UNIVERSITAT POLITÉCNICA DE VALENCIA

Departamento de Ecosistemas Agroforestales

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA Y DEL MEDIO NATURAL

IMPLEMENTACIÓN DE UNA App/ APLICACIÓN WEB PARA LA VALORACIÓN AMBIENTAL DEL ARBOLADO URBANO DE LA CIUDAD DE VALENCIA

TRABAJO FINAL DE GRADO EN INGENIERÍA AGROALIMENTARIA Y DEL MEDIO RURAL

ALUMNO: DANIEL CÓRCOLES PÉREZ TUTOR: ROSA VERCHER AZNAR COTUTOR: RICARD ROCA MUNÁRRIZ

Curso Académico: 2017-2018

VALENCIA, DICIEMBRE DE 2017

RESUMEN

Título: Implementación de una App/ aplicación web para la valoración ambiental del arbolado urbano de la ciudad de Valencia.

La ciudad de valencia ha sido nombrada capital sostenible del año 2017

(http://valenciacapitalsostenible.org/valencia-2017/). Su objetivo es mejorar la sostenibilidad de las ciudades en todos sus aspectos. La concienciación de la ciudadanía es fundamental para poder alcanzar estos objetivos. Por ello, surge este proyecto que tiene la finalidad de visualizar los beneficios aportados al medio ambiente por el arbolado de la ciudad de Valencia, e incluso traducirlos a los beneficios económicos suministrados por dicho arbolado.

Para ello se va a desplegar una App para el SO Android y una página web que estarán basadas en el proyecto de software abierto de OpenTreeMap (https://www.opentreemap.org/). Estas herramientas se utilizarán para la representación de las especies arbóreas sobre un mapa interactivo. En dicha App móvil se podrá visualizar cada árbol censado de la ciudad de Valencia, con una descripción detallada de sus características, localización, foto, parámetros morfológicos, así como de parámetros ambientales: energía conservada (kW/hora/año), agua de lluvia filtrada (en L/año), mejora aportada a la calidad del aire (partículas PM10; SOx; NOx; O3, VOC), dióxido de carbono absorbido (kg/año y desde su plantación hasta la actualidad) y beneficio económico.

Palabras clave: Valencia, Sostenibilidad, Arbolado urbano, Inventario, App, Página web, software abierto, Energía, valoración económica.

Autor: Daniel Córcoles Pérez Valencia, Diciembre de 2017

Tutor Académico: Prof. Dña. Rosa Vercher Aznar

Co-tutor: Prof. D. Ricard Roca Munárriz

ABSTRACT

Title: Implementation of an app / web application for the environmental valuation of the urban woodland of the city of Valencia.

The city of Valencia has been named sustainable capital of the year 2017 (http://valenciacapitalsostenible.org/valencia-2017/).

Its objective is to improve the sustainability of cities in all their aspects. Awareness of citizenship is essential to achieve these gols. For this reason, this project arises that has the purpose of visualizing the benefits contributed to the environment by the trees of the city of Valencia, and even translate them to the economic benefits provided by said trees.

For this it will be developed an App for the Android OS and a web page that will be based on the Project OpenTreeMap (https://www.opentreemap.org/). These tools will be used to represent the tree species on an interactive map. In this Mobile App you can view each tree census of the city of Valencia, with a detailed description of its characteristics, location, photo, morphological parameters, as well as environmental parameters: conserved energy (kW/h/year), Filter stromwater (L/year), improvement in air quality (particles PM10; SOx; NOx; O₃, VOC), absorbed carbon dioxide (kg/year from its plantation to the present) and economic benefit.

Keywords: Valencia, Sustainability, Urban trees, Inventory, App, Website, open source software, Energy, economic valuation

RESUM

Títol: Implementació de una App/ aplicació web para la valoració ambiental d'arborat urbà de la Ciutat de Valencia.

La ciutat de Valencia ha sigut nombrada capital sostenible l'any 2017

(http://valenciacapitalsostenible.org/valencia-2017/). El seu objetiu es millorar la sostenibilitat de les ciutats en tots els seus aspectes. La conscienciació de la ciutadania es fonamental per poder arribar a estos objectius. Por això, sorgí este projecte que te la finalitat de visualitzar els beneficis aportats al medi ambient per l'arborat de la ciutat de València, e inclòs traduir-los als beneficis econòmics subministrats per dit arborat.

Per això se va a desplegar una App per a el SO Android y una pàgina web que estaran basades en el projecte de software obert i lliure de OpenTreeMap

(https://www.opentreemap.org/). Estes ferramentes s'utilitzaran per representar les especies arbòries sobre un mapa interactiu. En dita App mòbil es podrà visualitzar cada arbre censat de la ciutat de València, en una descripció detallada de les segues característiques, localització, foto, paràmetres morfològics, ací com de paràmetres ambientals: energia conservada (kW/hora/any), aigua de pluja filtrada (en L/any), millora aportada a la qualitat de l'aire (partícules PM10; SOx; NOx; O₃, VOC), diòxid de carbono absorbit (kg/any y des de la seva plantació fins l'actualitat) y benefici econòmic.

Paraules clau: València, Sostenibilitat, Arborat urbà, Inventari, App, Pàgina web, software obert, Energia, valoració econòmica.

Autor: Daniel Córcoles Pérez Valencia, Desembre de 2017

Tutor Académic: Prof. Dña. Rosa Vercher Aznar

Co-tutor: Prof. D. Ricard Roca Munárriz

Agradecimientos

Llegado a este punto, me permito dejar constancia por escrito del profundo agradecimiento que siento hacia las personas y entidades que de una u otra forma han contribuido en esta etapa tan importante de mi vida. Trabajo final de grado:

A mis directores del trabajo final de grado, Dr. Rosa Vercher Aznar, Ricard Roca Munárriz. Su interés, apoyo y buenos consejos me permitieron comprender la esencia de la investigación, que me llevó finalmente a la confección de este documento.

Quisiera expresar mi profundo agradecimiento Sr.Ricard Roca Munárriz. Su incondicionalidad, esfuerzo, paciencia, confianza, dedicación y precisión me aportaron la seguridad que necesitaba para llevar a cabo el trabajo que ahora presento. *Muchas gracias "Mestre"*.

Al Departamento de becas de la Universidad Politécnica de Valencia por la beca que me concedió durante tres años para poder realizar mis estudios de grado.

Finalmente, quisiera darle las gracias a mi familia por su confianza, especialmente a mi mamá que siempre ha estado en primera fila apoyándome en las decisiones que he tomado, que me ha sabido levantar en los momentos difíciles, y que sé que se alegra enormemente con cada uno de mis pequeños logros. *Gracias mamá*. Mención especial a mi papá, Por enseñarme que todo esfuerzo tiene su recompensa. Sin su paciencia, consejos y animo no lo hubiera logrado. *Gracias papá*.

A mis amigas y amigos, mi segunda familia, por su apoyo durante estos años.

ÍNDICE

1.	Introducción	1
	1.1. Antecedentes en el uso de aplicaciones móviles para la sostenibilidad	1
	1.1.2. Actualidad App's	2
	1.2. Historia	2
1.3	3. Climatología	3
1.4	4. Descripción del arbolado urbano	5
	1.4.1. Contexto histórico	5
	1.4.2. Concepto y emplazamientos	5
2.	Descripción de la zona de trabajo	7
3.	Objetivos del trabajo	13
	3.1. Objetivos generales	13
	3.2. Objetivos específicos	13
4.	Materiales y métodos	14
	4.1. Material	14
	4.2. Métodos	15
	4.2.1. Ficha para la toma de datos de árboles y palmeras	15
	4.2.2. Datos totales obtenidos	16
	4.2.3. OpenTreeMap e introducción de datos	16
	4.2.3.1. Introducción de datos masiva mediante CSV	16
	4.2.3.2. Introducción de datos de forma individual	20
	4.2.4. Proceso de cálculo mediante factores ecológicos proporcionados por el arbolado urbano	20
	4.2.5. App móvil - OpenTreeMap	23
	4.2.6. Variables de cálculo empleadas por el sistema	24
5.	Resultados y discusión	24
	5.1. Resultados y discusión sobre los datos obtenidos de los árboles urbanos	24
	5.2. Resultados y discusión sobre los datos obtenidos de las palmeras	25
	5.3. Resultados obtenidos respecto al diámetro y altura	26
	5.3. Resultados generales	28
6.	Conclusiones	29
7.	BIBLIOGRAFÍA	30

