un ordenador en el que lleva instalado un programa de Labview, que recoge los datos de masa del permeado cada 30 segundos. Con esto, se estudiará el flux de permeado
y si este disminuye con el paso del tiempo a causa de la formación de torta en la superficie de la membrana.

3.2.1.9 Módulo electrónico
Mediante el módulo electrónico (figura 3.2.1.9), se encenderá la bomba y se ajustará el caudal y la presión de trabajo. Para ello, se utilizará el potenciómetro presente en la parte derecha del módulo.

Figura 3.2.1.9 – Módulo electrónico de la planta de ultrafiltración de membranas poliméricas
3.2.2. Planta de ultrafiltración por membrana cerámica

A continuación, se muestra la imagen de la planta de ultrafiltración de membrana cerámica completa:

Figura 3.2.2.1 - Planta de ultrafiltración de membrana cerámica

Seguidamente, se explicará de forma más detallada, los equipos utilizados en esta planta de ultrafiltración:

3.2.2.1 Tanque
En el tanque de aproximadamente 15 L, se introducirá la disolución preparada anteriormente (contaminante disuelto en agua y las sustancias húmicas en 5 litros). Éste estará enfriado por el baño que se explicará posteriormente.
3.2.2.2 Permeado con báscula
En el permeado, se recogerá el líquido que pase la membrana. Se medirá en un periodo de entre 30 y 50 segundos (variando según el experimento realizado) la masa del permeado. Esto se realiza para obtener el flux que existe en la membrana y estudiar la posible formación de una torta en la membrana.

3.2.2.3 Membrana
La membrana es de cerámica y presentará un poro de 50 Kdalton. Se trata de una membrana diseñada y fabricada por la compañía francesa “Tami Industries”. Esta compañía es experta en el diseño y fabricación de membranas cerámicas industriales para la separación en ultrafiltración fina, ultrafiltración y microfiltración. Proporciona membranas de todos los niveles: desde 1 Kg/mol a 1,4 micras (Tami Industries, 2010).

3.2.2.4 Baño termostático
Con el baño termostático, se enfriará la disolución presente en el tanque a una temperatura de 23ºC, para evitar precipitaciones de los compuestos utilizados. Este enfriador es diferente al utilizado en la anterior planta, ya que está en contacto directo con la disolución (mediante un serpentín metálico).

3.2.2.5 Caudalímetro
Con el caudalímetro, se fijará el caudal óptimo para llevar a cabo la ultrafiltración. Se elegirá un caudal de entre 4,2 y 5,0 L/min, ajustándolo para tener la presión de trabajo elegida (2 bar).

3.2.2.6 Bomba
Con esta, se bombeará la disolución al caudal y a la presión necesaria para realizar correctamente la ultrafiltración. Se trata de una bomba, modelo 3CP1241 y de la marca “Cat Pumps” con las prestaciones indicadas anteriormente en el punto 3.2.1.6.
3.2.2.7 Barómetro
La presión de trabajo será de 2 bar. Ésta se ajustará mediante el caudal y potenciómetro ubicado en el módulo electrónico de la planta.

3.2.2.8 Toma de datos
La toma de datos se llevará a mediante un ordenador en el que lleva instalado un programa de Labview, que recoge los datos de masa del permeado cada 30 segundos. Con esto, se estudiará el flux de permeado y si este disminuye con el paso del tiempo a causa de la formación de torta en la superficie de la membrana.

3.2.2.9 Módulo electrónico
Mediante el módulo electrónico, se enciende la bomba y se ajusta el caudal y la presión de trabajo. Para ello, se ajustará utilizando el potenciómetro que existe en la parte izquierda de este módulo.

Figura 3.2.2.9 – Módulo electrónico de la planta de ultrafiltración de membrana cerámica
Para la realización de los experimentos de fotocatálisis solar, se empleó un equipo comercial ECOSYSTEM, modelo SOLARDETOX ACADUS-2005/0,25. La disolución de impulsa desde un depósito [5] de aproximadamente 5L, hacia el interior de la planta, mediante la acción de una bomba centrífuga [6] PanWorld 5PX-Z con rotor cerrado fabricado de propileno y fibra de vidrio. El volumen mínimo para poner en marcha la planta es de 3,5 litros, para evitar la aparición de burbujas en la planta y que dificulten el ensayo. El volumen máximo es de 5L. La planta está compuesta por 4 tubos cilíndricos de borosilicato [1] de 750 mm de longitud y 32 mm de diámetro. Estos tubos proporcionan un volumen irradiado de 1,8L. En la parte inferior de estos tubos, se disponen los concentradores tipo CPC de aluminio anonizado con 1 sol de concentración y un 30º de inclinación. Presenta una superficie irradiada de 0,257 m2 y trabaja a una temperatura máxima de 55°C. Para medir la radiación recibida, la planta cuenta con un radiómetro ACADUS 85 [3], que se encarga de medir la radiación solar instantánea (W·m2) y la energía acumulada (W·h). Los valores de radiación solar instantánea y energía acumulada, los proporciona un cuadro de mandos [4] ubicado en la parte trasera de la planta (Gomis J, 2015).

3.3. Condiciones de ensayo
3.3.1. Ensayos realizados en las plantas de ultrafiltración

La concentración del contaminante (TBZ) para las dos plantas de ultrafiltración fue de 20 mg/L. En la planta de membranas poliméricas se preparaban 10 litros, mientras que, en la planta de membrana cerámica, se empleaban 5L. Las disoluciones se preparaban en 2 vasos de precipitados de 5L para la primera planta y en un vaso de precipitados de 5L para la segunda. El agua ultrapura utilizada para las disoluciones, presenta una concentración 4 ppb de TOC. El pH utilizado para la disolución del TBZ en el agua ultrapura es de 2,8. Una vez disuelto, se aumentaba el pH a 5 y se medía la concentración exacta. A continuación, se le añadía las sustancias húmicas con una concentración de 50 mg/L. En los dos casos, se utilizó una presión de trabajo de 2 bar y un caudal entre 4,5 y 5 L/min. Durante el experimento, se tomaban muestras cada cierto tiempo, para observar las concentraciones, tanto en el permeado, como en el retentato. Al mismo tiempo, también se medía la masa de permeado cada 30 – 50 segundos para estudiar posteriormente el flux existente en las membranas.

3.3.2. Ensayos realizados en la planta piloto

Para la planta piloto, se utilizó la disolución concentrada de la planta de ultrafiltración. Esta presentó una concentración de TBZ de 40 mg/L, en un total de 5 litros. A esta, se le añadió 5 mg/L de Fe(II). La concentración inicial de H₂O₂ que se le añadió a la disolución, fue de 500 mg/L. A lo largo del experimento, se estuvo comprobando la concentración de peróxido de hidrogeno para que no bajara de 200 mg/L.
3.4. Equipos de análisis y técnicas analíticas

3.4.1. Cromatógrafo líquido de ultra alta resolución

Las concentraciones del compuesto emergente utilizado en este trabajo (TBZ) se han determinado por cromatografía líquida de ultra alta resolución (UHPLC). El cromatógrafo empleado ha sido el modelo Flexar UHPLC FX-10 (figura 3.4.1) de la marca PERKIN-ELMER (PerkinElmer, 2017).

Figura 3.4.1 – Equipo de Cromatografía de Ultra Alta Resolución (UHPLC)

El UHPLC es una técnica usada para separar diferentes constituyentes de un compuesto. Se utiliza preferentemente para identificar, cuantificar y separar componentes de una mezcla, usando alta presión para empujar los solventes a través de una columna. Una de las diferencias entre el UHPLC y el HPLC es que, en este primero, se pueden usar tamaños de partículas menores a 2 μm, mientras que en el HPLC está limitado a 5 μm. Debido al menor tamaño de partículas que se introducen en el UHPLC, en éste se requieren presiones de
GRADO EN INGENIERÍA QUÍMICA

bomba más altas (100 MPa, frente a los 40 MPa que se emplean en el HPLC). Por ello, la técnica del UHPLC es mucho más eficiente con un análisis rápido y presenta una resolución más alta.

