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Abstract— Time-frequency analysis of the transient current in 

induction motors (IM) is the basis of the Transient Motor 

Current Signal Analysis (TMCSA) diagnosis method. IM faults 

can be accurately identified by detecting the characteristic figure 

that each type of fault produces in the time-frequency plane 

during a speed transient. Diverse transforms have been proposed 

to generate a 2D time-frequency representation of the current, 

such as the short time Fourier transform (STFT), the wavelet 

transform (WT), or the Wigner-Ville distribution (WVD). But a 

fine tuning of their parameters is needed in order to obtain a high 

resolution image of the fault in the time-frequency domain, and 

they also require a much higher processing effort than traditional 

diagnosis techniques, such as the Fourier Transform (FT). The 

new method proposed in this paper addresses both problems 

using the Gabor analysis of the current via the chirp z-transform 

(CZT), which can be easily adapted to generate high resolution 

time-frequency stamps of different types of faults. In this paper, 

it is used to diagnose broken bars of an IM using the current 

during a startup transient. This new approach is theoretically 

introduced and experimentally validated with a 1.1 kW 

commercial motor in faulty and healthy conditions. 

 
Index Terms—Fault diagnosis, Induction motors, Time-

frequency analysis, Fourier transforms, Z transforms. 

I. INTRODUCTION 

Hree-phase inductions motors are a key component of 

industrial installations. The detection of any IM failure at 

an early stage allows the replacement of damaged parts 

during scheduled maintenance operations, thus helping to 

reduce maintenance costs and to avoid costly, unexpected 

shutdowns. MCSA has become the de-facto standard method 

for IM diagnostics because it is non-invasive, and it can be 

performed on-line, without perturbing the operation 

conditions. MCSA is based on the detection of specific current 

harmonics with frequencies that are characteristic of each type 

of fault. For example, breakages in the rotor cage winding 

produce sideband components fb in the line current spectrum 

around the fundamental [1], [2], at frequencies: 

   1( ) 1 )  1,3,5...bf s k p s s f where k p       (1) 

where f1 is the supply frequency, s is the rotor slip and p the 

pole pairs number. The left sideband harmonic (LSH) is  

obtained by substituting k/p=1 in (1): 

  1( ) 1 2·bf s s f   .
          

  (2) 

As (1) and (2) indicates, the frequency associated to the  

fault depends on the motor slip, which may difficult the  

detection of the LSH using the FT spectrum: on the one hand,  

long sampling times are needed to obtain distinct spectral lines 

for the LSH, because its frequency is very near to the supply 

frequency (especially if the motor operates at very low slip, as 

in the case of light loads or high power motors even at rated  

 

load); on the other hand, during these long sampling times, 

load variations can produce slip oscillations that smear the 

spectrum [3]. Load variations can be avoided by analyzing the 

motor without any load [4], but in this case another problem 

arises: the LSH can be buried under the leakage of the mains 

spectral component. So, a minimum 30% of the rated load is 

recommended to perform MCSA [5]. Fig. 1 shows, for an 

experimental 1.1 kW motor whose characteristics are given in 

the appendix, the dependence of the LSH with the load, the 

problem of spectral leakage with light loads and the smearing 

of the spectrum at high load levels. 

 
Fig. 1.  Spectrum of the phase current of a motor with a broken bar in five 
experimental tests. Unloaded healthy machine (a), and machine with a broken 

bar under four different load conditions: unloaded (b), low load (c), medium 

load (d) and full load (e). The spectral leakage hides the LSH in (b) and (c). 
The LSH position depends on the load level. And smearing due to speed 

oscillations appears at rated load (e). 

 

It has been also reported that, at certain slip values, some 

types of load (gearboxes [5]), motors with special 

characteristics (‘spidered’ rotor structures that have the same 

number of legs and poles [6]), or rotor asymmetries (rotor 

ellipticity, misalignment of the shaft with the cage or magnetic 

anisotropy [7]), can show up at the same frequency 

components of broken bars, triggering false alarms. So, 

instead of relying on a single slip value, [5] proposes a “two-
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test comparison”, performing two MCSA tests at significantly 

different loads, with at least 40% difference between them. 

This drawback, the dependence of the fault’s frequency on 

the motor slip, is precisely the strength of time-frequency 

diagnostic methods, such as the one proposed in this paper. 