Índice de figuras

Figura 1: Velocidad y dirección del viento	. 3
Figura 2:Humedad relativa	. 3
Figura 3:Evapotranspiración	. 4
Figura 4: Precipitación - Radiación	. 4
Figura 5: Mapa Comunidad valenciana. [Fuente :teinteresa.es]	. 7
Figura 6: División territorial de la ciudad de Valencia. [Fuente: Excelentísimo. Ayto. de	
Valencia]	. 8
Figura 7: Zonas verdes por distritos según superficie Fuente: Servicio de jardinería. Ayto. de	
Valencia. Elaboración propia	. 9
Figura 8: Ficha tipo para la toma de datos. [Fuente: Elaboración propia]1	15
Figura 9: Introducción de datos masiva en la aplicación. [Fuente: OpenTreeMap, elaboración	
propia] 1	19
Figura 10: Introducción de datos manualmente. [Fuente: OpenTreeMap, elaboración propia].	
	20
Figura 11: Organigrama de servicios ofrecidos por el software libre OpenTreeMap. [Fuente:	
OpenTreeMap]2	21
Figura 12: Ecobeneficio anual. [Fuente: Elaboración propia]2	25
Figura 13: Ecobeneficios de las palmeras. [Fuente: Elaboración propia]	25

Índice de tablas

Tabla 1: Superficie y densidad de población de Valencia
Tabla 2: Superficie y densidad de población de los distritos municipales involucrados. [Fuente:
Oficina estadística Ayto de Valencia.]9
Tabla 3: Especies arbóreas más comunes de la ciudad de Valencia. [Fuente: OMAV. Elaboración
propia]10
Tabla 4: Tabla resumen del arbolado urbano protegido: Protección genérica. [Fuente: OMAV.
Elaboración propia]11
Tabla 5: Tabla resumen del arbolado urbano protegido: Interés local. [Fuente: OMAV.
Elaboración propia]12
Tabla 6: Introducción masiva de datos mediante Excel a la aplicación. [Fuente: Elaboración
propia]17
Tabla 7: Beneficios ecológicos según diámetro , edad y altura26
Tabla 8:Desglose del beneficio que reporta cada especie. [Fuente: Elaboración propia] 27

1. Introducción

El CO₂ pertenece al grupo de gases de efecto invernadero (GEI), en el que se encuentran también: bióxido de carbono (CH₄), óxido nitroso (N₂O), hidrofluorocarbonos (HFC), perfluorocarbonos, (PFC) y hexafluoruro de azufre (SF₆) (4). Todos estos gases tienen moléculas con dos o más átomos que se mantienen unidos con suficiente espacio entre sí para poder vibrar cuando absorben calor; eventualmente la molécula que vibra libera radiación y ésta será posiblemente absorbida por otra molécula de GEI. A este proceso de mantener calor cerca de la superficie de la tierra, se le conoce como efecto invernadero. Los GEI son liberados a la atmósfera tanto por fuentes naturales como antropogénicas. La cantidad de GEI liberados mediante la actividad humana se ha incrementado de manera significativa en los últimos años, lo cual está propiciando la amplificación del efecto invernadero natural y el cambio climático global. La agricultura y la producción pecuaria contribuyen ampliamente a las emisiones antropogénicas de CH₄, CO₂ y N₂O a la atmosfera. Por estos motivos se están encaminando esfuerzo a reducir las emisiones y prevenir el calentamiento global, y proteger así el sistema climático natural del planeta.

1.1. Antecedentes en el uso de aplicaciones móviles para la sostenibilidad

En la última década se han disparado la venta de dispositivos móviles y con ello han aumentado la cantidad de aplicaciones móviles.

La sostenibilidad es un concepto relativamente sencillo de comprender, aunque difícil de practicar, ya que administrar los recursos disponibles de la mejor manera posible puede resultar complicado. Con las aplicaciones móviles, este concepto se puede entender fácilmente en nuestro día a día. Los teléfonos inteligentes y las tabletas nos ayudan a que la vida sea más sostenible, además, consiguen fomentar la conciencia ciudadana con el medio ambiente.

En el año 2015 se dio un paso agigantado en el Mobile World Congress, publicando aplicaciones de todo tipo y entre ellas destacaban las App para la concienciación del medio ambiente. Desde la Carbon Footprint Calculator donde se da infor-mación de cuánto CO_2 se libera en las actividades diarias. Pasando por Eco Footprint: esta App te permite calcular rápidamente el impacto ecológico que tienen tus hábitos de alimentación (comer carne, arroz o pescado) y de transporte, cada día (coger el autobús, avión o tren). También por my Use, donde se propone ahorrar en gas, agua y electricidad en base al gasto y hábitos diarios. Hasta Tu huerto en casa: Con esta aplicación se empezar a dar los primeros pasos para tener un huerto urbano desde cero.

1.1.2. Actualidad App's

Durante el año 2017 se han desarrollado aplicaciones muy importantes a la hora de concienciación ciudadana con el fin de tener un planeta sostenible. La aplicación 'Light'. Esta App fomenta las acciones sostenibles entre los ciudadanos, recompensando el uso del transporte público o el reciclaje con una moneda virtual, que equivale a la huella de carbono que el ciudadano consigue reducir y que se puede cambiar por productos y servicios como moda, vehículos eléctricos o actividades de ocio. Basada en la gamificación, la App permite establecer también retos entre amigos.

La aplicación 'HydraRedox', un sistema de almacenamiento de energía a gran escala basado en un nuevo concepto de la tecnología de Redox de Vanadio con beneficios medioambientales. (Carmen Vallejo)

1.2. Historia

Ya hace unos cuantos miles de años que el ser humano se convirtió en sedentario. Tras haber descubierto los beneficios de la Agricultura, sus asentamientos, casas, corrales, graneros, fueron construidos en medio de la naturaleza, rodeados de árboles. Posteriormente, estos asentamientos fueron haciéndose cada vez más grandes, constituyendo primero poblados y posteriormente ciudades, quedando cada vez más alejados aquellos primeros árboles que les daban sombra en los días soleados y calurosos. Para que la ciudad sea más agradable para vivir y no sea una sucesión de bloques de cemento sobre el asfalto, recurrimos a la jardinería.

Todos queremos una ciudad llena de árboles y espacios verdes, donde las personas puedan pasear y los niños puedan jugar. Nuestra propia mente, es decir, nuestro subconsciente, nos predispone a pensar que cuantos más árboles verdes tenemos cerca, mejor calidad de vida tenemos; de ahí la importancia que tiene el arbolado urbano, que se ha convertido en uno de los indicadores con los que se califican las ciudades actualmente.

Concretamente la ciudad de Valencia, gracias a la calidad de su entorno, que se podría concretar en dos aspectos fundamentales: por un lado, nombrada capital sostenible durante todo el año 2017, y por otro lado la benignidad del clima y por la naturaleza aluvial y profundidad de sus suelos, ha permitido la presencia de bellos jardines urbanos desde la antigüedad. Son conocidos los patios y las avenidas (vías) ajardinadas en tiempos de los romanos. Destacan los jardines del Real y de Monforte en la época musulmana, que sorprendieron por su belleza al Rey Jaime I cuando entró en la nueva Valencia conquistada. Y así se podría seguir contando la excelencia de los jardines valencianos, pero como no es el tema central de este trabajo, sólo se ha pretendido destacar la tradición e importancia de los jardines de la ciudad de Valencia.

1.3. Climatología

La ciudad de Valencia cuenta con un clima muy agradable, de los más suaves de Europa. Como se muestra en la Figura 1, el viento en muy pocas ocasiones supera los 50 km/hora. Se trata de un clima mediterráneo, con temperaturas moderadas, la media anual es superior a los 17 °C. Los veranos son cálidos y los inviernos muy suaves. En los meses de invierno la temperatura mínima no suele ser inferior a los 10 °C. De hecho, la última vez que nevó en Valencia fue el día 11 de enero de 1960, y la altura de la nieve fue de 10 cm de espesor. Este dato es indicador de que puede vivir en esta ciudad "casi" cualquier especie, a excepción de las estrictamente acidófilas, como el castaño de indias que encontramos en los Campos Elíseos de París, y aquí no puede estar por ser los suelos ricos en bases. En cuanto a las precipitaciones se puede decir que son discretas. Éstas suelen concentrarse al inicio del otoño.