El equipo utilizado en el laboratorio, se trata de una columna Brownlee Analytical DB C18 1,9 μm 30x2,1 mm termostatizada. Este cromatógrafo, consta de un automuestreador S200 Autosampler Comm Kit-1922 PUS, con control de temperatura. A su vez, contiene también dos bombas independientes (Flexar FX 10 UHP PUMP), un desgasificador de eluyentes de 3 canales FL y un detector de UV (UV/VIS KIT – UHPLC Detector Tubing).

Para medir la concentración de los contaminantes, se utilizaron filtros de membrana de politetrafluoroetileno, con un tamaño de poro 0,45 μm. Se filtraron para eliminar cualquier partícula que dañara el cromatógrafo.

La longitud de onda de detección y el tiempo de retención del TBZ (tabla 3.4.1), para el UHPLC, son:

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Longitud de onda (nm)</th>
<th>Tiempo de retención (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiabendazol</td>
<td>300</td>
<td>3,050</td>
</tr>
</tbody>
</table>

3.4.2. Analizador de Carbono Orgánico Disuelto

Para determinar el Carbono Orgánico Disuelto en el laboratorio, se utilizó un equipo de la marca Shimadzu, modelo TOC-VCSH (figura 3.4.2), equipado con un automuestreador modelo ASIV-V. Con este equipo, se cuantificará la materia orgánica presente en una muestra líquida y determinar, la mineralización de las muestras, después de aplicar el tratamiento. (Gomis J, 2015)

Este equipo proporciona, por una parte, el Carbono Total (CT) y, por otra parte, el Carbono Inorgánico Total (CIT) en la muestra. El Carbono Orgánico Total (COT) se obtendrá de la diferencia del CT y el CIT.
Figura 3.4.2 – Equipo de análisis del Carbono Orgánico Total

Para la determinación del CT, el equipo trabaja por combustión de las muestras (680°C), empleando un catalizador de platino soportado en esferas de alúmina. Con esta combustión, se produce CO₂ el cual será medido posteriormente mediante un detector de infrarrojo no dispersivo (NDIR). Este detector generará un pico cuya área será proporcional a la cantidad de carbono presente en la muestra. (Gomis J, 2015)

Para la medición del carbono inorgánico (CI), se introduce la muestra en un recipiente en el que se burbujea ácido fosfórico (25% p/v) al aire. A continuación, se produce la descomposición de los carbonatos y bicarbonatos, que generan CO₂, procesado por el NDIR (igual que en el CT).
3.4.3. Espectrofotometría UV-Visible

Se empleó un espectrofotómetro UV-Visible de la marca Cecil modelo 1000 Series (figura 3.5.3). El equipo presenta una única lámpara de deutério-tungsteno.

Figura 3.4.3 – Equipo de espectrofotometría UV-Visible
3.5. Otros equipos

3.5.1. Sistema de purificación de agua Milli.Q

El sistema de purificación de agua empleada para disolver el contaminante es de la marca comercial MERCK y se muestra en la figura 3.5.1. Se trata de un sistema Milli.Q Advantage diseñado para suministrar agua ultrapura de gran calidad adaptada a los requisitos de cada usuario en el entorno actual de laboratorio (Merck, 2017).

Figura 3.5.1 – Sistema de purificación de agua Milli.Q® Advantage A10

El sistema consta de dos componentes independientes y distintos: la unidad de producción de agua Milli.Q (1), que es un sistema compacto fácil de colocar encima o debajo de la mesa y una unidad Q-POD (2) (Quality-Point-of-Delivery:...
GRADO EN INGENIERÍA QUÍMICA

Calidad-Punto de Suministro) que se encarga de proporcionar la filtración final, aportando un agua ultrapura calidad excelente (Merck, 2017). El agua ultrapura que proporciona el sistema de purificación se muestra en la tabla 3.5.1.

Tabla 3.5.1 – Calidad del agua Milli-Q® proporcionada por el sistema de purificación (Merck, 2017)

<table>
<thead>
<tr>
<th>Información del producto</th>
<th>Partículas</th>
<th>< 1 unidad/ml (se eliminan partículas > 0,22 μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del agua</td>
<td>Tipo 1</td>
<td></td>
</tr>
<tr>
<td>Información biológica</td>
<td>DNasa</td>
<td>< 5 pg/ml (con filtro Biopak®)</td>
</tr>
<tr>
<td></td>
<td>Microorganismos</td>
<td>< 0,1 UFC/ml (con filtros de punto de uso Millipak® o Biopak®)</td>
</tr>
<tr>
<td></td>
<td>Lipopolisacáridos bacterianos</td>
<td>< 0,001 UE/ml (con filtro Biopak®)</td>
</tr>
<tr>
<td></td>
<td>RNasa</td>
<td>< 1 pg/ml (con filtro Biopak®)</td>
</tr>
<tr>
<td>Información fisicoquímica</td>
<td>Conductividad (μS/cm)</td>
<td>0,056 μS/cm</td>
</tr>
<tr>
<td></td>
<td>Resistividad del agua producida @ 25°C</td>
<td>18,2 MΩ·cm</td>
</tr>
<tr>
<td></td>
<td>TOC del agua producida</td>
<td>< 5 ppb</td>
</tr>
<tr>
<td></td>
<td>Voltaje</td>
<td>100 – 250 V / 50 – 60 Hz</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>Altura</td>
<td>49,7 cm</td>
</tr>
<tr>
<td></td>
<td>Anchura</td>
<td>33,2 cm</td>
</tr>
<tr>
<td></td>
<td>Profundidad</td>
<td>36 cm</td>
</tr>
<tr>
<td></td>
<td>Peso en funcionamiento</td>
<td>19 kg</td>
</tr>
<tr>
<td></td>
<td>Suministro de agua (l/min)</td>
<td>Hasta 2 l/min</td>
</tr>
</tbody>
</table>
3.5.2. **Balanza analítica**

Para realizar el pesado del contaminante (TBZ) y de las sustancias húmicas, se utilizó una balanza analítica de la marca SARTORIUS (figura 3.5.2). La balanza presenta una sensibilidad de 0,1 mg y su valor máximo de pesada es de 200 g.

![Figura 3.5.2 – Balanza analítica](image)

3.5.3. **Ultrasonidos**

El baño de ultrasonidos proviene de la marca comercial Bandelin electronic, modelo RK 514. Presenta una tensión de red de 230 V, una intensidad de corriente de 1 A, una potencia de entre 215 y 860 W y una frecuencia de 25 kHz.

![Figura 3.5.3 – Baño de ultrasonidos](image)
3.5.4. pH-metro

Para realizar las mediciones de pH de las disoluciones empleadas en este trabajo, se ha utilizado el pH-metro modelo pH meter BASIC 20+ de la casa comercial Crison (figura 3.5.4).

Figura 3.5.4 – pH-metro
3.6. Métodos de análisis

3.6.1. Método para la medición de la concentración del contaminante

La medición de la concentración del contaminante en este trabajo se realizará con el cromatógrafo líquido de ultra alta resolución. Se ha medido la concentración en muchas ocasiones, ya que se tuvo que saber la concentración exacta antes de introducir la disolución en las plantas de ultrafiltración, así como la determinación de las concentraciones del permeado y del retentado, a medida que transcurren los experimentos de ultrafiltración. Una vez obtenidos los 5 litros en el retentado, se determinó la concentración antes de iniciar el método de fotocatálisis solar en la planta piloto y en el transcurso del mismo. Todas las mediciones de concentración que se han realizado en el cromatógrafo, se han filtrado previamente con un filtro de PTFE de 0,45 μm de tamaño de poro. El cromatógrafo, muestra un gráfico, cuya área del pico es proporcional a la cantidad de contaminante presente en la muestra (figura 3.6.1.1).

Figura 3.6.1.1 – Gráfico de la concentración de contaminante proporcionado por el UHPLC
Para la planta de ultrafiltración, se utilizarán 10 viales (figura 3.6.1.2) para el permeado y 10 viales para el retentato, en los siguientes tiempos: Inicial, 0, 5, 10, 20, 30, 60, 90, 120 y 150 minutos.

![Figura 3.6.1.2 – Viales utilizados para la planta de ultrafiltración](image)

Para la planta piloto, se tomarán muestras en 12 viales (figura 3.6.1.3) para los siguientes tiempos: 0, 1, 3, 5, 8, 10, 15, 20, 30, 45, 60 y 90 minutos.