The evolution of the fault harmonic during a speed transient 

follows a characteristic trajectory in the time-frequency plane, 

which is unique for each type of fault. During the startup 

transient, the whole slip range [1, ~0] is available to detect 

such a figure. Confusing frequencies may appear at certain 

slip values, but the global fault figure is not distorted, so time-

frequency methods can be inherently more reliable than those 

which rely on a single frequency value. Fig. 2 depicts the 

characteristic V-shaped slip-frequency trajectory of the LSH 

during a startup transient (LSHst), as given by (2). 

 
Fig. 2.  Evolution of the frequency of the LSHst as a function of the rotor slip. 

 

Specialized transforms are needed to convert the 1D (time 

domain) current signal into a 2D, time-frequency signal [8]. 

Linear transforms, such as the STFT [9]-[13] and the WT [9]-

[26] or the Fractional FT [27], quadratic transforms, such as 

the WVD [9], [13], [28]-[30] or the Choi-Williams 

distribution (CWD) [31], or even data-driven transforms such 

as the Hilbert-Huang transform (HHT) [32]-[34] have been 

proposed to make such a conversion. The application of these 

advanced time-frequency transforms to motor diagnosis, 

nevertheless, have some drawbacks: quadratic transforms 

generate non-negligible cross-term artifacts in the time–

frequency spectrum that can interfere with the actual fault 

frequencies, thereby diminishing the ability to precisely 

determine the severity of the fault (although some recent 

works suggest that new time–frequency distributions can 

provide strong cross term suppression [31]). The dependency 

on the data of HHT makes it difficult to adjust the frequencies 

of the transform to those characteristic of the fault. The 

performance of the time-frequency transform depends heavily 

on multiple parameters that must be fine-tuned to detect the 

LSHst. For example, in the case of the WT, as [35] points out, 

one criticism is the arbitrary choice of the mother wavelet 

function. [36] remarks that this choice is application 

dependent, and the method of choosing an appropriate basis is 

primarily been of trial and error. [37] indicates that the choice 

of the transform and the appropriate wavelet depends on the 

kind of information that we want to extract from the signal. In 

the case of the STFT, [13] remarks that the length of the 

sliding window determines time and frequency resolution, i.e., 

a good frequency resolution needs a long observation window 

and therefore leads to a bad localization in time and vice 

versa, so the window length has to be chosen based on a prior 

knowledge of the signal. Another major drawback is that time-

frequency analysis requires much more computing resources 

than simple frequency-only analysis, which can limit its 

application in real-time fault diagnostic systems, as those 

implemented in FPGAs [19], [38], or DSPs [15], [39]-[41]. 

Both drawbacks are addressed in the new method presented 

in this paper: a Gabor analysis is applied to the startup current, 

using a Gaussian analyzing window and a detection lattice that 

are optimized, in the sense of minimum entropy, to detect the 

shape shown in Fig. 2. The analysis is carried out using the 

chirp z-transform, based on the FFT, which generates, in a fast 

and computationally efficient way, a high resolution image of 

the LSHst trajectory in the time-frequency domain. A machine 

fault, like a broken bar, is diagnosed by detecting the 

characteristic fault pattern in this representation.  

Also, the diagnostic information generated by the time-

frequency analysis of the current is presented as 2D or 3D 

images, providing a very rich and reliable information about 

the machine condition; certainly, the interpretation of these 

graphs requires an additional training effort of the 

maintenance personnel, more used to interpret traditional FT 

steady-state spectra; on the contrary, the main goal of other 

approaches as [27], based on the Fractional FT, is to translate 

the time-frequency information into spectrum-like graphs, 

easy to identify by non-specialized workforce, which is 

habituated to work with the FT. 

Although the broken bar fault is used for the detailed 

presentation of the proposed method, it can be applied to 

diagnose other faults of the induction motor, such as 

eccentricity, bearing faults, inter-turns short circuits, by 

detecting and displaying the evolution in the time-frequency 

plane of their characteristics harmonics in transient regime. 