En las figuras 1 a 4 que se muestran a continuación, pueden verse una serie de datos históricos relativos al clima de la ciudad de Valencia. En ellos se puede ver como la temperatura máxima oscila en torno a los 30 °C, la humedad media se encuentra entre el 50 y 70% y los períodos de heladas son escasos y de baja intensidad, las horas de sol son abundantes y las precipitaciones, (500 mm/año de media) aunque no son excesivas sí son suficientes, junto con el resto de factores, para que el arbolado urbano en esta ciudad se desarrolle adecuadamente.

Figura 1: Velocidad y dirección del viento

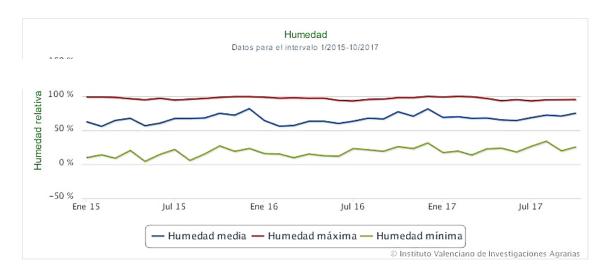


Figura 2:Humedad relativa

Figura 3:Evapotranspiración



Figura 4: Precipitación - Radiación

1.4. Descripción del arbolado urbano

1.4.1. Contexto histórico

El primer registro de plantaciones de árboles data de 4000 años a. de C. en la civilización egipcia y posteriormente en los parques de la antigua Asiria sobre el año 700 a.de C. Los jardines colgantes de Babilonia, sobre el 600 a. de C., nos proporcionan una referencia del uso de la vegetación en un establecimiento urbano. Las ciudades griegas en el 500 a. de C. contaban con la presencia de plátanos y chopos. En los jardines islámicos e hispanoárabes se utilizaba la higuera y los plátanos para sombrear las casas y refrescar el ambiente.

La silvicultura urbana tal como la denominamos hoy probablemente comienza en el año 1200 cuando se plantan en Inglaterra filas de Olmos adyacentes a sus catedrales. Más tarde en 1600, en París se plantan árboles a lo largo de su entramado de bulevares y avenidas. Al principio de 1700, en Inglaterra, se llevan a cabo grandes esfuerzos para plantar árboles por razones ornamentales en los parques urbanos y a lo largo de las calles para mejorar el ambiente de la ciudad (Philips, 1993).

Forrest y Konijnendijk (2005) analizan donde tuvo lugar la plantación de árboles en las ciudades europeas, en qué forma ocurrió y la razón por la que sucedió. Discuten cuatro temas: bosques periurbanos y urbanos, plantación de árboles en parques y espacios abiertos, plantación de árboles en calles y el desarrollo hacia una planificación y gestión integrado del verde urbano. Este último cobra importancia en Europa con el desarrollo a partir de finales del siglo XX de la silvicultura urbana (Urban Foresty).

1.4.2. Concepto y emplazamientos

El término se utiliza para designar a las plantas superiores perennes y caducas leñosas, que se desarrollan con un tallo principal, suelen superar los 5 m de altura y son longevos. La longevidad varía desde un promedio de 25 años en las especies de vida corta, como *Acacia dealbata, Ligustrum japonicum, photinia serrulata* o *catalapa bignonioidies*, entre otros, hasta más de mil años en las especies muy longevas, como *Taxus baccata, Quercus ilex, Olea europea, Castanea sativa* o *Fagus sylvatica*, entre muchas otras. El tamaño varía también mucho entre las diferentes especies de árboles, y se suelen agrupar en tres o cuatro categorías: pequeño, mediano, grande y muy grande. Algunos árboles pueden llegar a sobrepasar los 100 m de altura, como ocurre en la *Sequoia sempervirens*, considerada la más alta de las coníferas existentes, y con una longevidad que puede llegar desde los 2000 hasta los 3000 años de vida, o en *Eucalyptus regnans*, este último originario de Australia y descrito como el árbol más alto de las plantas con flor. De hecho, los árboles son y han sido siempre los organismos más grandes del planeta.

En el presente Trabajo Final de Grado (TFG), se va a analizar el estado de las zonas verdes y del arbolado urbano que éstas contienen, concretamente del arbolado, de unos distritos municipales de la ciudad de Valencia. Para ello se va a hacer una aproximación a algunos términos que durante todo el trabajo se van a utilizar.

Para empezar, se define la palabra ciudad, ya que es lugar donde se centrará todo el presente trabajo. Según la RAE, una ciudad es un "conjunto de edificios y calles, regidos por un

ayuntamiento, cuya población densa y numerosa se dedica por lo común a actividades no agrícolas". Quizás, esta definición quedaría más completa si incluyera en ese conjunto de elementos de una ciudad los espacios verdes. Estas zonas, de vital importancia para los habitantes de una ciudad, no son simples elementos decorativos. No sólo vertebran distintas partes de la ciudad, sino que además cumplen una importante misión ecológica, funcionando como "pulmones" de la misma. Consiguen que la calidad de vida de los habitantes mejore, sobre todo el estado del aire.

Otro término a tener en cuenta es el de espacio o zona verde. La RAE, define como zona verde el "terreno que, en el casco de una ciudad o en sus inmediaciones, se destina total o parcialmente a arbolado o parques".

Dentro de una zona verde podemos encontrar distintos elementos, algunos de estos son: Plazas: áreas que dan estructura a un barrio o parte de la ciudad. Además, son lugares que sirven de punto de encuentro para los vecinos de la zona donde se encuentran. Jardines: de la misma manera que las plazas, los jardines son elementos que ayudan a la organización de un barrio. Están constituidos por elementos vegetales, mobiliario urbano, como fuentes o bancos, y áreas de juegos infantiles. Parques: según la RAE, "en una población, espacio que se dedica a praderas, jardines y arbolado, con ornamentos diversos, para el esparcimiento de sus habitantes". Paseos: lugar de tránsito de personas o vehículos donde pueden encontrarse árboles, setos, pequeños ajardinamientos y que también pueden incluir alguna zona de esparcimiento. Rotondas: es una plaza circular que ayuda a vertebrar el tráfico de una población y que puede contener elementos vegetales como césped, árboles u otras especies ornamentales que hacen que facilitan su integración con el paisaje urbano. Arbolado viario: conjunto o alineación de árboles que encontramos en las aceras de las poblaciones.

Como se viene observando, el arbolado y en especial el arbolado urbano, tienen un papel fundamental en la vida de los habitantes. De ahí que la Organización Mundial de la Salud, en adelante OMS, establezca un indicador de zona verde por habitante. Esto es, la OMS considera imprescindibles las zonas verdes por los efectos positivos que aportan al estado físico y anímico de la población ya que estas áreas hacen que las ciudades sean más habitables y ejercen de filtro verde ayudando a disminuir la contaminación. La OMS recomienda que las ciudades tengan entre 10 y 15 m² de área verde por habitante.

2. Descripción de la zona de trabajo

El desarrollo del presente TFG se ha centrado en la comunidad Valenciana (figura 5), provincia de Valencia. Más concretamente en la propia ciudad de Valencia (figura 6), siendo seleccionados los distritos municipales 1, 2, 3, 4, 5 y 6 (figura 6). La ciudad de Valencia está dividida en distritos, siendo un total de 19 distritos municipales los que componen el "puzzle" de la ciudad. A su vez cada distrito está dividido por un conjunto de barrios y zonas. A lo que nos resulta de interés para este trabajo los distritos municipales 1, 2, 3, 4, 5 y 6.

Figura 5: Mapa Comunidad valenciana. [Fuente :teinteresa.es].

Figura 6: Mapa aéreo de la ciudad de Valencia. [Fuente: Google Earth].

Figura 6: División territorial de la ciudad de Valencia. [Fuente: Excelentísimo. Ayto. de Valencia].

Los datos relativos a la población de la ciudad de Valencia se muestran en la tabla 1. El distrito municipal 1 corresponde al de Ciutat Vella, el cual se ubica en el núcleo de la ciudad y alrededor del distrito municipal 1 se encuentran el resto de distritos que se ven implicados en este trabajo (tabla 2).

Tabla 1: Superficie y densidad de población de Valencia

Personas	Superficie(ha)	Densidad de población
792.086	1346 0	58,8473

Tabla 2: Superficie y densidad de población de los distritos municipales involucrados. [Fuente: Oficina estadística Ayto de Valencia.]