![Figura 3.6.1.3 – Viales utilizados para la planta piloto](image)

Además, estos viales, utilizados para la medición de la concentración del contaminante en la fotocatálisis solar, deben contener 1 ml de metanol para parar la reacción. Posteriormente, se filtrarán y se introducirán en los viales de 2 ml (figura 3.6.1.2) para la posterior medición de la concentración.
3.6.2. Método para la medición de la radiación solar

Para poder medir la radiación UV en los ensayos realizados en la planta piloto de 4L, se empleó un radiómetro modelo ACADUS 85. Mediante este radiómetro, se puede cuantificar la radiación (directa y difusa) que incide en los fotorreactores de la planta. A partir del cuadro de mandos que existe en la planta (figura 3.6.2), podemos obtener el valor de la radiación instantánea (W·m$^{-2}$) y el de la radiación acumulada (W·h). (Gomis J, 2015)

Figura 3.6.2 – Cuadro de mandos de la planta piloto de 4L

Debido a la existencia de una variabilidad intrínseca en la radiación solar, no es posible emplear un parámetro que corrija esta variabilidad para hacer la radiación solar constante. Por ello, existe un parámetro denominado t_{30W}, que se define como el tiempo necesario para alcanzar la radiación acumulada en la zona de muestreo en el que la radiación fuera constante e igual a 30 W·m$^{-2}$. Este parámetro, no corrige esa variabilidad, pero si approxima el valor de la radiación solar a un valor constante (30 W·m$^{-2}$). La ecuación para el parámetro t_{30W} es la siguiente (Ec.- 3.6.2):

$$t_{30W}(\text{min}) = \frac{R_{ac} \cdot 60 \left(\text{min} \cdot \text{h}^{-1}\right) \cdot V_l}{R_m \cdot A \cdot V_T}$$

Ec.- 3.6.2
Donde R_{ac} es la radiación acumulada en W·h; V_i es el volumen irradiado en L;
R_m es la radiación media considerada, en este trabajo 30 W·m$^{-2}$; A es el área irradiada en m2; y V_T es el volumen total tratado en la planta en L (Gomis J, 2015).

3.6.3. Método para la medición Fe$^{2+}$

Para estudiar el comportamiento del hierro durante el experimento de fotocatálisis solar con la planta piloto, utilizaremos el espectrofotómetro UV-Visible, con el que, por medio de las absorbancias medidas, se determinará la concentración de hierro en cada una de las muestras realizadas. Se tomarán 5 muestras a tiempo: 0, 15, 30, 60 y 90 minutos.

Para la medición de Fe$^{2+}$ se emplearán 5 recipientes como el que se muestra en la figura 3.6.3. En el interior de cada uno de los recipientes, se introducirá:

- 1 ml de O-Fenantrolina (1 g/L) que reacciona con el hierro para proporcionar un color rojo-naranja, obedeciendo a la ley de Beer para concentraciones de hierro inferiores a 9 ppm (mg/L) (Gavira J, 2013)
- 1 ml de tampón ácido acético (700 ml) y acetato amónico (250 gr) para mantener el pH en un determinado valor
- Una pequeña cantidad de ácido ascórbico para acidificar la disolución y actúe la O-fenantrolina

![Figura 3.6.3 – Recipiente utilizado para la determinación de Fe$^{2+}$](image-url)
3.6.4. Método para la medición del H$_2$O$_2$

Para observar el comportamiento del peróxido de hidrógeno durante el experimento de fotocatálisis solar con la planta piloto, emplearemos también el espectrofotómetro UV-Visible, al igual que para el hierro. Del mismo modo, se tomarán 5 muestras para la determinación del peróxido de hidrógeno a medida que transcurre el experimento (5, 15, 30, 60 y 90 minutos).

Para la medición del H$_2$O$_2$, se utilizarán los mismos recipientes que en el caso del hierro (figura 3.6.3). En el interior de cada uno de los recipientes, se introducirá:

- 3,97 ml de H$_2$O
- 1,03 ml de Metavanadato de Amonio empleado para la determinación de la concentración de H$_2$O$_2$ residual por espectrofotometría, debido a la gran absorción del peróxido por el ion vanadato en medio ácido (Blanco J, 2009).
- 5 ml de la disolución de TBZ que se está tratando en la planta piloto

3.6.5. Método para la medición del Carbono Orgánico Total

Para estudiar el comportamiento del Carbono Orgánico Total durante el experimento de fotocatálisis solar con la planta piloto, se empleará el Equipo de análisis de Carbono Orgánico Total. Para determinar la concentración TOC, se tomarán 5 muestras a medida que transcurre el experimento (0, 15, 30, 60 y 90 minutos). Como recipientes, se utilizarán los que se observa en la figura 3.6.5. En el interior de cada uno de los recipientes, se introducirá:

- Una pequeña cantidad de sulfito sódico
- Aproximadamente, 18 ml de la disolución que se está tratando en la planta

Figura 3.6.5 – Recipiente utilizado para la determinación del TOC
4) Resultados y discusión

A continuación, se muestran todos los resultados obtenidos en el trabajo.

4.1. Concentración de la disolución de Tiabendazol utilizando una planta de ultrafiltración con membranas poliméricas.

Se trabajó con un volumen de 10 L y con una concentración de 20 mg/L de TBZ o un área en el UHPLC de 2.380.000 mUA/min. También contiene una concentración de SBO de 50 mg/L.

Se llevó a cabo un experimento con una duración de 150 minutos y se obtuvieron los siguientes resultados (Tabla y Figura 4.1.1) en cada una de las básculas que corresponden con cada una de las dos membranas que existen dentro del módulo de ultrafiltración.

Para la primera báscula, que corresponde a la membrana superior del módulo de ultrafiltración (figura 3.2.1.3), se obtuvieron las siguientes concentraciones:

| Tabla 4.1.1 – Resultados de las concentraciones de la membrana 1 |
|----------------------------------|--|--|
| **Báscula 1** | **Tiempo (min)** | **Área** | **Concentración aprox.** |
| Inicial | 2386214,59 | 20 |
| 0 | 6507,35 | 0,05 |
| 5 | 5511 | 0,05 |
| 10 | 0 | 0,00 |
| 20 | 514,74 | 0,00 |
| 30 | 3948,95 | 0,03 |
| 60 | 576,45 | 0,00 |
| 90 | 0 | 0,00 |
| 120 | 2696,82 | 0,02 |
| 150 | 3419,13 | 0,03 |
Figura 4.1.1 – Gráfico de las concentraciones de la membrana 1

<table>
<thead>
<tr>
<th>Concentración media</th>
<th>0,021581779</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje retenido en la membrana 1</td>
<td>99,89%</td>
</tr>
</tbody>
</table>

Para la segunda báscula (Tabla y Figura 4.1.2), que corresponde a la membrana inferior del módulo de ultrafiltración, se obtuvieron las siguientes concentraciones:

Tabla 4.1.2 – Resultados de las concentraciones de la membrana 2

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Área</th>
<th>Concentración aprox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>2386214,59</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>698,06</td>
<td>0,01</td>
</tr>
<tr>
<td>5</td>
<td>2990,49</td>
<td>0,03</td>
</tr>
<tr>
<td>10</td>
<td>6290,12</td>
<td>0,05</td>
</tr>
<tr>
<td>20</td>
<td>403,67</td>
<td>0,00</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>60</td>
<td>662,36</td>
<td>0,01</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>120</td>
<td>4163,03</td>
<td>0,03</td>
</tr>
<tr>
<td>150</td>
<td>479,97</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Figura 4.1.2 – Gráfico de las concentraciones de la membrana 2

<table>
<thead>
<tr>
<th>Concentración media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,014609564</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porcentaje retenido en la membrana 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>99,93%</td>
</tr>
</tbody>
</table>

Por último, se muestran los resultados obtenidos de la medición de las concentraciones del tanque (Tabla y Figura 4.1.3):

Tabla 4.1.3 – Resultados de las concentraciones del Tanque

<table>
<thead>
<tr>
<th>Tanque</th>
<th>Tiempo (min)</th>
<th>Área</th>
<th>Concentración aprox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td></td>
<td>2386214,59</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>2386214,59</td>
<td>20,00</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2426617,776</td>
<td>20,34</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2468412,734</td>
<td>20,69</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2556475,884</td>
<td>21,43</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2651054,983</td>
<td>22,22</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>2982022,732</td>
<td>24,99</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>3407417,664</td>
<td>28,56</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>3974374,734</td>
<td>33,31</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>4767661,518</td>
<td>39,96</td>
</tr>
</tbody>
</table>
Figura 4.1.3 – Gráfico de las concentraciones del Tanque

<table>
<thead>
<tr>
<th>Concentración Final</th>
<th>39,96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración del Tanque</td>
<td>99,80%</td>
</tr>
</tbody>
</table>

Con los resultados mostrados anteriormente en la planta de ultrafiltración de membranas poliméricas, se observa una concentración final de 39,96 mg/L de TBZ o lo que es lo mismo, un concentrado 99,8 % del TBZ en el tanque, con respecto a la concentración inicial.