The structure of this paper is the following one: in section 

II, the LSHst is characterized in the time-frequency domain. In 

section III, the theoretical basis of the Gabor analysis and the 

chirp z-transform are presented. In section IV the proposed 

method is optimized for the detection of the LSHst, and in 

section V it is experimentally validated with the analysis of 

two experimental 1.1 kW three-phase motors, one with a 

broken bar and the other one in healthy condition. In Section 

VI, the proposed method is applied to detect the eccentricity of 

a motor simulated with a finite elements program. Section VII 

presents the conclusions. 

II. EVOLUTION OF THE LSHST IN THE TIME-FREQUENCY PLANE 

The evolution of the LSHst has been analyzed by Riera et al. 

[17]. Fig. 3 shows its evolution in a simulated machine, 

considering only the fundamental space harmonic of its 

windings, sampled during 2 s at 5 kHz. The parameters of the 

machine are given in the appendix. The conditions selected for 

the simulation were: startup under no load with an inertia 

constant of 0.25 Kg.m2.  

Basically, the LSHst evolves as a sinusoidal wave whose 

frequency and amplitude vary continuously, following 

characteristic patterns. Two types of patterns can be identified 

out of Fig. 3, and they are represented in Fig. 4: a frequency-

time pattern and an amplitude-time pattern. These patterns 

have been obtained from the analytic signal of the LSHst, 

( )LSHsti t , which is built using the Hilbert Transform (HT) 

[42]-[45]: 

( ) ( )·exp( · ( ))LSHsti t A t j t .
      

 (3) 
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 Fig. 3.  Amplitude of the LSHst (top), motor speed (middle), and motor slip 
(bottom) during the startup transient of a simulated motor. The vertical line 

corresponds to the time when the slip s=0.5 is reached. 

 

 
Fig. 4.  Instantaneous amplitude (top, thick line) and instantaneous frequency 

(IF) of the LSHst (bottom), computed with the analytic signal. 

 

The amplitude of the LSHst, A(t), (Fig. 4, top, thick line) 

shows a characteristic evolution. Initially, from t = 0, the 

amplitude decreases until the frequency becomes null. During 

the second half of the startup (t > 0.92 s), the LSHst 

amplitude initially grows, reaches a maximum which exceeds 

the amplitudes reached during the first half of the startup, and 

then decreases towards its steady-state value. 

The instantaneous frequency (IF) of the LSHst, '( )t , 

(Fig. 4, bottom) has a characteristic V-shape: it continuously 

decreases from the mains frequency (50/60 Hz) when the 

machine is connected (t = 0), becoming null when the rotor 

slip equals 0.5 (t ≈ 0.92 s; see Fig. 3). From this point, the 

frequency of the sideband component increases again, 

keeping a constant value when the stationary regime is 

reached. Both components are signals with linearly 

modulated frequency (LMF), also known as chirps. 

So the goal of the proposed method is to capture the 

characteristic patterns presented in Fig. 4 directly from the 

startup motor current, by generating a unique 3D high 

resolution image (time, frequency and amplitude) that 

indicates the presence of the fault.  

III. GABOR ANALYSIS OF THE STARTUP CURRENT 

The method proposed in this paper is based on the Gabor 

analysis of the startup current, which is optimized for 

detecting the LSHst, and computed with the CZT. Gabor 

analysis has been extensively applied in different fields such 

as geophysics [46], pattern recognition [47], biomedical 

engineering [48], communications systems [49], image 

processing [50], [51], quality control [52], optics [53], power 

system analysis [54], [55], DNA classification [56], modal 

analysis [57], order tracking [58], etc. Gabor functions are the 

basis of the Morlet wavelet, which is widely used in machine 

condition monitoring [12], [16], [20]. The proposed method is 

applied in this work to extract the time-frequency information 

of the current during a speed transient, such as the startup. Its 

theoretical basis is briefly presented in this section. 

Traditional MCSA relies on describing the motor current 

signal ir(t) in the frequency domain. This signal can be 

represented by a trigonometric series  

( ) exp( 2 )r n

n

i t c j nt



Z

          
(4) 

*( ),exp( 2 ) ( )exp ( 2 )n r rc i t j nt i t j nt dt 



      

(5) 

where the superscript * stands for complex conjugation. So, 

( ) ( ),exp( 2 ) exp( 2 )r r

n

i t i t j nt j nt 


  
Z

.
     