	Personas	Superficie(ha)	Densidad de población
1. Ciutat vella	26.810	169	158,6391
2. Léixample	42.615	173,3	245,9031
3. Extramurs	48.475	197,2	245,8164
4. Campanar	37.774	531,9	71,0171
5. La Saïdia	46.891	194,4	241,2088
6. El Pla del Real	30.362	169,3	179,3385

Teniendo en cuenta la superficie de zonas verdes que existen en la ciudad y su número de habitantes se puede hacer el cálculo del indicador de zona verde establecido por la OMS (figura 7).

- Superficie de zona verde (fuente Ayto. Valencia) = 3.694.139 m²
- **Habitantes** = 792.086

$$I.Zona.Verde = \frac{.Sup.Zona.Verde}{n^{\circ} hab} \rightarrow \frac{3.694.139m^{2}}{792.086hab} = \frac{5m^{2}}{hab}.$$

Donde:

- I. Zona verde: Es el Índice de Zona Verde. (m²/habitante)
- Sup. Zona Verde: Es la superficie de zona verde (m²)
- Nº hab.: Es el número de habitantes

Este valor hallado indica que no se alcanzan los mínimos recomendados por la OMS, fijados en un intervalo de 10 a 15 m² de zona verde/habitante.

Figura 7: Zonas verdes por distritos según superficie Fuente: Servicio de jardinería. Ayto. de Valencia. Elaboración propia

En cuanto al grupo de arbolado plantado que se puede encontrar en los distritos municipales de la ciudad de Valencia, se observa en la tabla 3, que las especies más comunes son Citrus aurantium, Platanus hispánica, Melia azedarach y Acer negundo. Respecto al grupo de Palmeras más comunes son Washingtonia robusta, Phoenix dactylifera y Washingtonia filifera.

Tabla 3: Especies arbóreas más comunes de la ciudad de Valencia. [Fuente: OMAV. Elaboración propia].

Nombre común	Nombre científico	Total
Naranjo amargo	Citrus aurantium	14.991
Plátano de sombra	Platanus hispánica	12.405
Cinamomo	Melia azedarach	9.337
Arce de hoja fresno	Hacer negundo	9.160
Braquiquito	Brachychiton populneum	5.727
Palmera mexicana	Washingtonia robusta	5.496
Almez	Celtis australis	5.205
Jaracanda	Jaracanda mimosifolia	5.066
Aligustre del Japón	Ligustrum japonicum	4718
Árbol del amor	Cercis siliquastrum	4238
Morera blanca	Morus alba	3605
Ciruelo de Pissard	Prunus cerasifera	3575
Ciprés	Cupressus sempervirens	3369
Palmera datilera	Phoenix dactylifera	3280
Pino carrasco	Pinus halepensis	3072
Acacia del Japón	Sophora japónica	2821
Tipuana	Tipuana tipu	2701
Laurel de indias	Ficus nitida	2435
Aligustre del Japón	Ligustrum japonicum Variegata	2408
Pino piñonero	Pinus pinea	2379
Palmera datilera Hembra	Phoenix dactylifera Hembra	2088
Falsa acacia	Robinia pseudoacacia	2060
Palmera de California	Washingtonia filifera	2002
Morera Blanca "fruitles"	Morus alba Fruitles	1749
Pino de oro	Grevillea robusta	1706
Olmo de Siberia	Ulmus pumila	1551
Palmera de Fortune	Trachycarpus fortrunei	1507
Álamo blanco	Populus alba	1447
Plmera canaria Macho	Phoenix cannariensis Macho	1432
Olivo	Olea europaea	1350
Encina	Quercus ilex sp. Ilex	1298
Ciprés "Stricta"	Cupressus sempervirens Stricta	1287
Palmito	Chamaerops humilis	1274
Palmera Canara Hembra	Phoenix canaeriensis Hembra	1188
Pitosporo	Pittosporum tobira	1171
Chopo de Canadá	Populus canadensis	1170

Nombre común	Nombre científico	Total
Olmo	Ulmus minor	1169
Palmera datilera Macho	Phoenix dactylifera Macho	1150
Tilo europeo	Tilia europaea	1130
Morera japonesa	Morus kagayamae	996
Árbol pica-pica	Lagunaria patersonii	962
Catalpa	Catalpa bignonioides	955
Acacia de Constantinopla	Albizia julibrissin	921
Laurel	Laurus nobilis	840
Palmera canaria	Phoenix canariensis	803
Aligustre	Ligustrum lucidum	778
Taray	Tamarix gallica	724
Falso pimentero	Schinus molle	675
Tuya oriental	Truja orientalis	659
Fresno de hoja ancha	Fraxinus excelsior	264
Rosa de Siria	Hibiscus syriacus	650
Ficus	ficus benjamina	634
Jabonero de China	Koelreuteria Paniculata	627
Palama de escobas	Chamaerops humilis Grupo	608
Casuarina	Casuarina equisetifolia	607
Fresno florido	Fraxinus ornus	622
Coco plumoso	Syagrus romanzoffiana	572
Acacia de tres espinas	Gleditsia triacanthos	569
Arce blanco	Acer pseudoplatanus	551
Chopo lombardo	Populus nigra italica	522
Fresno de hoja estrecha	Fraxinus angustifolia	398
Álamo blanco "Bolleana"	Populus alba Bolleana	385
Chorisia	Ceiba speciosa	380
Paulonia imperial	Paulownia tomentosa	369
Adelfa	Nerium oleander	361
Arbol de fuego	Brachychiton acerifolium	339
Ciprés de Monterey	Cupressus macrocarpa	329
Fresno blanco	Fraxinus sp.	319
Magnolia	Magnolia grandiflora	307
Yuca pie de elefante	Yucca elephantipes	307
Otras especies	Otras especies	12.867
TC	TAL	164.617

Del total del arbolado urbano que se encuentra en la ciudad de Valencia, 65.311 corresponden al arbolado viario. El resto de arbolado urbano se localiza en distintas ubicaciones como jardines públicos, jardines privados, escuelas públicas, escuelas privadas, plazas, rotondas, Cementerios, etc.

Según los datos que publica el Excelentísimo Ayuntamiento de Valencia y las empresas colaboradoras, (Tablas 4 y 5) concretamente el OMAV (observatorio del arbolado urbano de la ciudad de Valencia) y el Departamento de Inventariado y Diagnóstico del Arbolado (DIDA), los distritos municipales 1, 2, 3, 4, 5 y 6 cuentan con 521 árboles.

Los 521 árboles se dividen en dos grandes grupos:

• Arbolado protegido: Protección genérica

• Arbolado protegido: Interés local

Tabla 4: Tabla resumen del arbolado urbano protegido: Protección genérica. [Fuente: OMAV. Elaboración propia].

UD GESTIÓN	Árboles	%	Palmeras	%	Total	%
Servicio Jardinería - Mantenimiento Norte	19	5,6	125	36,5	144	42,1
Servicio Jardinería - Mantenimiento Sur	12	3,5	119	34,8	131	38,3
Organismo Autónomo Jardines	13	3,8	38	11,1	51	14,9
Servicios Centrales Técnicos	2	0,6	9	2,6	11	3,2
Cementerios	3	0,9	2	0,6	5	1,5
TOTAL	49	14,3	293	85,7	342	100,0

En este TFG se diferencian los árboles y las palmeras, ya que en el apartado de conclusiones determinaremos si las palmeras resultan de gran beneficio para la eficiencia fotosintética empleando el CO₂ para ello.

Tabla 5: Tabla resumen del arbolado urbano protegido: Interés local. [Fuente: OMAV. Elaboración propia].

UD GESTIÓN	Árboles	%	Palmeras	%	Total	%
Servicio Jardinería - Mantenimiento Norte	90	50,3	16	8,9	106	59,2
Servicio Jardinería - Mantenimiento Sur	24	13,4	6	3,4	30	16,8
Organismo Autónomo Jardines	23	12,8	2	1,1	25	14,0
Servicios Centrales Técnicos	11	6,1	2	1,1	13	7,3
Cementerios	5	2,8	0	0,0	5	2,8
TOTAL	153	85,5	26	14,5	179	100,0

Con estos datos se puede calcular el % de arbolado urbano que se encuentra en los distritos municipales 1, 2, 3, 4, 5 y 6 de la ciudad de Valencia y que resultan de interés para este proyecto.