Del mismo modo, se aprecia una concentración entre el 0.01 y 0.02 mg/L en el permeado de las membranas, con lo obtenemos una retención por parte de la membrana 1 del 99,89 % y un 99,93 % de la membrana 2.

De este modo, se obtiene un concentrado de 5L con una concentración de 40 mg/L de TBZ y 100 mg/L de SBO, listo para ser eliminado mediante fotocatálisis solar.
4.2. Eliminación del contaminante mediante fotocatálisis solar

Con la disolución de 5 L concentrada a 39,96 mg/L de TBZ y 99,9 mg/L SBO aproximadamente, procedente del tanque de la planta de ultrafiltración, se pretende que eliminar el contaminante mediante un proceso de oxidación avanzada.

Para ello, se utilizará la planta piloto de fotocatálisis solar de 4L, explicada en el punto 3.2.3. Una vez realizado el experimento y medidas todas las concentraciones necesarias, se elabora el gráfico de la figura 4.2.1 (TBZ, Fe$^{2+}$, H$_2$O$_2$ y TOC).

![Gráfico 3.6.5 – Fotodegradación del Tiabendazol mediante un proceso foto-Fenton a pH 5. Gráfica de concentración relativa frente a tiempo: \([\text{TBZ}]_0 = 40 \text{ mg·L}^{-1}, [\text{Fe}]_0 = 5 \text{ mg·L}^{-1} y [\text{H}_2\text{O}_2]_0 = 500 \text{ mg·L}^{-1}.\)
En la fotodegradación del Tiabendazol, se observa una clara disminución de la concentración del contaminante a los 32 minutos del experimento o lo que es lo mismo, aproximadamente a los 10 minutos para el T₃₀w.

En el hierro, se observa una disminución, debido principalmente a la oxidación del hierro (Fe²⁺ a Fe³⁺) necesario para la descomposición del peróxido de hidrogeno en radicales hidroxilo (Ec.- 1.4.1.3.1).

En el caso del peróxido de hidrógeno, su concentración debería disminuir, debido a que el hierro provoca la descomposición del peróxido en radicales hidroxilo. Pues bien, la concentración no disminuyó debido a que, cada dos medidas (entre 10 y 15 minutos) se realizaba una medición del peróxido de hidrógeno disuelto y si esta era menor que 200 mg/L, se le añadía la mitad de volumen que el añadido inicialmente. En este caso, se introducían 0,88 ml de H₂O₂. Se llevaron a cabo 3 adiciones de H₂O₂ a los 12, 35 y 48 minutos.

Por último, con referencia al Carbono Orgánico Total, se observa una clara disminución de la concentración hasta los 22,5 minutos (para T₂₅,₄w), debido principalmente a la eliminación del Tiabendazol (C₁₀H₇N₃S) de la disolución tratada. Por eso razón, a medida que se elimina el TBZ, disminuye paralelamente el TOC en la disolución.
4.3. Diseño de una planta de ultrafiltración y de una planta piloto de fotocatálisis solar (foto-Fenton), para el tratamiento de 1 m3.dia$^{-1}$ de agua residual

Actualmente, la industria química y farmacéutica experimentan sus procesos comerciales a escala laboratorio y de planta piloto. Debido al elevado coste que requeriría experimentar con plantas industriales directamente para mejorar un proceso o simplemente la introducción de un nuevo paso en un proceso, es necesario realizar estos cambios o estas mejoras a pequeña escala y posteriormente, aumentar la escala mediante programas software aproximantes, con gran exactitud el gran cambio de un laboratorio a una planta industrial. Aun así, el cambio de escala, comprende una combinación de un gran número de factores físicos y químicos interconectados. La complejidad del escalado aumenta cuanto menor sea el conocimiento sobre el proceso industrial por parte del diseñador.

4.3.1. Diseño de la planta (ultrafiltración y fotocatálisis solar)

Antes de realizar el escalado de la planta de fotocatálisis solar, se debe plantear el diseño de la planta conjunta. El diseño de la planta de ultrafiltración y de fotocatálisis solar (Figura 4.3.1), presentará esta estructura:

1. El agua a tratar, con una concentración de 20 mg/L de Tiabendazol, viajará de la industria hasta el mezclador 1, al cual se le introducirán los siguientes componentes:
 - Las sustancias bio-orgánicas, con una concentración de 50 mg/L, se dosificarán desde un triturador para mejorar su dilución en el mezclador 1.
 - El ácido sulfúrico, utilizado para ajustar el pH a 5 y evitar la precipitación del TBZ en las membranas de la planta de ultrafiltración, ya que al introducir las SBO, el pH aumenta hasta valores de 7 - 9.
2. A continuación, la disolución pasará por la planta de ultrafiltración. La planta estará en continuo funcionamiento y los tanques se vaciarán cada 150 minutos directamente al tanque 2. Por otra parte, el permeado, libre de contaminante, se verterá a la corriente de salida de agua tratada.

3. La disolución concentrada de 40 mg/L de TBZ y 100 mg/L de SBO presente en el tanque 2, se introducirá en el mezclador 2 junto con la adición de una serie de compuestos necesarios para el proceso de fotocatálisis solar:

- Sulfato de hierro heptahidratado, con una concentración de 5 mg/L.
- Peróxido de hidrógeno, con una concentración de 500 mg/L.
- Hidróxido de sodio, para disminuir el pH de la disolución a 5, ya que con la anterior concentración el pH habrá aumentado.

4. Ajustado el pH y con una concentración de hierro y peróxido ideal, se introducen en los módulos de la planta de fotocatálisis solar para eliminar el contaminante.

5. Por último, después de 90 minutos de fotocatálisis, el agua tratada y libre de contaminante se devolverá a la industria, para su posterior uso.
Figura 4.3.1 – Diseño de la planta de ultrafiltración y fotocatálisis solar
4.3.1.1. Dimensiones de los tanques, mezcladores y planta de ultrafiltración

Planta de ultrafiltración
Antes de calcular las dimensiones del tanque 1, se debe calcular el caudal de agua contaminada que proporcionará la industria a la planta de tratamiento (Ec.- 4.3.1.1.1).

\[1 \frac{m^3}{dia} \cdot \frac{1000 \, L}{1 \, m^2} \cdot \frac{1 \, dia}{24 \, h} \cdot \frac{1 \, h}{60 \, min} = 0.6944 \, \frac{L}{h} = 11.57 \, \frac{ml}{s} \]
Ec.- 4.3.1.1.1

Como la planta de ultrafiltración estará en continuo funcionamiento, se debe calcular los ciclos que se pueden llegar a hacer en un día (Ec.- 4.3.1.1.2):

\[Ciclos = 24h \cdot \frac{60 \, min}{1 \, h} \cdot \frac{1 \, ciclo}{150 \, min} = 9.6 \, ciclos \]
Ec.- 4.3.1.1.2

Con este resultado, se llevarán a cabo 9 ciclos y los 90 minutos restantes, se destinarán a realizar 9 limpiezas de 10 minutos cada una.