(6) 

Nevertheless, as the trigonometric basis functions 

 exp( 2 ),j nt n Z
 

are not localized in time (because 

exp( 2 ) 1j nt   for all n and t), (4) cannot reproduce the 

time-amplitude and time-frequency patterns shown in Fig. 4. 

The Fourier spectrum of the LSHst, shown in Fig. 5, is 

unable to capture these patterns. Due to the non-stationary 

character of the signal, its energy spreads over the full range 

of 0-50 Hz, and there is no distinct peak in the spectrum that 

marks the presence of the fault harmonic. 

 
Fig. 5.  Fourier spectrum of the LSHst. 

 

On the contrary, Gabor analysis expands the signal ir(t) into 

a series of elementary functions, which are constructed from a 

single building block by translation and modulation 

(translation in the frequency domain), in the form 

, ,( ) ( )r m n m n

m n

i t c g t
 


Z Z

             
(7) 

where the elementary functions gm,n are given by 

 

, ( ) ( · )exp( 2 · · · ) ,m ng t g t n T j m t m n   Z
    

(8) 

 

for a fixed function g(t), known as the synthesis window, 

and time-frequency shift parameters T, Ω > 0. Besides, this 

function is subject to the energy normalization 

 
2

( ) 1g t dt  .
                

(9) 
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 The functions gm,n in (7) are obtained by shifting the 

window g along a lattice =T x  in the time-frequency 

plane. If g and its FT are localized at the origin, then gm,n is 

localized at (n·T, m·Ω ) in the time-frequency plane (Fig. 6). 

Ω

Time

F
re

q
u

e
n

c
y

T0 nT

mΩ

, ( )m ng t

( )g t 1,0 ( )g t ,0 ( )ng t

0,1( )g t

0, ( )mg t

 
 

Fig. 6.  Functions gm,n(t) obtained by shifting function g(t) along a lattice =T 

x  in the time-frequency plane. 

 

By Parseval’s theorem 
2

, ( ( ))m n r

m n

c Energy i t
 


Z Z

       (10) 

 

so the coefficients cm,n can be interpreted as the measure of 

the energy of signal ir(t) in the area of the time-frequency 

plane covered by gm,n. 

The main issues related to the Gabor analysis of the startup 

current are the choice of the synthesis window g, the choice of 

lattice constants T, Ω, and the way to compute coefficients cm,n 

in (7). As [59] points out, these choices are crucial as they 

affect the existence, uniqueness, convergence properties and 

numerical stability of the ensuing expansion. The choice of the 

parameters of the Gabor expansion is addressed in the 

following subsections, and these parameters are optimized for 

the detection of the LSHst signal. 

A. Choice of the type of the synthesis window 

As [60] points out, the choice of the synthesis window has a 

major effect on the concentration and resolution in the 

expansion (7). In general, it depends on the signal, and may 

differ for different components in the same signal. A common 

approach is to select the window based on minimizing the 

effective time-frequency area occupied by a given component 

[61], [62]. Other authors [46], [47], [53] and [63] even 

propose the use of separated kernels, with different parameters 

at different times. An open issue remains about how to 

measure the performance of the selected window. 

In his original paper [64], Gabor proposed to use the Gauss 

function (11) and its translations and modulations with shift 

parameters T·Ω =1 (12) as elementary signals, or atoms: 

 
1/4 2( ) ( ) exp( 2)g t t   

       
(11) 

 
1/4 2

, ( ) ( ) exp( ( ) 2)·exp( 2 )m ng t t nT j m t       .
  

(12) 

 

 Other type of elementary functions that have been 

considered in the technical literature are the rectangle 

functions, the sync, the exponential [65], the chirp [48], [57], 

[60], [66], [67] and others [68]. In the proposed method, the 

choice has been the Gaussian function. The standard deviation 

of a Gaussian function (11), its duration σt , is given by 

 
2 1/(2 )t                  (13) 

 

so that in a time 2σt 
most of the signal will have gone by. In 

fact, time series and Fourier series expansions are limiting 

cases of Gabor’s series (7)  

 

,

,

0 ( ) Time series expansion

exp( 2 ) Fourier series expansion

t m n

t m n

g t nT

g j m t

 

 

   


   

 

The FT of ( )g t is another Gaussian function ˆ( )g f
 

 
1/ 4 2ˆ( ) (1 ) exp( (2 ) 2 )g f f    .