- Total, de arbolado urbano de Valencia = 141.980 árboles.
- Arbolado urbano que interesan de los distritos 1, 2, 3, 4, 5 y 6 = 667 árboles.
- ✓ Arbolado Monumental: 502.
- ✓ Arbolado Singular: 165.

$$\% ArboladoUrb. = \frac{Arb.urbanodistrito}{TOTAL} \times 100$$

$$\frac{667}{141.980} \times 100 = 0,47\%$$

3. Objetivos del trabajo

3.1. Objetivos generales

Como objetivo general del presente trabajo final de grado es conseguir la concienciación de la población de la importancia que tiene el arbolado urbano de la ciudad de Valencia en conexión a los factores medioambientales, tales como: factores de calidad del aire, factores energéticos, factores de CO₂, y factores de agua de lluvia. Todo ello dándole un valor monetario (€/año) para poder lograr dicha concienciación de la población.

3.2. Objetivos específicos

El objetivo específico del trabajo será el desarrollo de una aplicación móvil, en la cual constará de un inventario del arbolado urbano más representativo de especies monumentales y especies singulares de los distritos municipales 1, 2, 3, 4, 5 y 6. Además, se tendrán las características morfológicas y demás peculiaridades del arbolado inventariado. Analizado de distinta manera a lo habitual. Entre otros puntos a observar son:

ÁRBOL:

- Información general: en la cual se describe el grupo, la tipología, la especie, nombre común y quien gestiona el mantenimiento del árbol.
- Croquis detallado de la situación del árbol
- Localización: Lugar de ubicación, Distrito, Barrio, Coordenada X y Coordenada Y.
- Foto general: en la cual se aprecia el árbol y el medio que lo envuelve.
- Foto detallada: En la cual se aprecia el detalle del tronco o la parte más interesante.
- Parámetros morfológicos según Ley 04/2008. Art. 4: Mostrando Perímetro del tronco,
 Perímetro de la base, Diámetro de la copa con orientación E-O, orientación de la copa con la orientación N-S, altura total y altura desde la cruz.
- Otros datos: Incluyendo la edad, la fecha en que se realizaron las mediciones y las observaciones más concluyentes.

PALMERA:

- Información general: en la cual se describe el grupo, la tipología, la especie, nombre común y quien gestiona el mantenimiento del árbol.
- Croquis detallado de la situación del árbol.
- Localización: Lugar de ubicación, Distrito, Barrio, Coordenada X y Coordenada Y.
- Foto general: en la cual se aprecia el árbol y el medio que lo envuelve.
- Foto detallada: En la cual se aprecia el detalle del tronco o la parte más interesante.
- Parámetros morfológicos según Ley 04/2008. Art. 4: Mostrando Perímetro del tronco, Perímetro de la base, Diámetro de la copa con orientación E-O, orientación de la copa con la orientación N-S, altura total y altura desde la cruz.
- Otros datos: Incluyendo la edad, la fecha en que se realizaron las mediciones y las observaciones más concluyentes.

Teniendo en cuenta que, para el apartado de observaciones más concluyentes, se ha utilizado material de referencia como el Manual de Evaluación de Riesgos de Árboles y Palmeras de la Asociación Española de Arboricultura. En él se dan una serie de directrices para poder realizar una evaluación visual, teniendo unos conocimientos previos en arboricultura, que servirán para determinar el estado del individuo, árbol o palmera, en cuestión.

De esta forma se recopilarán todos los datos de los árboles y palmeras más representativos de los distritos y sus respectivos barrios para la posterior introducción en la base de datos de la aplicación.

4. Materiales y métodos

En primer lugar, se ha elaborado una ficha tipo, para recoger todos los datos que se mencionan en el punto 3.2. Objetivos específicos. Para ello se ha realizado un exhaustivo inventario.

El inventariado del arbolado se ha realizado por todas las calles, plazas, jardines, espacios públicos y privados que constituyen los distritos municipales 1, 2, 3, 4, 5 y 6. Se han recogido datos de cada uno de los árboles y palmeras que se encontraban y formaban parte de pertenecer a un árbol monumental o bien a un árbol singular.

Posteriormente tras una reorganización de los datos obtenidos se han ordenado e introducido en el Software libre OpenTreeMap.

4.1. Material

Al tratarse de una recopilación de datos exhaustiva de cada especie y el software empleado para el cálculo, el material utilizado para el desarrollo de este trabajo ha sido el siguiente:

- Cartografía de la zona de trabajo.
- Cámara fotográfica.
- Bibliografía sobre arbolado urbano.
- Ordenador portátil.
- Cinta métrica.
- Hipsómetro Vertex.
- Herramientas informáticas para elaboración de planos y fichas: Photoshop, InDesign y Google Earth.
- Herramientas informáticas de programación: software abierto de OpenTreeMap y Microsoft Office Excel.

4.2. Métodos

Se ha realizado una ficha por cada árbol y una ficha por cada palmera. Posteriormente con los datos recabados en las fichas se procesan mediante Excel y se introducen en el Software libre de OpenTreeMap.

- Ficha para la toma de datos del arbolado urbano.
- Ficha para la recopilación de datos de las palmeras.
- Ficha Excel para proceder a la introducción de datos masivamente al Software libre de OpenTreeMap.

4.2.1. Ficha para la toma de datos de árboles y palmeras

La ficha tipo empleada (figura 8) para la toma de datos tiene una única versión, porque la información a recopilar que resulta de interés es la misma, aunque se trate de individuos con características diferenciadas. Por ello solo se tendrá en cuenta en las observaciones finales de cada ejemplar.

FICHA ÁRBOL / PALMERA

Figura 8: Ficha tipo para la toma de datos. [Fuente: Elaboración propia].

4.2.2. Datos totales obtenidos

Tras la toma de datos de todos los árboles y palmeras Monumentales y singulares de los distritos municipales 1, 2, 3, 4, 5 y 6, inventariados, se procede a recopilar y organizar de una manera ordenada toda la información en una tabla Excel. En dicha tabla se incluyen todos los campos que contienen las fichas utilizadas durante el trabajo de campo. (grupo, la tipología, la especie, nombre común y quien gestiona el mantenimiento del árbol, Croquis detallado de la situación del árbol. Localización: Lugar de ubicación, Distrito, Barrio, Coordenada X y Coordenada Y. Foto general: en la cual se aprecia el árbol y el medio que lo envuelve. Foto detallada: En la cual se aprecia el detalle del tronco o la parte más interesante. Parámetros morfológicos según Ley 04/2008. Art. 4: Mostrando Perímetro del tronco, Perímetro de la base, Diámetro de la copa con orientación E-O, orientación de la copa con la orientación N-S, altura total y altura desde la cruz. Otros datos: Incluyendo la edad, la fecha en que se realizaron las mediciones y las observaciones más concluyentes. En la tabla 4, se puede ver el formato empleado y en los anejos correspondientes, las fichas con todos los datos recogidos de un total de 404 ejemplares.

4.2.3. OpenTreeMap e introducción de datos

La introducción de datos se ha realizado mediante dos vías:

- 1. Introducción de datos masiva mediante CSV.
- 2. Introducción de datos individual.

4.2.3.1. Introducción de datos masiva mediante CSV

Introducción masiva de datos mediante CSV:

La introducción mediante CSV ha consistido en la elaboración de una tabla Excel como se muestra en la tabla 6, en la cual se han introducido los parámetros obtenidos de cada especie inventariada.

Tabla 6: Introducción masiva de datos mediante Excel a la aplicación. [Fuente: Elaboración propia].