A continuación, se deben calcular los litros empleados en cada ciclo (Ec.- 4.3.1.1.3):

\[Volumen \, de \, ciclo = 0.6944 \, \frac{L}{min} \cdot (150 \, min + 10 \, min) = 111.1 \, \frac{L}{ciclo} \]
Ec.- 4.3.1.1.3

Tanque 1
Al obtener un volumen de 111,1 L por cada ciclo de UF, el tanque 1, posicionado justo antes de la planta de UF, presentará un volumen de 200 L (mínimo encontrado) y estará en continua agitación. El tanque 1 (Figura 4.3.1.1.1) contará con un pH-metro y con un dosificador de H₂SO₄ para ajustar el pH cuando sea necesario.
Las dimensiones del tanque 1, así como todas sus prestaciones, se muestran en la tabla 4.3.1.1.1:

Tabla 4.3.1.1.1 – Dimensiones y prestaciones del tanque 1

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor y unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen</td>
<td>200 L</td>
</tr>
<tr>
<td>Mezcla de potencia</td>
<td>1,5 kW</td>
</tr>
<tr>
<td>Mezcla de velocidad</td>
<td>10 – 60 rpm</td>
</tr>
<tr>
<td>Potencia homogénea</td>
<td>3 kW</td>
</tr>
</tbody>
</table>

Con el volumen total utilizado en cada ciclo y sabiendo que se produce una concentración del 100% en el tanque de la planta de UF, se producirán 55,55 L de permeado (agua sin contaminante) y 55,55 L en el retentato, que se vaciarán directamente en el tanque 2 una vez que haya terminado el experimento de UF (150 minutos + 10 minutos del lavado).
Tanque 2

Para calcular el volumen del tanque 2, se ha empleado un fichero Excel (ANEXO 1) con el que se ha simulado el aporte y la retirada de concentrado, según sus horas de funcionamiento. En la hoja de cálculo se puede observar el aporte de concentrado de 55,55 L cada 2 horas y 30 minutos, así como el gasto de concentrado por la planta de fotocatálisis de 100 L cada 90 minutos. El experimento de fotocatálisis, se realizará 8 horas al día, entre las 11:00 de la mañana y las 19:00 de la tarde.

Con la tabla del ANEXO 1, se obtiene el volumen del tanque 2 por medio de la diferencia del valor máximo (500 L) y el valor mínimo de volumen (166,7 L). Con ello, obtenemos un volumen de 334 L.

Para este volumen, se ha encontrado un tanque similar con una capacidad de 1000 L (Figura 4.3.1.1.2) y con agitación continua. Se ha escogido este volumen porque se debe tener los 500 L en el tanque para dosificar el hierro y el peróxido de hidrógeno.

Además, en este tanque, se introducirá la cantidad necesaria (punto 4.3.1.3) de sulfato de hierro 7-hidratado y de peróxido de hidrógeno justo antes de iniciar el proceso de fotocatálisis solar.

Figura 4.3.1.1.2 – Tanque 2 para el diseño de la planta
Las dimensiones del tanque 2, así como todas sus prestaciones, se muestran en la tabla 4.3.1.2:

Tabla 4.3.1.2 – Dimensiones y prestaciones del tanque 2

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor y unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen</td>
<td>1000 L</td>
</tr>
<tr>
<td>Dimensión</td>
<td>1060*1220 mm</td>
</tr>
<tr>
<td>Altura</td>
<td>2700 mm</td>
</tr>
<tr>
<td>Capa de aislamiento</td>
<td>60 mm</td>
</tr>
<tr>
<td>Diámetro de entrada y salida</td>
<td>51 mm</td>
</tr>
<tr>
<td>Potencia del motor</td>
<td>1,1 kW</td>
</tr>
<tr>
<td>Velocidad de mezclador</td>
<td>50 rpm</td>
</tr>
</tbody>
</table>

Bombas

En la planta se utilizarán dos tipos de bomba:

- Una única bomba, con un caudal entre 0 y 8 m³/h y una presión de 0 a 100 bar (y otra de reserva) para el bombeo de la disolución desde el tanque 2, pasando por todos los módulos de fotocatálisis solar, hasta la salida de esta planta (Figura 4.3.1.1.3).

- Cuatro bombas con un caudal de hasta 6 m³/h (y una de reserva), para el bombeo de las disoluciones entre los tanques y plantas de ultrafiltración y fotocatálisis (Figura 4.3.1.1.4).
Figura 4.3.1.1.3 – Bomba utilizada en la planta de fotocatálisis

Figura 4.3.1.1.4 – Bombas intermedias para las disoluciones
4.3.1.2. Planta piloto

En primer lugar, para elaborar el escalado de la planta de fotocatálisis solar, debemos tener valores de las dos plantas piloto (4L y 25L). En la Tabla 4.3.1.2, se muestran los valores necesarios para realizar el escalado:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Planta 4L</th>
<th>Planta 25L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de la planta (L)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Superficie útil (m2)</td>
<td>0,257</td>
<td>2,15</td>
</tr>
<tr>
<td>Volumen irradiado (L)</td>
<td>1,8</td>
<td>15,1</td>
</tr>
</tbody>
</table>

La radiación global media en Alcoy es de 4,9 KWh·m$^{-2}$ (Figura 4.3.1.2) (CIEMAT, 2017).

A continuación, se debe calcular la radiación UV-A media en Alcoy, que es aproximadamente el 10% de la global (Aemet, 2006). Con ello, la radiación UV-A que se puede utilizar para la planta de 25L es de 0,49 KWh·m$^{-2}$.
Entonces, la radiación UV-A (Ec.- 4.3.1.2.1) y la energía (Ec.- 4.3.1.2.2) absorbida por la planta será:

\[
Rad (UV - A) \text{ absorbida} = 0.49 \frac{KWh}{m^2} \cdot 2.15 \cdot m^2
\]

\[
= 1.0535 \text{ KWh} \hspace{1cm} \text{Ec.- 4.3.1.2.1}
\]

\[
\text{Energía absorbida} = 1.0535 \text{ KWh} \cdot \frac{1 \frac{kJ}{s}}{1 \text{ KWh}} = 1.0535 \frac{kJ}{s} \cdot h = 1.0535 \frac{kJ}{s} \cdot \frac{3600 s}{1 h} = 3792.6 \text{ KJ} \hspace{1cm} \text{Ec.- 4.3.1.2.2}
\]

Con una simple operación, se calcula la energía absorbida (Ec.- 4.3.1.2.3) para el concentrado de 0,5 m³·dia⁻¹, que se va tratar en la planta de fotocatálisis:

\[
25 L \ll \leftarrow \rightarrow \rightarrow \rightarrow 3792.6 \text{ KJ}
\]

\[
500 L \ll \leftarrow \rightarrow \rightarrow \rightarrow x \text{ KJ}
\]

\[
\text{Energía absorbida} \left(0.5 \frac{m^3}{dia} \right) = \frac{3792.6 \frac{kJ}{L} \cdot 500 L}{25 L} = 75852 \text{ KJ} \hspace{1cm} \text{Ec.- 4.3.1.2.3}
\]

Para calcular el número de módulos necesarios para llevar a cabo el tratamiento de 1 m³·dia⁻¹, se empleará la energía absorbida (KJ) por cada m².

\[
\text{Energía absorbida por m}^2 = 0.49 \frac{KWh}{m^2} \cdot \frac{1 \frac{kJ}{s}}{1 \text{ KWh}} \cdot \frac{3600 s}{1 h} = 1764 \frac{kJ}{m^2} \hspace{1cm} \text{Ec.- 4.3.1.2.4}
\]

Con la energía absorbida para tratar 1 m³·dia⁻¹ (Ec.- 4.3.1.2.3) y la energía absorbida por m² (Ec.- 4.3.1.2.4), se calcula la superficie útil necesaria para tratar este caudal (Ec.- 4.3.1.2.5):

\[
1764 \text{ KJ} \leftarrow \rightarrow \rightarrow \rightarrow 1 \text{ m}^2
\]

\[
75852 \text{ KJ} \leftarrow \rightarrow \rightarrow \rightarrow x \text{ m}^2
\]
Partiendo de la superficie total útil (Ec.- 4.3.1.2.5), para tratar el caudal establecido, se calculan los módulos necesarios a partir de que la superficie útil de un módulo es de 2,15 m2 (Ec.- 4.3.1.2.6).

\[\text{Número de módulos} = \frac{43 \text{ m}^2}{2,15 \text{ m}^2/\text{módulo}} = 20 \text{ módulos} \quad \text{Ec.- 4.3.1.2.6} \]

4.3.1.3. Dosificación de reactivos

En este punto, se calculará la cantidad necesaria que habrá que dosificar los reactivos en los distintos tanques, para que, tanto el proceso de ultrafiltración como el de fotocatálisis, funcionen correctamente.

