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Universidad Politécnica de Valencia, CMT-Motores Térmicos, Camino de Vera s/n, 46022 Valencia, Spain.

Abstract

Solution of governing equations for one-dimensional compressible unsteady flow has been
performed traditionally using a homogenously distributed spatial mesh. In the resulting node
structure, the internal nodes are solved by applying a shock capturing finite difference numerical
method whereas the solution of the end nodes, which define the boundary conditions of the pipe,
is undertaken by means of the Method of Characteristics. Besides the independent solution of ev-
ery method, the coupling between the information obtained by the method of characteristics and
the finite differences method is key in order to reach a good accuracy in gas dynamics modeling.
The classical spatial mesh could provide numerical problems leading the boundary to generate
mass, momentum and energy lack of conservation because of the interpolation methodology
usually applied to draw the characteristics and path lines from its departure point at calculation
time to the end of the pipe during the next time-step. To deal with these undesirable behavior,
at this work a modification of the traditional grid including an extra node close to the boundary
is proposed in order to explore its ability to provide numerical results with higher conservation
fulfillment.
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1. Introduction

The work reported in the present paper deals with the solution of the boundary conditions in
gas dynamics codes and how the way in which the sort of spatial mesh of the 1D-elements can
affect the accuracy of the solution. 1D-elements are those in which one of the spatial dimensions
is higher than the others, so a length variable is necessary to define the element, as in pipes or
ducts. Instead of the traditional mesh to discretize the 1D-elements which accounts for uniformly
distributed nodes, the proposal of Corberán and Gascón [1] has been developed and implemented
in OpenWAMTM[2] [3], an open source code for gas dynamics calculation of one-dimensional
compressible unsteady and non-homentropic flow developed at CMT-Motores Térmicos.
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According to this proposal, for a given spatial mesh size equal to ∆x an extra node is added,
so that the distance from the end nodes of a 1D-element to the neighboring ones is set to ∆x/2
instead of ∆x. As a consequence, when solving the neighboring nodes of the end of the 1D-
element, the mass, momentum and energy fluxes are evaluated at the extremes of their control
volume which coincides with the end of the 1D-element. This effect contributes to increase the
accuracy of the solution obtained in the boundary conditions. The existance of contact dicon-
tinuities in the boundary conditions between a 1D and 0D-elements is analyzed as a validation
of the proposed methodology. 0D-elements are those in which all the geometrical parameters
are similar and the volume is used to define the element. That situation is representative of in-
take and exhaust valves opening in internal combustion engines and its modelling is traditionally
characterized by the lack of mass conservation in the solution of the governing equations [4] that
can be mitigated with the proposed extra-node mesh.

2. Equations and mesh methodology

The governing equations for one-dimensional unsteady compressible non-homentropic flow,
i.e. the mass, momentum and energy conservation equations [5] [6], form a hyperbolic system
of partial differential equations in the form of equation 1. The vectors are represented in matrix
form in equation 2.
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In equation 2, W represents the vector of flow properties or vector of solutions, F is the vector
of fluxes (mass, momentum and energy) and vector C includes the source terms that take into
account the effects of area changes, friction and heat transfer respectively. In that equation F
represents the cross section-area of the 1D-element.

This system of equations is applied to the solution of flow advection through 1D-elements
like ducts or channels. The solution of this problem requires the length of the element to be dis-
cretized into nodes of calculation where the conservation equations are solved. The flow proper-
ties at the internal nodes of the 1D-element are obtained applying a shock capturing numerical
methods as proposed by Takizawa [7], Azuma [8] and Poloni [9].

For the solution of an internal node j at instant time n + 1, point ( j, n + 1), these methods
evaluate the fluxes entering and exiting to/from the control volume, as shown in Figure 1(a)
for the case of the two-step Lax-Wendroff method [10]. The calculation of these fluxes allows
obtaining the solution of the flow properties at ( j, n+1) by solving the second step of the method,
which is shown in equation 5. Equation 3 and 4 correspond to the first step of the two-step Lax-
Wendroff method [11], which provides the solution at ( j − 1/2, n + 1/2) and ( j + 1/2, n + 1/2)
from ( j − 1, n) and (k, n) respectively [12] [13]. At these equations ∆t is the time-step obtained
from the application of CFL condition [14].
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Figure 1

If the 1D-element is discretized with a homogeneously distributed spatial mesh, which is with
the same size ∆x between all the nodes, the end nodes can be solved by means of the Method of
Characteristics [5]. By means of this method, the solution at the end node k at time level n + 1 is
obtained from the Riemman variables and the entropy level, so that their departure points have
to be calculated at time level n. From these points the Riemman variables and the entropy level
reach the end of the 1D-element at time level n+1. It allows the specific solution for the boundary
condition. This procedure is sketched in Figure1(b). The values of the Riemman invariables and
entropy level are known at the departure point values. However these values do not coincide with
the values at point (k, n + 1) because of the influence of friction, heat transfer and area changes
along the characteristic lines as expressed by means of equations 6 and 7 [5] [6].