       
(14) 

 

The standard deviation of ˆ( )g f , its bandwidth σf, is  

2 2/ 8f                   
 
(15)

 
 

and multiplying (13) and (15), the following relation holds: 

 

1/ 4t f   .
                 

(16) 

 

The uncertainty principle states that one cannot construct 

any signal for which both σt and σf, the duration of the signal 

and its bandwidth, are arbitrarily small 

 

1/ 4t f  
                    

(17) 

 

where equality is achieved only by the Gaussian function. 

So g(t), as defined in (11), has the smallest area (i.e. the 

highest energy concentration) in the time-frequency plane that 

any given function can achieve, which justifies its choice for 

performing the decomposition (7). The Gaussian window (11) 

achieves minimum time-frequency uncertainty, and in this 

sense it is the most similar to an impulse [69]. Equations (13), 

(15) and (16) define the known as ‘Heisenberg box’ of the 

Gaussian window, [70], shown in Fig. 7. 

  

Fig. 7.  Heisenberg box that encloses an atom gm,n. 
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B. Choice of the parameters of the synthesis window 

Once selected the type of the synthesis window g(t), (11), it 

is necessary to select a value for its parameter α, which defines 

both the duration (13) and the bandwidth (15) of g(t). In [71] 

and [72] the optimal bandwidth of the window for signals with 

time-varying frequency is found to be equal to the square root 

of the time derivative of the instantaneous frequency of the 

signal. For [47] the optimum Gabor filter is the one with the 

highest sensitivity to the different components of the signal, 

and [60] selects the parameter that minimizes the time-

frequency area occupied by a target component. To achieve 

this minimization in the proposed method, the time length of 

the Gaussian window is selected to have the maximum overlap 

with the LSHst signal. As the LSHst components are linear 

chirps with chirp rate given by (2), this condition is met when 

the slope of the chirp and the aspect ratio σf /σt of the atom’s 

Heisenberg box coincide (Fig. 8). This choice will be 

numerically assessed in section IV by minimizing the entropy 

of (7). 

 

 
Fig. 8.  Choice of parameter α of the Gaussian window so that the aspect ratio 

of its Heisenberg box coincides with the slope of the LSHst chirp. 

 

The slope of the two chirps in the LSHst signal has a fixed, 

absolute value of fsupply/0.5 (2) in the frequency-slope domain 

(Fig. 2). As the current signal is measured in the time domain, 

this slope is given by fsupply/ts=0.5, where ts=0.5 is the time needed 

to reach a slip s=0.5 during the startup transient. So, the 

maximum overlapping condition is combined with the 

uncertainty principle to give:  

 

0.5 2

0.5 / (4 )
1/ 4

f t supply s

t s supply

f t

f t
t f

 
 

  





 
 

 
.  (18) 

 

Using (13), 21/(2 )t  , gives finally 

1/4

1/4 2 2

0.5 0.5

2
( ) ( ) exp( 2) exp( )

supply supply

s s

f f
g t t t

t t
   

 

 
    

 
.

        
(19) 

 

In the case of the LSHst of Fig. 4, ts=0.5 = 0.92 seconds and 

fsupply = 50 Hz, so g(t)=108.71/4 exp(-54.35πt2). This function is 

represented in separated (Fig. 9) and in combined time 

frequency planes (Fig. 10). In both cases the atom represented 

is the Gaussian window located at the center of the domain. 

 
 

Fig. 9.  Gaussian function optimized for representing the LSHst in the time 

(top) and in the frequency domains (bottom). The atom represented is the 
Gaussian window translated and modulated to the middle of the domain.  

 

 

 
 
Fig. 10.  Energy of the Gaussian function optimized for representing the 
LSHst as a 2D-view (top) and as a 3D view (bottom). The area covered by the 

function in the time-frequency plane is the smallest one under the uncertainty 
principle. The aspect ratio of this area has been optimized to have the 

maximum overlap with the LSHst signal. 

C. Choice of the lattice parameters T, Ω 

Gabor’s original choice T·Ω =1 results in the minimum 

lattice =T x  that covers completely the time-frequency 

plane, known as Gabor or Von Neumann Lattice [73], [74]. It 

corresponds to a critical sampling of the time-frequency plane. 