La dosificación del sulfato de hierro heptahidratado y del peróxido de hidrógeno se realizarán manualmente, ya que se deberán introducir en el tanque 2, antes de iniciar el proceso de fotocatálisis solar.

Por el contrario, para la dosificación de las sustancias húmicas y de los reguladores de pH (H$_2$SO$_4$ y NaOH) se utilizará una maquina automática, porque se realizarán las 24 horas del día.

Dosificación de los reactivos en el tanque 1

SBO

Las sustancias húmicas o bio-orgánicas se introducirán en el tanque 1 de manera automática y con una concentración de 50 mg/L. Como cada ciclo de UF tiene una duración de 150 minutos y 10 minutos de lavado, el tanque 1 irá llenándose continuamente hasta llegar a un volumen de 111,1 L. Con una simple operación (Ec.- 4.3.1.3.1), se puede calcular la cantidad de SBO hay que introducir en el tanque:

\[\text{Cantidad de SBO} = 50 \frac{\text{mg}}{L} \cdot 111,1 \text{ L} = 5,555 \text{ g de SBO} \quad \text{Ec.- 4.3.1.3.1} \]
Esta cantidad, se puede introducir con un único dosificado en cualquier momento de los 160 minutos de llenado del tanque 1 o con un dosificado continuo (Ec.-4.3.1.3.2).

\[
\text{Flujo másico de SBO} = \frac{5555 \text{ mg de SBO}}{150 \text{ min}} = 37,03 \text{ mg de SBO/min} \quad \text{Ec.- 4.3.1.3.2}
\]

\(\text{H}_2\text{SO}_4\)
La dosificación de ácido sulfúrico se realizará automáticamente mediante la utilización de un instrumento conjunto (Figura 4.3.1.3.1) que cuenta con un pH-metro unido a un dosificador, que se encargará de añadir \(\text{H}_2\text{SO}_4\), para mantener el pH a 5 y para evitar la precipitación del Tiabendazol en la membrana de ultrafiltración. La bomba dosificará desde un tanque de 200L, idéntico al tanque 1 (figura 4.3.1.1.1), con una disolución de \(\text{H}_2\text{SO}_4\) 1M.

Figura 4.3.1.3.1 – Controlador/Regulador automático de pH con bomba dosificadora

El tanque de \(\text{H}_2\text{SO}_4\) se llenará a partir de las botellas de ácido sulfúrico concentrado al 96%. A continuación, se calculará los litros necesarios de \(\text{H}_2\text{SO}_4\) para llenar el tanque (Ec.-4.3.1.3.5).

\[
M_1 \cdot V_1 = M_2 \cdot V_2 \quad \text{Ec.- 4.3.1.3.3}
\]

\[
1,84 \frac{\text{kg de } \text{H}_2\text{SO}_4}{\text{l. de } \text{H}_2\text{SO}_4} \cdot \frac{1000 \text{ g}}{1 \text{ kg}} \cdot \frac{1 \text{ mol}}{98,079 \text{ g}} = 18,76 \text{ M} \quad \text{Ec.- 4.3.1.3.4}
\]
La dosificación del hidróxido de sodio se realizará automáticamente mediante la utilización de un instrumento conjunto (Figura 4.3.1.3.1), que cuenta con un pH-metro unido a un dosificador y será el encargado de añadir NaOH, para mantener el pH a 5 y evitar un pH muy ácido (+ de 2,8) para el proceso de fotocatálisis solar. La bomba dosificará desde un tanque de 200L, idéntico al tanque de ácido sulfúrico (figura 4.3.1.1.1), con una disolución de NaOH 1M.
El tanque de NaOH se preparará a partir de los botes de lentejas (más económicos). A continuación, se calcularán el peso máximo de NaOH para llenar el tanque de 200 L (Ec.- 4.3.1.3.6).

\[\text{NaOH} \left(\frac{1 \text{ mol}}{L} \right) \cdot \frac{40 \text{ g de NaOH}}{1 \text{ mol}} \cdot 200 \text{ L} = 8000 \text{ g de NaOH} \quad \text{Ec.- 4.3.1.3.6} \]

Fe
El hierro se dosificará con sulfato de hierro heptahidratado, se realizará manualmente y antes de iniciar la fotocatálisis solar. Como el concentrado debe tener una concentración de 5 mg/L, se calculará la cantidad para un volumen de tratamiento de 500 L (Ec.- 4.3.1.3.7).

\[\text{Cantidad de Fe} = \frac{5 \text{ mg Fe}}{L} \cdot 500 \text{ L} = 2500 \text{ g de Fe} \quad \text{Ec.- 4.3.1.3.7} \]

Debido a que, se utilizará sulfato de hierro en vez de hierro puro, la cantidad de sulfato añadida al tanque, para los 500 L que se tratarán, será de (Ec.- 4.3.1.3.8):

\[\text{Cantidad de sulfato} = 2.5 \frac{\text{g de Fe}}{L} \cdot \frac{278,02 \text{ g de FeSO}_4 \cdot 7\text{H}_2\text{O}}{55,845 \text{ g de Fe}} = 12,45 \text{ g de FeSO}_4 \cdot 7\text{H}_2\text{O} \quad \text{Ec.- 4.3.1.3.8} \]
H₂O₂

La dosificación del peróxido de hidrógeno se realizará en el tanque 2, al igual que el sulfato de hierro. En el caso del peróxido, se llevará a cabo, justo antes de empezar la fotocatálisis (tiempo necesario para que se homogenice en el tanque). Con una concentración de 500 mg/L y partiendo de una disolución de H₂O₂ del 50% (Ec.- 4.3.1.3.9), la cantidad de peróxido que se le introducirá en el tanque 2, será la siguiente (Ec.- 4.3.1.3.10). El peróxido industrial, utilizado para la fotocatálisis, se muestra en la Figura 4.3.1.3.2:

\[
\text{Masa de } H_2O_2 \text{ al } 50\% = 500 \frac{ml \text{ de } H_2O_2}{L} \cdot \frac{1.4 \ g \text{ de } H_2O_2}{1000 \ ml \text{ de } H_2O_2} = 0.7 \ \frac{g \text{ de } H_2O_2}{L} \]
\[
\text{Cantidad de } H_2O_2 \text{ necesaria} = 500 \ \frac{mg \text{ de } H_2O_2}{L} \cdot 500 \ L = 25000 \ \frac{mg \text{ de } H_2O_2}{700 \ mg \text{ de } H_2O_2} = 35,714 \ L \text{ de } H_2O_2 \]

\[\text{Ec.- 4.3.1.3.9} \]
\[\text{Ec.- 4.3.1.3.10} \]

Figura 4.3.1.3.2 – Agua oxigenada 50% de 25 L
4.3.2. Presupuesto para el diseño de la planta de fotocatálisis solar

Para elaborar el presupuesto para el diseño de la planta de fotocatálisis solar, se deben considerar los costes de fabricación de esta planta, así como los costes anuales fijos y variables. Obtenido el coste anual, se podrá obtener el precio por metro cúbico de agua tratada.

* Los costes que aparecen a continuación son estimados y pueden discernir un poco de los existentes en la actualidad.

4.3.2.1. Costes de inversión

En los costes de inversión (Tabla 4.3.2.1.1), se tendrán en cuenta los distintos tanques (mezcladores) empleados para homogeneizar las disoluciones y que los procesos se realicen de la manera correcta. Así mismo, se contabilizarán todas las bombas utilizadas en para transportar el agua por toda la planta y los aparatos de pH-metro más dosificación empleados en los tanques de H₂SO₄ y NaOH. Finalmente, se contabilizará los módulos de la planta de fotocatálisis, así como la bomba utilizada en su bombeo.