λ = λdp + δλ f riction + δλheat + δλarea changes (6)

AA = AAdp + δAA f riction + δAAheat + δAAarea changes (7)

One of the problems of this sort of solution arises, on the one hand, from the high influence
of the solution of the end node, of first order in time and space, on the solution of the neighboring
nodes. On the other hand, the accurate solution in the internal nodes obtained by means of shock
capturing methods is decoupled from the solution of the end nodes because of the interpolation
process needed to evaluate the departure point and the value of the Riemann variables and the
entropy level every time-step.

To avoid these problems and to obtain a higher accuracy in conservation of the flow prop-
erties, it is proposed an alternative methodology to mesh the spatial domain. According to this
proposal the neighboring nodes of the 1D-element boundaries are placed at a distance ∆x/2 of
the end, while the rest of the internal nodes are separated a distance of ∆x, as it is shown in
Figure 2. With this procedure an extra node has been introduced with respect to the traditional
homogeneously distributed mesh.

Figure 2

The solution of the neighboring node to the end of the 1D-element is shown in Figure 2(a).
The flow properties at node j at time level n + 1 are calculated again by applying the two-step
Lax-Wendroff method, but now equation 4 to obtain the vector of fluxes at point (k, n + 1/2) is
not necessary, due to the vector of fluxes is obtained by applying the method of characteristics.
The departure point for the Riemman invariables and entropy level will be placed between nodes
j and k. Once the vector of fluxes is known at nodes (k, n+1/2) and ( j−1/2, n+1/2) the solution
of flow properties is obtained applying the second step of the Lax-Wendroff method, equation 8.
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The problem now is to obtain flow properties at the boundary node k at time level n + 1. A
first order method has been used to solve that boundary node.
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According to equation 9 and Figure 2(b) the flow properties at point (k, n + 1) are calculated
with the information of properties at point (k, n + 1/2), which are known from the solution of the
Method of Characteristics, and at point ( j− 1/2, n + 1/2) whose properties are obtained from the
first-step of the Lax-Wendroff method. Another feasible solution way will be to use the Method
of Characteristics to obtain the flow properties at the boundary node (k, n + 1). In this case the
departure points will be placed between points ( j − 1, n) and (k, n).

3. Results and discussion

The proposed extra-node methodology has been applied to simulate the behavior of the flow
for the model shown in Figure 3. This model consists of an intermediate volume of 1,000 cm3

represented by the big square numbered as 1. It is coupled to two pipes of 30 mm in diameter,
represented by dark lines in Figure 3. The pipe numbered as 1 represents the inlet duct which is
300 mm in length; the pipe numbered as 2 represents the outlet duct which is 200 mm in length.
The small size squares represent the boundary conditions. In particular, boundary conditions 1
and 2 are the inlet and outlet boundary conditions to the volume respectively. The discharge
coefficients at these boundaries are equal to 1. Boundary conditions 3 and 4 allow to impose the
inlet and outlet pressure pulses to the system.

Figure 3

Sinusoidal pressure signals with phase-shift have been imposed at the inlet and outlet of the
system to generate a thermal contact discontinuity at the inlet and outlet of the volume. The
imposed pressure pulses are shown in Figure 4(a). The frequency is 50 Hz for both inlet and
outlet pulses, but have different phase. The average pressure for the inlet pulse is 1.1 bar with
0.2 bar in amplitude. For the outlet pulse the average pressure is 1 bar with 0.3 bar in amplitude.
The Figure 4(b) shows the instantaneous mass flow at the inlet and outlet of the volume by using
the proposed extra-node methodology (dark color) and the traditional homogeneously distributed
mesh (light color). The solid line represents the mass flow at the inlet node to volume and the
dashed line plots the mass flow at the outlet one. The instantaneous negative values of mass flow
points out the existance of back-flow through the volume.

Figure 4

When the converged solution is achieved, there should not be differences between the mass
flow coming into and going out to the volume due to the fact that there is no mass accumulation
at steady-state conditions and the volume is not a source generating or lossing mass. However,
Table 1 shows a big unbalance in mass conservation at volume when the traditional mesh is
applied. On the contrary, the proposed extra-node mesh shows negligible mass conservation
errors. In both cases the mass conservation error has been calculated according to equation 10,

4



error (%) =

N∑
i

(
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where ṁ is the mass flow at the inlet or outlet node of the 1D-element, as defined, the subscript
i represents every time level and N is the number of time-steps representing the duration of the
inlet pulse, i.e. a cycle of calculation.

Table 1

Figure 5 represents the mass flow at every pipe boundary for both sort of 1D-elements mesh.
The boundaries are located at 0 cm (first node of inlet pipe), 30 cm (2 nodes corresponding to
the end of the inlet pipe and the beginning of the outlet pipe) and 50 cm (last node of the outlet
pipe).