			Postal	Tree			Tree	Canopy	Date
Point X	Point Y	City	Code	Present	Species	Diameter	Height	Height	Planted
725965	4373140	VALENCIA	46003	yes	Eucalyptus camaldulensis	1.86	23.7	14	01/01/1 947
725978	4373130	VALENCIA	46003	yes	Eucalyptus camaldulensis	2.4	29	27.6	01/01/1 947
725413	4373199	VALENCIA	46003	yes	Washingtonia filifera	0.42	17.4	4	01/01/1 937
725209	4373478	VALENCIA	46003	yes	Tamarix gallica	0.73	7.8	10.7	01/01/1 967
726381	4372793	VALENCIA	46003	yes	Phytolacca dioica	3.18	6.7	9.8	01/01/1 967
725652	4373337	VALENCIA	46003	yes	Phoenix dactylifera Macho	0.43	17.6	4.5	01/01/1 947
725739	4373265	VALENCIA	46003	yes	Ficus macrophylla	1.97	17	24	01/01/1 937
725812	4373241	VALENCIA	46003	yes	Washingtonia robusta	0.5	25	3.7	01/01/1 940
725836	4373227	VALENCIA	46003	yes	Pinus canariensis	0.78	21	10.8	01/01/1 947
725670	4372266	VALENCIA	46002	yes	Chamaerops humilis Grupo	0.24	5.2	10.15	01/01/1 967
725104	4372243	VALENCIA	46003	yes	Ceratonia siliqua	0.8	10.5	14.2	01/01/1 917
725203	4372261	VALENCIA	46003	yes	Cupressus cashmeriana	0.5	19.5	7.5	01/01/1 957
725188	4372299	VALENCIA	46003	yes	Ficus macrophylla	0.85	15.2	28.5	01/01/1 987

Point X	Point Y	City	Postal Code	Tree Present	Species	Diameter	Tree Height	Canopy Height	Date Planted
725397	4373119	VALENCIA	46003	yes	Ficus macrophylla	4.36	27.8	28	01/01/1 850
725724	4372952	VALENCIA	46001	yes	Pinus canariensis	0.987	25.5	6.7	01/01/1 910
726286	4372497	VALENCIA	46003	yes	Ficus macrophylla	4.5	29.7	38.1	0/01/18 72
726308	4372493	VALENCIA	46003	yes	Chamaerops humilis Grupo	1.11	6.4	9.8	01/01/1 950
726309	4372526	VALENCIA	46003	yes	Washingtonia robusta	0.48	27.4	3.5	01/01/1 930
726252	4372508	VALENCIA	46003	yes	Ficus macrophylla	4.14	22	34.5	01/01/1 860
726299	4372531	VALENCIA	46003	yes	Phoenix canariensis Macho	0.75	25	5.9	01/01/1 920
726304	4372536	VALENCIA	46003	yes	Phoenix canariensis Macho	0.61	20.8	6	01/01/1 920
726302	4372542	VALENCIA	46003	yes	Washingtonia robusta	0.5	27.30	3	01/01/1 920
726314	4372481	VALENCIA	46003	yes	Ficus macrophylla	1.56	18.2	26.3	01/01/1 942
726253	4372585	VALENCIA	46003	yes	Quercus ballota	0.9	25	20.2	01/01/1 810
725792	4372941	VALENCIA	46001	yes	Magnolia grandiflora	0.5	17.5	9.9	01/01/1 930

De modo que como se puede apreciar en la tabla nº 6, se introducen las coordenadas donde se ubica el árbol, ciudad, código postal, nombre científico, diámetro del tronco, altura del árbol, altura de la canopia y la edad estimada del ejemplar. Con este método de introducción de datos se consigue una mayor eficacia y rapidez que con el método manual. En cambio, tiene el inconveniente que no se puede cargar una fotografía del ejemplar. Este modo también obliga a hacerlo con mucha precisión.

A continuación, se guarda en formato CSV y ese mismo archivo se carga en la aplicación mediante la herramienta Bulk Uploader, como se observa en la figura 9.

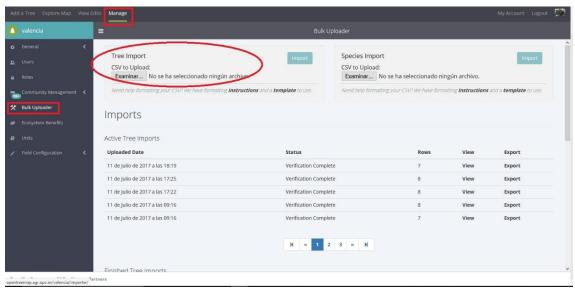


Figura 9: Introducción de datos masiva en la aplicación. [Fuente: OpenTreeMap, elaboración propia]

4.2.3.2. Introducción de datos de forma individual

La introducción de datos individual se realiza de manera más didáctica, ya que se emplea para ello el mapa interactivo, figura 10, de manera que haciendo un clic sobre "Add a Tree" aparece un icono de un árbol el cual hay que dirigirse al lugar donde esté la ubicación del árbol que tengamos inventariado y a continuación presionar el botón "Next" para introducir los parámetros obtenidos (nombre científico, diámetro del tronco, altura del árbol, altura de la canopia y la edad estimada del ejemplar).

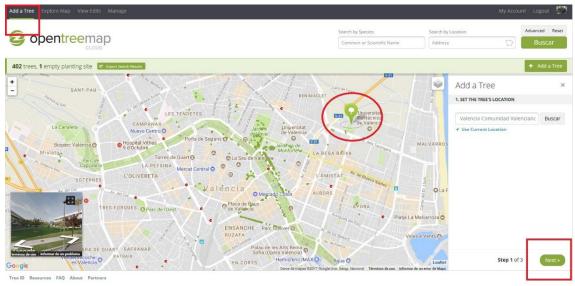


Figura 10: Introducción de datos manualmente. [Fuente: OpenTreeMap, elaboración propia].

De este modo se requiere de una gran precisión y conocimientos del terreno ya que puede existir un margen de error en cuanto a la ubicación exacta del ejemplar. Cosa que mediante coordenadas se evita dicho problema. Sin embargo, de este modo puede ser útil para concienciar a parte de la población incluso del gobierno o instituciones privadas.

4.2.4. Proceso de cálculo mediante factores ecológicos proporcionados por el arbolado urbano

El software empleado para poder hallar la transformación de factores ambientales como factores de calidad del aire, factores energéticos, factores de CO₂, y factores de agua de lluvia a €/año, para conseguir la concienciación de la población urbana, es el software libre de OpenTreeMap.

OpenTreeMap es un software abierto para el inventariado colaborativo de árboles mediante geolocalización (Figura 11). OpenTreeMap proporciona una plataforma de fácil uso que permite a personas, organizaciones, y gobiernos de forma colaborativa contribuir a generar un mapa dinámico e interactivo que muestra el arbolado urbano.

En https://github.com/OpenTreeMap/otm-core se encuentra el código "OTM2" que se ha utilizado en este proyecto.

PROCESO:

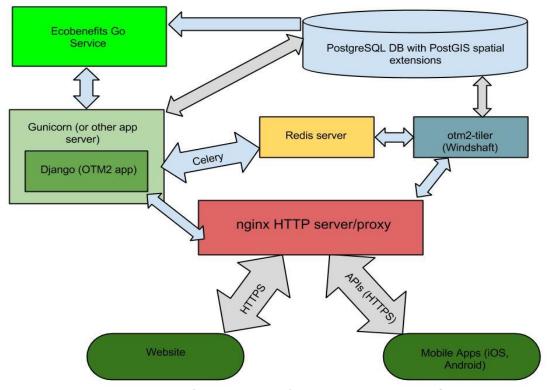


Figura 11: Organigrama de servicios ofrecidos por el software libre OpenTreeMap. [Fuente: OpenTreeMap].

Donde:

- Django OTM2 APP: Lógica de negocio de la aplicación.
- OTM-TILER: Servicio encargado de mostrar los mapas.
- The Celery SERVICE:Se utiliza como cache así como generar grandes exportaciones.
- Ecobenefits Go Sevice: servicio REST que provee los cálculos de beneficios ecológicos para opentreemap. (CO₂, agua de lluvia, ahorro de electricidad, etc., actualmente basado en el arbolado urbano).

Ejemplo de cálculo:

Especie: Higuera común (Ficus carica L.)

- -Se identifica el código OTM2 (código interno, para higuera Fica) para la especie dada: FICA.
- -Se determina la región con código de región. En la que se encuentra el árbol. Por ejemplo: Inland Empire (InlEmpCLM).

-Con los 2 códigos obtenidos anteriormente se determina el código itree a partir de la especie y la región seleccionada usando la lista de especies. BDS OTHER

Automáticamente el módulo de la aplicación hace los cálculos que son de nuestro interés.

Los cálculos son determinados por interpolación lineal de los parámetrosextraídos de las hojas de datos del servicio.

Por ejemplo para el cálculo de la electricidad se usaría el siguiente csv: https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output__InlEmpCLM__electricity.csv

Los rangos de diámetros están en centímetros, por lo tanto, convertimos 20 pulgadas en 50.8 cm. Usando estos datos encontramos el siguiente rango:

38.10 **53.34** BDS OTHER 189.2 189.2

En este caso interpolamos sobre la línea horizontal con lo que obtenemos 189.2 kwh.