Tabla 4.3.2.1.1 – Costes de inversión de la planta de tratamiento de agua residual

<table>
<thead>
<tr>
<th>Costes de Inversión</th>
<th>Elemento</th>
<th>Coste por unidad</th>
<th>Unidades</th>
<th>Coste Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Módulos de fotocatálisis</td>
<td>2.000,00 €</td>
<td>20</td>
<td>40.000,00 €</td>
</tr>
<tr>
<td></td>
<td>Tanque de 200L</td>
<td>1.538,00 €</td>
<td>3</td>
<td>4.614,00 €</td>
</tr>
<tr>
<td></td>
<td>Tanque de 1000 L</td>
<td>2.393,00 €</td>
<td>1</td>
<td>2.393,00 €</td>
</tr>
<tr>
<td></td>
<td>Medidor y dosificador</td>
<td>221,40 €</td>
<td>2</td>
<td>442,80 €</td>
</tr>
<tr>
<td></td>
<td>Bomba fotocatálisis</td>
<td>750,00 €</td>
<td>2</td>
<td>1.500,00 €</td>
</tr>
<tr>
<td></td>
<td>Bombas de transporte</td>
<td>180,00 €</td>
<td>5</td>
<td>900,00 €</td>
</tr>
<tr>
<td></td>
<td>Costes de Inversión Totales</td>
<td>49.849,80 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El tiempo de amortización elegido será de 10 años y presentará un interés del 6%.

Tabla 4.3.2.1.2 – Coste anual de amortización

<table>
<thead>
<tr>
<th>Amortización</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de vida (años)</td>
<td>10</td>
</tr>
<tr>
<td>Interés (%)</td>
<td>6%</td>
</tr>
<tr>
<td>((1+i)^n)</td>
<td>1,7908</td>
</tr>
</tbody>
</table>

Factor de capital de recuperación
\[\frac{[(1+i)^n - 1]}{[i·(1+i)^n]} \]

| Coste anual amortizado | 6.772,99 € |

4.3.2.2. Costes de explotación

En los costes de explotación, se tendrán en cuenta todos aquellos costos sobre actividades que no están conectadas directamente con la actividad primaria del negocio, es decir, todos aquellos costes que aumentan con la producción. Dentro de los costes de explotación, existe una clasificación entre los costes fijos y los variables.

Los costes fijos son aquellos que se pagan cada mes, independientemente de la producción, mientras que los variables, están sujetos a la producción que se lleve a cabo.

Las representaciones de los costes de explotación (Tabla 4.3.2.2) se realizarán sobre un año.
Tabla 4.3.2.2 – Costes de explotación de la planta de tratamiento de agua residual

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Coste Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fijos</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>94.170,00 €</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>249,25 €</td>
</tr>
<tr>
<td>Otros</td>
<td>31.000,00 €</td>
</tr>
<tr>
<td>Costes Fijos de Explotación Totales</td>
<td>125.419,25 €</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>Energía</td>
<td>4.050,62 €</td>
</tr>
<tr>
<td>Productos químicos</td>
<td>20.264,43 €</td>
</tr>
<tr>
<td>Costes Variables de Explotación Totales</td>
<td>24.315,06 €</td>
</tr>
<tr>
<td>Costes de Explotación Totales</td>
<td>149.734,30 €</td>
</tr>
</tbody>
</table>

A continuación, se muestra individualmente, todos los costes de explotación.

4.3.2.2.1. Costes de personal

Para los costes de personal, se contarán con 3 operarios, con una jornada laboral de 8 horas, que se encargarán de controlar el buen funcionamiento de la planta de ultrafiltración, de los lavados de las plantas y de la introducción del sulfato de hierro y del peróxido de hidrógeno.

También contarán con la supervisión de un profesional, con una jornada laboral de 8 horas (durante el funcionamiento de la planta de fotocatálisis solar).

Tabla 4.3.2.2.1 – Costes de personal de la planta

<table>
<thead>
<tr>
<th>Categoría profesional</th>
<th>Salario bruto/hora trabajada</th>
<th>Salario bruto anual</th>
<th>N.º de empleados</th>
<th>Coste Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profesionales</td>
<td>12,00 €</td>
<td>35.040,00 €</td>
<td>1</td>
<td>35.040,00 €</td>
</tr>
<tr>
<td>Operadores</td>
<td>6,75 €</td>
<td>19.710,00 €</td>
<td>3</td>
<td>59.130,00 €</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>94.170,00 €</td>
</tr>
</tbody>
</table>
4.3.2.2.2. Mantenimiento

El coste de mantenimiento, se ha estimado mediante un porcentaje, a partir de los costes de inversión. El porcentaje empleado es de 0,5% del total de los costes.

Tabla 4.3.2.2.2 – Costes de mantenimiento de la planta

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Inversión</th>
<th>Porcentaje de mantenimiento</th>
<th>Coste Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipos</td>
<td>49.849,80 €</td>
<td>0,5%</td>
<td>249,25 €</td>
</tr>
</tbody>
</table>

4.3.2.2.3. Otros costes

Dentro de otros costes, intervienen aquellos que no están directamente unidos al funcionamiento de la planta, pero que sí son muy importantes en el presupuesto del diseño.

Tabla 4.3.2.2.3 – Otros costes de la planta

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Coste (€/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguro</td>
<td>6.000,00 €</td>
</tr>
<tr>
<td>Seguridad</td>
<td>4.000,00 €</td>
</tr>
<tr>
<td>Transporte</td>
<td>4.000,00 €</td>
</tr>
<tr>
<td>Asesoría</td>
<td>2.000,00 €</td>
</tr>
<tr>
<td>Medioambiente</td>
<td>15.000,00 €</td>
</tr>
<tr>
<td>Total</td>
<td>31.000,00 €</td>
</tr>
</tbody>
</table>
4.3.2.2.4. Energía

Para los costes de energía, se tendrán en cuenta todos los aparatos que consumirán energía durante todo el año. Estos aparatos son: la bomba de fotocatálisis solar, las 4 bombas de transporte y los medidores y dosificadores que se han empleado en los tanques 1 y 2. En la Tabla 4.3.2.2.4, se puede observar los costes de energía totales durante un año.

Tabla 4.3.2.2.4 – Costes de energía de la planta

<table>
<thead>
<tr>
<th>Concepto</th>
<th>N.º de Unidades</th>
<th>Consumo (kW)</th>
<th>Tiempo (h)</th>
<th>Consumo diario (kW/h)</th>
<th>Coste kW/h</th>
<th>Coste total anual (€/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba fotocatálisis</td>
<td>1</td>
<td>2,5</td>
<td>8</td>
<td>20</td>
<td>0,12</td>
<td>876,00 €</td>
</tr>
<tr>
<td>Bombas de transporte</td>
<td>4</td>
<td>0,75</td>
<td>24</td>
<td>18</td>
<td>0,12</td>
<td>3.153,60 €</td>
</tr>
<tr>
<td>Medidor y dosificador</td>
<td>2</td>
<td>0,01</td>
<td>24</td>
<td>0,24</td>
<td>0,12</td>
<td>21,02 €</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.050,62 €</td>
</tr>
</tbody>
</table>

4.3.2.2.5. Productos Químicos

Como productos químicos, se utilizaron las sustancias bio-orgánicas, las disoluciones para ajustar el pH en los tanques, el sulfato de hierro heptahidratado y el peróxido de hidrógeno.

A continuación (Tabla 4.3.2.2.5), se muestran los productos químicos que se han contabilizado en los costes variables de explotación.
Tabla 4.3.2.2.5 – Costes de los productos químicos de la planta

<table>
<thead>
<tr>
<th>Producto Químico</th>
<th>Consumo (kg o L/año)</th>
<th>Coste (€/kg)</th>
<th>Coste Total por año</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBO (kg)</td>
<td>17,9982</td>
<td>5,00 €</td>
<td>89,99 €</td>
</tr>
<tr>
<td>H2SO4 (L)</td>
<td>10</td>
<td>15,46 €</td>
<td>154,60 €</td>
</tr>
<tr>
<td>NaOH (kg)</td>
<td>8</td>
<td>18,76 €</td>
<td>150,08 €</td>
</tr>
<tr>
<td>FeSO4.7H2O (kg)</td>
<td>4,482</td>
<td>15,60 €</td>
<td>69,92 €</td>
</tr>
<tr>
<td>H2O2 (L)</td>
<td>12857,04</td>
<td>1,54 €</td>
<td>19.799,84 €</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20.264,43 €</td>
</tr>
</tbody>
</table>

4.3.2.3. Coste del agua

El coste del agua (Tabla 4.3.2.3) se ha calculado a partir de los costes totales de explotación en un año, más con un beneficio industrial del 10% y unos impuestos del 8%. Dividiendo estos costes entre la producción anual, obtengo un coste de 484,1 €.