Figure 5

Figure 5(a) shows the obtained results when a coarse mesh is applied to both mesh method-
ologies. The traditional methodology does not work properly when few numbers of nodes are
considered. Therefore the spatial mesh up to 1 cm has been necessary to obtain similar accuracy
than the extra-node methodology working with a coarse mesh, as it is shown in Figure 5(b). In
this case the artificial mass flow generation inside the volume is small for the traditional method-
ology although that mass conservation error is still lower with the extra-node mesh. In addition,
the conservation of mass flow between the first and the last nodes of the model with the spatial
mesh size of 1 cm using the traditional homogeneously distributed mesh is not as good as the
obtained with the proposed methodology even with a more coarse mesh. The exact value of the
mass flow variable for that model is 0.0553 kg/s.

Table 2 summarizes the information obtained with different sizes of spatial mesh applying
the traditional methodology. The results are compared with that obtained when applying the
extra-node mesh.

Table 2

The traditional methodology to mesh the 1D-elements needs a very thin spatial mesh size
which means higher number of calculation nodes to provide a good accuracy in mass conser-
vation. It results in a higher computational effort. However, the extra-node mesh methodology
can be used with a coarse spatial mesh keeping good accuracy in mass flow conservation. Fur-
thermore, it preserves the computational effort even in the case of complex flow conditions such
as contact discontinuities existance. These situations in which a back flow through the system
appears are very common during internal combustion engine operation as in the intake or ex-
haust cylinder valves opening. Therefore it is important to ensure the balance between the good
accuracy in results and the lower computational effort.

The computational effort for the same spatial mesh size is higher with the proposed method-
ology than with the traditional one, due to the fact that it has been added an extra node. Therefore
the number of times the conservation equations system are solved is increased. In addition, this
extra node implies a modification of the time-step according to the CFL stability criterion [14],
which becomes lightly reduced because of the smaller mesh at the boundaries ∆x/2. Neverthe-
less, this increase of computational effort is compensated by the fact that the traditional mesh
requires a very reduced spatial mesh size to ensure mass conservation.
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4. Summary and conclusions

The solution of the governing equations for compressible flow in 1D-elements requires to di-
vide the spatial domain into nodes where the conservation equations are solved. Traditionally, a
homogeneously distributed spatial mesh has been used to define the calculation nodes, being ∆x
the distance between all the nodes. However, the use of this sort of spatial mesh can provide lack
of mass conservation at boundaries, mainly if thermal contact discontinuities appears. To avoid
that phenomenon it has been proposed an extra-node mesh. This method consists on placing the
neighboring nodes to the boundary ones at a distance ∆x/2, while all the other internal nodes
are separated a distance equal to ∆x. The use of this proposed mesh leads to solve the internal
nodes defining control volumes covering all the length of the 1D-element, as in a finite volume
discretization. Therefore, the solution provided by the Method of Characteristics at the bound-
aries is in accordance with the vector of fluxes applied in the solution of the neighboring node by
means of shock capturing methods. Then there is no lack of information between the last control
volume and the boundary condition, providing the proposed extra-node mesh a higher accuracy
in mass flow conservation. It has been proved the better accuracy in mass conservation at pipe
boundaries when the proposed extra-node mesh is used to simulate thermal contact discontinu-
ities. To obtain a similar accuracy by using the traditional mesh it would be necessary to reduce
dramatically the spatial mesh size, which would mean the need of higher computational effort.
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NOTATION

0D zero-dimensional
1D one-dimensional
AA dimensionless entropy level
C source term vector
CFL Courant-Friedrich-Lewy criterion
F cross-section area
F flow term vector
g friction term
ṁ mass flow
p gas pressure
q heat per unit of time and area
t time dimension
u gas velocity
W field variable vector
OpenWAM Open source code Wave Action Model
x axial dimension

Greek letters

δλ variation of Riemann variable
∆t time-step
∆x mesh size
γ specific heat ratio
λ incident characteristic (Riemann variable)
ρ gas density

Subscripts and superscripts

dp characteristic line or pathline departure point
i index identifying calculated time-step
j index for internal calculation node
k index for boundary calculation node
n index for time level
N number of time-steps in a calculation cycle
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traditional mesh extra-node mesh
Mass error 13.18% −0.16%

Table 1: Mass error between inlet and outlet node of the volume.

Pipe Mesh [cm] Number of nodes
Inlet Outlet Inlet Outlet time [-] mass error [%]

Traditional 15 10 3 3 1.00 13.18
Traditional 10 10 4 3 1.17 2.63
Traditional 5 5 7 5 3.01 1.01
Traditional 2 2 16 11 6.76 0.87
Traditional 1 1 31 21 15.22 0.64
Extra-node 15 10 4 4 1.49 -0.16

Table 2: Mass conservation error and computational effort as function of the spatial mesh size.
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Figure 1: Time marching with a homogeneously distributed spatial mesh: a) solution of internal nodes; b) solution of
boundary nodes.

Figure 2: Time marching with the proposed extra-node mesh: a) solution of internal nodes; b) solution of boundary
nodes.

Figure 3: Analyzed model represented by OpenWAM interface.
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Figure 4: a) Pressure pulses at pipe boundaries; b) Instantaneous mass flow at volume.

Figure 5: Mass flow conservation: a) coarse mesh; b) thin mesh.
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