Haciendo lo mismo para gases naturales: https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output InlEmpCLM natural gas.csv

38.10 **53.34** BDS OTHER -81.4 -81.4

Por tanto, el ahorro en gas natural seria -81.4 kbtus. Esto sería -0.814 therms o -23.86 kwh Teniendo en cuenta que:

> $1BTU \equiv 252.164 \, cal \equiv 1055.056 \, J$ $1THERM \equiv 105.5 \, MJ \equiv 29.31 \, kW \, / \, hora$

Continuando con agua de lluvia: https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output InlEmpCLM hydro interception.csv

38.10 **53.34** BDS OTHER 3.16 3.16

Se obtienen 3.16 m³ de agua.

Los cálculos de carbono pueden ser calculados de la misma forma.

22

569.6 kg de CO₂ almacenado.

CO₂eludido: https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output InlEmpCLM co2 avoided.csv

55.7 kg de CO₂

CO₂ retenido: https://github.com/OpenTreeMap/otmecoservice/blob/master/data/output InlEmpCLM co2 sequestered.csv

Aquí de hecho hay que calcular:

$$m = dx/dy = -24.6 / 15.24 = -1.614$$

 $y0 = y - mx = 0.0 - 53.34 * -1.614 = 86.1$
 $y = mx + b = -1.614 * 50.8 + 86.1 = 4.1 Kg = 9.06 Lb$

Teniendo en cuenta que: 1Lb = 0,4536 kg

4.2.5. App móvil - OpenTreeMap

La App que se ha empleado para que el proyecto tenga el efecto deseado de concienciación con el medioambiente ha sido OTM-ANDROID.

Esta App cliente para Android devices es la que se puede obtener de una manera libre, gracias al software libre de OpenTreeMap (https://github.com/OpenTreeMap/otm-android)

4.2.6. Variables de cálculo empleadas por el sistema

Las variables de cálculo que se emplean para determinar el beneficio económico que reporta una especie. Están basadas en los factores de la calidad el aire, factores energéticos, factores de CO₂ y factores de agua de lluvia.

- Factores de calidad del aire: Partículas en suspensión PM10, óxido de azufre (SOx), óxidos de nitrógeno (NOx), Ozono (O₃) y compuestos orgánicos volátiles (VOC).
- Factores energéticos: Electricidad y Gas natural.
- Factores de CO₂: CO₂
- Factores de agua de lluvia: Agua de lluvia filtrada.

5. Resultados y discusión

Todos los datos recogidos durante el inventario se recopilan en las fichas individuales de cada árbol o palmera y a continuación se vuelcan al software de OpenTreeMap. De este modo se obtienen los resultados a partir de la interpolación y se analizan de manera independiente los árboles de las palmeras. Procediendo con los resultados de los mismos de la siguiente forma.

5.1. Resultados y discusión sobre los datos obtenidos de los árboles urbanos

Tras la realización del cálculo de los beneficios ecológicos que reportan las especies arbóreas de los distritos municipales 1, 2, 3, 4, 5 y 6 de la ciudad de Valencia. Se construye la gráfica que se muestra en la figura12 con las especies más comunes y que mayor y menor beneficio ecológico aportan.

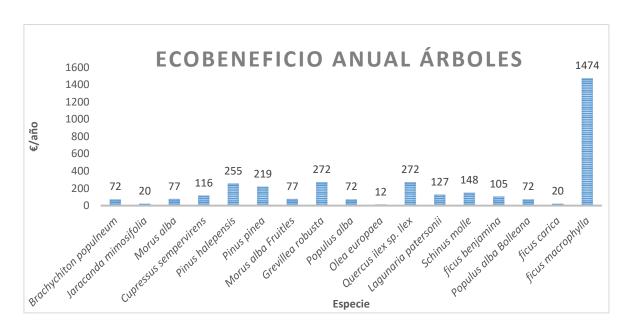


Figura 12: Ecobeneficio anual. [Fuente: Elaboración propia]

Tras la recopilación de los árboles y su posterior cálculo, se puede determinar que la especie que mayor beneficio aporta es el *Ficus macrophylia con un beneficio anual de 1474 €/año*. Muy por debajo se encuentran la *Grevillea robusta* y el *Quercus iles sp.llex* con 272 €/año de beneficio reportado a la ciudad. Le siguen de cerca el *Pinus halepensis* con 255 €/año y el *Pinus pinea* con 219 €/año.

5.2. Resultados y discusión sobre los datos obtenidos de las palmeras

Con el mismo procedimiento que se ha realizado con los arboles, se realiza con las palmeras (figura 13). Seleccionando las palmeras mas representativas de la ciudad de Valencia. Se construye una tabla para apreciar el beneficio ecológico que reporta cada especie.

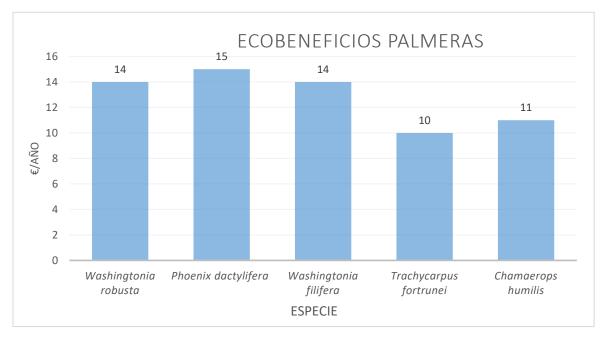


Figura 13: Ecobeneficios de las palmeras. [Fuente: Elaboración propia].

Tras la recopilación de las palmeras y su posterior cálculo, se puede determinar que la especie que mayor beneficio aporta a la ciudad de Valencia es *Phoenix dactylifera* con 15 €/año, siendo muy similares los resultados obtenidos para el resto de palmeras.

5.3. Resultados obtenidos respecto al diámetro y altura

Resulta importante hacer mención a los resultados obtenidos del beneficio ecológico, según el diámetro del tronco (sistema radicular) y la altura de la especie. De este modo se puede apreciar en la tabla 9 que:

Las especies arbóreas que mayor diámetro de tronco y altura arbórea tienen, contribuyen con un beneficio ecológico mayor que las especies con pequeño porte y diámetro menor. El caso del *ficus macrophyllia* es el ejemplo claro, ya que contiene un diámetro de 3 metros y la altura es de 31,2 metros.

Tabla 7: Beneficios ecológicos según diámetro, edad y altura

Nombre común	Nombre científico	Beneficio total anual (€)	Edad estimada	Diametro m)	Atura (m)
Braquiquito	Brachychiton populneum	72	67	0,4	6,5
Palmera mexicana	Washingtonia robusta	14	87	0,4	30,6
Jaracanda	Jaracanda mimosifolia	20	87	1	18,2
Morera blanca	Morus alba	77	88	0,7	12
Ciprés	Cupressus sempervirens	116	107	0,5	18,5
Palmera datilera	Phoenix dactylifera	15	78	0,6	23,2
Pino carrasco	Pinus halepensis	255	107	1	31,7
Pino piñonero	Pinus pinea	219	108	0,9	16,1
Palmera de California	Washingtonia filifera	14	87	0,7	18,5
Morera Blanca "fruitles"	Morus alba Fruitles	77	88	0,7	11,9
Pino de oro	Grevillea robusta	272	57	0,8	26,8
Palmera de Fortune	Trachycarpus fortrunei	10	57	0,2	9,8
Álamo blanco	Populus alba	72	77	0,9	21,3
Olivo	Olea europaea	12	307	2	10,7
Encina	Quercus ilex sp. Ilex	272	158	0,8	9,7
Palmito	Chamaerops humilis	11	50	1,3	4,8
Árbol pica-pica	Lagunaria patersonii	127	78	0,7	15
Palmera canaria	Phoenix canariensis	55	77	0,7	20
Falso pimentero	Schinus molle	148	88	1	11,5
Ficus	ficus benjamina	105	28	0,5	18,3
Álamo blanco "Bolleana"	Populus alba Bolleana	72	77	0,8	23
higuera	ficus carica	20	98	0,5	7,8
ficus	ficus macrophylla	1474	87	3	31,2

Respecto al desglose de los beneficios económicos, se puede apreciar en la tabla 10 que las especies arbóreas reportan una gran cantidad de CO_2 eliminado a la ciudad, Además, también resulta significante ver como mejoran la filtración del agua de lluvia.