<table>
<thead>
<tr>
<th>Coste del agua tratada por m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción anual (m³)</td>
</tr>
<tr>
<td>Costes totales al año</td>
</tr>
<tr>
<td>Beneficio Industrial (10%)</td>
</tr>
<tr>
<td>Impuestos (8%)</td>
</tr>
<tr>
<td>Coste del m³ (€/m³)</td>
</tr>
</tbody>
</table>

Este coste es muy elevado, debido a que todos los costes son estimados y a veces superiores a los reales. También, este proceso no se ha llegado a optimizar, por lo que el coste debería ser menor.
5) Conclusiones

Las principales conclusiones generales, que se derivan de los resultados obtenidos en este Trabajo Final de Grado son las siguientes:

El proceso de membranas de ultrafiltración, planteado como una técnica para concentrar el contaminante, han dado buen resultado y se ha podido concentrar la disolución contaminada en un 99,9 %, facilitando el proceso de oxidación avanzada y reduciendo en la mitad, tanto la superficie de trabajo como la duración del experimento.

Los resultados obtenidos en el proceso Foto-Fenton, han demostrado que las sustancias húmicas (SBO), son estables y biocompatibles con la radiación solar y que actúan de complejantes del hierro. Además, también han actuado como complejantes del TBZ, concentrando la disolución durante el proceso de ultrafiltración.

Como objetivos específicos, se pudo determinar la mejor manera para disolver el Tiabendazol, que fue acidificando el disolvente a un pH óptimo de 2,8.

El escalado y el diseño de la planta no se ha podido llevar a cabo debido a sucesivos problemas que han surgido con el software que se estaba empleando para llevarlo a cabo, así como no tener los suficientes experimentos para poder realizar el escalado de esta planta.

Por el contrario, si que se ha podido realizar el escalado de la planta de fotólisis y del resto de tanques necesarios llevar a cabo el tratamiento de 1 m₃·dia⁻¹ de agua residual de una industria determinada.
6) Bibliografía

Miguel Ángel Blesa. (2012). Una mirada al cianuro [en línea]. Disponible en:

Intoxicaciones Online. (2012). Demo iTox: Tóxicos – Insecticidas organofosforados [en línea]. Disponible en:

AMPARO CAROLINA CASTAÑEDA JIMÉNEZ. (2014). Procesos de oxidación avanzada aplicados en el tratamiento de aguas de la industria del petróleo. [en línea]. Disponible en:
http://repositorio.escuelaing.edu.co/bitstream/001/84/1/POA-INDUSTRIA%20DEL%20PETROLEO.pdf. [Último acceso, 22 de Julio de 2017].

Merck. (2017). Sistema de purificación de agua Milli-Q® Advantage A10 [en línea]. Disponible en:
http://www.merckmillipore.com/ES/es/product/Milli-Q-Advantage-A10-Water-Purification-System,MM_NF-Z00Q0V0WW#overview. [Último acceso, 22 de Julio de 2017].

Joan Roget. (2014). Catálogo de Panreac [en línea]. Disponible en:
Juan Gomis Vicens. (2015). Efecto de distintas especies reactivas generadas fotoquímicamente sobre la eliminación de contaminantes presentes en aguas naturales [en línea]. Disponible en: https://riunet.upv.es/bitstream/handle/10251/51667/Gomis%20-%20Efecto%20de%20distintas%20especies%20reactivas%20generadas%20fot oqu%C3%ADmicamente%20sobre%20la%20eliminaci%C3%B3n.pdf?sequence=1. [Último acceso, 22 de Julio de 2017].

7) ANEXO

ANEXO 1

<table>
<thead>
<tr>
<th>Hora</th>
<th>V. aportado UF</th>
<th>V. recogido para F-F</th>
<th>V de la piscina</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>277,792</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>277,792</td>
</tr>
<tr>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>277,792</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>277,792</td>
</tr>
<tr>
<td>2,5</td>
<td>55,55</td>
<td>0</td>
<td>333,344</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>333,344</td>
</tr>
<tr>
<td>3,5</td>
<td>0</td>
<td>0</td>
<td>333,344</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>333,344</td>
</tr>
<tr>
<td>4,5</td>
<td>0</td>
<td>0</td>
<td>333,344</td>
</tr>
<tr>
<td>5</td>
<td>55,55</td>
<td>0</td>
<td>388,896</td>
</tr>
<tr>
<td>5,5</td>
<td>0</td>
<td>0</td>
<td>388,896</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>388,896</td>
</tr>
<tr>
<td>6,5</td>
<td>0</td>
<td>0</td>
<td>388,896</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>388,896</td>
</tr>
<tr>
<td>7,5</td>
<td>55,55</td>
<td>0</td>
<td>444,448</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>444,448</td>
</tr>
<tr>
<td>8,5</td>
<td>0</td>
<td>0</td>
<td>444,448</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>444,448</td>
</tr>
<tr>
<td>9,5</td>
<td>0</td>
<td>0</td>
<td>444,448</td>
</tr>
<tr>
<td>10</td>
<td>55,55</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>10,5</td>
<td>0</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>31,25</td>
<td>468,75</td>
</tr>
<tr>
<td>11,5</td>
<td>0</td>
<td>31,25</td>
<td>437,5</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>31,25</td>
<td>406,25</td>
</tr>
<tr>
<td>12,5</td>
<td>55,55</td>
<td>31,25</td>
<td>430,552</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>31,25</td>
<td>399,302</td>
</tr>
<tr>
<td>13,5</td>
<td>0</td>
<td>31,25</td>
<td>368,052</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>31,25</td>
<td>336,802</td>
</tr>
<tr>
<td>14,5</td>
<td>0</td>
<td>31,25</td>
<td>305,552</td>
</tr>
<tr>
<td>15</td>
<td>55,55</td>
<td>31,25</td>
<td>329,854</td>
</tr>
<tr>
<td>15,5</td>
<td>0</td>
<td>31,25</td>
<td>298,604</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>31,25</td>
<td>267,354</td>
</tr>
<tr>
<td>16,5</td>
<td>0</td>
<td>31,25</td>
<td>236,104</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>31,25</td>
<td>204,854</td>
</tr>
<tr>
<td>17,5</td>
<td>55,55</td>
<td>31,25</td>
<td>229,156</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>31,25</td>
<td>197,906</td>
</tr>
<tr>
<td>18,5</td>
<td>0</td>
<td>31,25</td>
<td>166,656</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>166,656</td>
</tr>
<tr>
<td>19,5</td>
<td>0</td>
<td>0</td>
<td>166,656</td>
</tr>
<tr>
<td>20</td>
<td>55,55</td>
<td>0</td>
<td>222,208</td>
</tr>
<tr>
<td>20,5</td>
<td>0</td>
<td>0</td>
<td>222,208</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>222,208</td>
</tr>
<tr>
<td>21,5</td>
<td>0</td>
<td>0</td>
<td>222,208</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>222,208</td>
</tr>
<tr>
<td>22,5</td>
<td>55,55</td>
<td>0</td>
<td>227,76</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>277,76</td>
</tr>
<tr>
<td>23,5</td>
<td>0</td>
<td>0</td>
<td>277,76</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>277,76</td>
</tr>
<tr>
<td>Suma total (L)</td>
<td>500</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
GRADO EN INGENIERÍA QUÍMICA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V.máx</td>
<td>500</td>
</tr>
<tr>
<td>V.min</td>
<td>166,656</td>
</tr>
<tr>
<td>V.Tanque</td>
<td>333,344</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>400</td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tanque elegido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen</td>
</tr>
</tbody>
</table>