Propagation of artifact errors on kinematic angles. Effect on Euler angles

De Rosario, Helios (1), Page, A.(2), Mata, Vicente (3), Besa, Antonio (3), Moreno, Rafael(1).

Introduction

Soft tissue artifacts (STA) are a major source of error in human movement analysis. STA measurements differs depending on subject characteristics, segment under analysis, task and markers location. Moreover, the way in which STA are described can introduce some additional variability. In particular, the use of Euler angles can amplify the effect of STA, in a similar way as the described by [1] for the case of accidental random errors propagation.

In this paper we propose explicit expressions to compute the propagation of STAs on the joint angles expressed as Euler angles.

Methods

From a kinematic point of view, the STA can be described as the relative motion of the marker cluster over the underlying bone. This motion is quantified by the displacement of the marker centroid, \(\Delta \mathbf{R}_G \), as well as a small rotation, \(\Delta \mathbf{\theta} \). On the other hand, the motion of the underlying bone from a reference position implies a translation \(\Delta \mathbf{R}_G \) and a finite rotation. The angular displacement can be described by means of Euler angles, i.e. a sequence of rotations \(\Phi_1, \Phi_2, \Phi_3 \) around the axes \(e_1, e_2, e_3 \), respectively. The rotation associated to the artefact propagates to the measured Euler angles as an error, \(d\Phi_1, d\Phi_2, d\Phi_3 \). By assuming \(d\Phi \) to be small (\(d\Phi < 10^\circ \)), it is possible to prove that

\[
\mathbf{R} \times d\mathbf{\theta} = d\Phi_1 \mathbf{e}_1 + d\Phi_2 \mathbf{e}_2 + d\Phi_3 \mathbf{e}_3 \quad (1)
\]

where \(\mathbf{R} \) is the rotation matrix. Equation (1) represents a system of linear equations which coefficients depends of the selected Euler sequence. In the case of the sequence proposed for the lower limb, \(YX''Y'' \), [3] the solution of (1) is show in eq (2).

\[
\begin{align*}
\Phi_1 & = \frac{c2 s3 d\theta}{s2} - \frac{c3 d\theta_1}{s2} \\
\Phi_2 & = c2 s3 d\theta_2 + s3 d\theta_1 \\
\Phi_3 & = d\theta_3 + c2 \frac{s3 d\theta_1 + c3 d\theta_2}{s2}
\end{align*}
\]

As Eq (2) shows, the propagation of STA to the Euler angles is non linear and present crossover effect. The propagation is very sensitive to \(\Phi_2 \) for small values the error propagated to \(\Phi_1 \) and \(\Phi_3 \) is amplified.

Experimental validation

In order to validate the proposed model of error propagation an experiment was performed. We used a model of upper limb consisting of a rigid bar articulated in a rótula y rodeada de espuma deformable. Un conjunto de marcadores situados sobre la espuma simulaban el movimiento con artefacto, mientras que otro conjunto unido a la barra permite medir el movimiento sin artefacto. La barra se movió a mano simulando diferente tipos de movimientos. The motion was recorded by a Kinescan-IBV. Kinematic analysis was performed as described in [3].

References