Tabla 8:Desglose del beneficio que reporta cada especie. [Fuente: Elaboración propia]

Nombre común	Nombre científico	Beneficio total anual (€)	Energía conservada Kw/h año	Agua lluvia filtrada L/año	calidad del aire mejorada Kg/año	CO2 retirado Kg/año	Edad estimada
Braquiquito	Brachychiton populneum	72	108,2	3565,9	0,6	402,4	67
Palmera mexicana	Washingtonia robusta	14	27,3	1127	0,1	20,4	87
Jaracanda	Jaracanda mimosifolia	20	61,5	1419.8	0,4	21,7	87
Morera blanca	Morus alba	77	185	7819	0,4	81	88
Ciprés	Cupressus sempervirens	116	145,4	6282,4	0,9	179,3	107
Palmera datilera	Phoenix dactylifera	15	38,8	1067,4	0,1	19,8	78
Pino carrasco	Pinus halepensis	255	241,6	17355	1,4	402,5	107
Pino piñonero	Pinus pinea	219	220,1	13748	1,3	345,1	108
Palmera de California	Washingtonia filifera	14	35,1	1179,9	0,1	20	87
Morera Blanca "fruitles"	Morus alba Fruitles	77	185	7819	0,4	81	88
Pino de oro	Grevillea robusta	272	153,7	7431	0,2	483,8	57
Palmera de Fortune	Trachycarpus fortrunei	10	10	483,3	0	17,8	57
Álamo blanco	Populus alba	72	185	7819	0,4	72,2	77
Olivo	Olea europaea	12	30,3	1229,9	0,2	12,1	307
Encina	Quercus ilex sp. Ilex	272	153,7	7431	0,2	483,8	158
Palmito	Chamaerops humilis	11	13,2	621,3	0,1	18,6	50
Árbol pica-pica	Lagunaria patersonii	127	198,3	8079,7	1,2	184,9	78
Palmera canaria	Phoenix canariensis	55	169	3660	0,7	60,5	77
Falso pimentero	Schinus molle	148	274,6	14558	1,8	188,3	88
Ficus	ficus benjamina	105	159,4	5947,6	0,9	155,9	28
Álamo blanco "Bolleana"	Populus alba Bolleana	72	185	7819	0,4	72,2	77
higuera	ficus carica	20	61,5	1419,8	0,4	21,7	98
ficus	ficus macrophylla	1474	563,6	65168,6	12,4	3097,5	87

5.3. Resultados generales

Con los datos generales obtenidos se puede determinar que, para un total de 404 árboles urbanos, la ciudad de Valencia consigue un ahorro directo de 80063 €. Desglosados en:

Energía conservada: 5891 €
Agua de lluvia filtrada: 4677 €
Calidad del aire removido: 968 €
Dióxido de carbono retirado: 68525 €

6. Conclusiones

El arbolado urbano de la ciudad de Valencia, es muy preciado no sólo a nivel ambiental, sino que también lo es a nivel paisajístico y social. Como consecuencia de ello es sumamente importante constatar una concienciación apropiada para que el ciudadano sea consciente de ello para que perdure en el tiempo.

Con este trabajo se ha podido conocer que árboles de los distritos municipales 1, 2, 3, 4, 5 y 6 generan mayor beneficio ecológico a la ciudad de Valencia. Sobre estos datos incluidos en el software de OpenTreeMap, cabe la posibilidad de ampliar este estudio, con un análisis pormenorizado de los árboles de toda la ciudad de Valencia, incluso de cualquier otra ciudad de Europa o del Mundo.

El número de árboles y palmeras inventariados en los distritos municipales 1, 2, 3, 4, 5 y 6 ha sido un total de 404 ejemplares.

Una vez realizado un primer análisis con el reporte económico de cada especie, la primera conclusión que saca es que el beneficio ecológico más importante es el dióxido de carbono (CO₂), este reporte, en las palmeras es muy bajo en comparación al de la mayoría de los árboles. Una palmera es una especie de un alto valor paisajístico y, además, un símbolo para la ciudad de Valencia, pero a la hora de reportar beneficios ecológicos no es muy aconsejable su utilización.

En cambio, el aporte que realizan los arboles inventariados son sumamente importantes para la obtención de los beneficios ecológicos que reportan a la ciudad de Valencia.

- La especie *Ficus macrophyllia* ha resultado ser muy beneficiosa para la ciudad porque reporta cada ejemplar de 87 años de vida un beneficio ecológico de 1474€.
- Las palmeras reportan una media de 15€/año de beneficios ecológicos a la ciudad.
- En el caso del Pinus halepensis y el Ficus macrophyllia tiene un reporte de beneficio ecológico muy importante para la ciudad, Además, tiene un elevado valor sentimental y paisajístico para la ciudad de Valencia. Se aconseja que, en caso de realizar plantaciones de arbolado urbano, se realice un estudio previo y se tenga en consideración estas especies. Ya que de este modo se contribuye directamente a la mejora de la salud de la ciudadanía y también se mejora paisajísticamente y contribuye de manera directa con el cambio climático.
- Se desaconseja la plantación de palmeras para un beneficio ecológico directo, pero en cambio se aconseja su plantación si se quiere un elevado valor paisajístico, único y apropiado para la ciudad de Valencia.
- Por lo general, el arbolado urbano de los distritos municipales 1, 2, 3, 4, 5 y 6 reportan un beneficio económico de suma importantísima a la ciudad de Valencia. De manera que realizar un inventario exhaustivo de toda la ciudad de Valencia e introducir los datos en la aplicación móvil sería de gran utilidad para conseguir una mayor concienciación ciudadana de la importancia que tiene el arbolado urbano para sustentar la ciudad de una manera limpia y sostenible.

7. BIBLIOGRAFÍA

- Carmen Vallejo (2015-03-15) El Hábitat 4.0 Sostenibilidad y Apps. Recuperado de: http://www.madrimasd.org/blogs/sostenibilidad_responsabilidad_social/2015/03/15/13 2493
- VALENCIA CAPITAL SOSTENIBLE, Ayto. (2017) *Un pacto mundial*. Recuperado de: http://valenciacapitalsostenible.org/
- JOSE ANTONIO SAIZ DE OMEÑACA Y ANTONIO PRIETO RODRIGUEZ, (2004) edición (2004)
 Arboricultura y gestión del arbolado urbano. MINISTERIO DE FOMENTO MINISTERIO DE
 MEDIO AMBIENTE. Editorial: CENTRO DE ESTUDIOS Y EXPERIMENTACIO, Madrid
- PEDRO CALAZA MARTINEZ Y MARIA ISABEL IGLESIAS DIAZ, (2016) EL RIESGO DEL ARBOLADO URBANO: CONTEXTO, CONCEPTO Y EVALUACION. Editorial: S.A. MUNDI-PRENSA LIBROS.
- Instituto Valenciano de Investigaciones Agrarias (2011), DATOS METEOROLÓGICOS. http://riegos.ivia.es/datos-meteorologicos

- Real Academia Española, (2017) Ciudad, Diccionario de la Real Academia Española. http://lema.rae.es/drae/?val=ciudad
- Real Academia Española, (2017) *Parque*, Diccionario de la Real Academia Española. http://dle.rae.es/?w=zona 4 Definición de parque
- Google, (2017), Google earth. https://earth.google.com/web
- Ayuntamiento de Valencia (2017), Estadística.
 https://www.valencia.es/ayuntamiento/estadistica.nsf
- Ayuntamiento de Valencia (2017), Escuela de jardinería y paisaje
- Ayuntamiento de Valencia (2017), Observatorio Municipal del arbolado urbano de Valencia (OMAV)
- GitHub (2017), Código otm. https://github.com/OpenTreeMap/otm-core
- GitHub (2017), Variable gas natural. https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output__InlEmpCLM__natural_gas.csv
- GitHub (2017), *Hydro interception*. https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output__InlEmpCLM_hydro_interception.csv
- GitHub (2017), CO₂ Almacenado. https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output__InlEmpCLM__co2_storage.csv
- GitHub (2017), CO₂ Eliminado. https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output__InlEmpCLM__co2_avoided.csv
- GitHub (2017), CO₂ Retenido. https://github.com/OpenTreeMap/otm-ecoservice/blob/master/data/output InlEmpCLM co2 sequestered.csv
- GitHub (2017), Aplicación android. (https://github.com/OpenTreeMap/otm-android)