Nevertheless, a certain degree of oversampling (T·Ω <1) is 

needed to avoid numerical instabilities (especially when 

processing noisy data), similar to the Fourier-Nyquist 

sampling limit. The choice of the degree of oversampling 

affects the computation of coefficients cm,n in (7). In fact, the 

basis functions gm,n are non-orthonormal: 
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*

, ,, ( ) ( )n l m k nl mk n m l kg g g t g t dt      .
    

(20) 

 

So coefficients cm,n cannot be computed by direct projection 

onto this basis, cm,n ≠ <ir , gm,n>. Instead, they must be 

computed using a translated and modulated window function 

w(t), the analysis window, such that cm,n = <ir , wm,n> [75]-[80]. 

This window must satisfy the biorthonormality condition:  
*

, , , ,, ( ) ( )m k n l m k n l n m l kg w g t w t dt           
(21) 

and so, the expansion (7) can be formulated as: 

, ,( ) ( ), ( ) ( )r r m n m n

m n

i t i t w t g t
 

  
Z Z

.
       

(22) 

The window w(t) that satisfies (21) for the critically 

sampled Gabor’s lattice has been derived analytically in [81], 

and it is represented in Fig. 11. 

. 
Fig. 11.  Analysis window needed to compute the coefficients of Gabor’s 

expansion on a critically sampled lattice.  

 

 As it can be seen in Fig. 11, the computation of the 

coefficients in a Gabor expansion on a critically sampled 

lattice is not local, and can lead to numerical instabilities [82]. 

One solution to this problem is the oversampling of the time-

frequency plane, that is, the selection of T and Ω so that 

T·Ω<1. [83] proposes the use of a maximum overlap in the 

sliding window. In fact, if T·Ω0 the analyzing window w(t) 

is the same as the synthesis window g(t) [84]. Besides, with 

oversampling, the analysis gains in readability and in ease of 

interpretation what it loses in terms of saving space or 

computing time. So, with the choice of maximum 

oversampling 
*

, , ,, ( ) ( )m n r m n r m nc i g i t g t dt   .
     

(23) 

 

D. Gabor analysis of the discrete current’s signal via FFT 

 From a practical point of view, the current signal ir(t) is 

sampled during a time TS, at a frequency FS, with N= TS ·FS 

samples. The discretization process imposes minimum values 

for the time and frequency step: 

 

/ /( ) 1/

/ /( ) 1/

s s s s s

s s s s s

t T N T T F F

f F N F T F T

   

           

(24)  

 

Using these values to obtain a lattice with maximum 

oversampling,

 

(T=t, =f ), (7) and (8) gives 

 
,( ) ( · )exp( 2 · · )r m n

m n

i t c g t n t j f m t
 

   
Z Z

.

   

(25) 

Both the current signal and the elementary Gabor function 

are sampled at instants t=kt, giving two discrete sequences 

ir[k], g[k] with N elements, and a matrix of NxN Gabor 

coefficients c[m,n]. (25) becomes then [49], [59]: 

 
1 1

0 0

2
[ ] [ , ] [ ]exp( · · ) 0

N N

r

m n

i k c m n g k n j m k k N
N

 

 

    . (26) 

To avoid aliasing, all the original sequences have been 

previously zero-padded so as to double their size, and they are 

considered as periodic signals, with period N. All indices 

exceeding N are understood modulo N (without explicit 

notation). 

The choice of maximum oversampling generates a lattice 

xN N  Z Z , with  0,1,..., 1N N Z . In this case, the 

analyzing window w[k] coincides exactly with the synthesis 

window g[k], so Gabor coefficients are obtained (23) as 

 
1

0

2
[ , ] [ ] [ ]exp( · · ) 0 ,

N

r

k

c m n i k g k n j m k m n N
N





     .  (27) 

The evaluation of Gabor’s coefficients using (27) can be 

time-consuming. A high value of N is desirable for achieving a 

high resolution image. But this implies that (27) must be 

repeatedly evaluated NxN times to obtain the coefficients 

matrix c[m,n]. Nevertheless, this expression can be computed 

in a very efficient way. In fact, the Gabor analysis window gm,n 

acts as a band pass filter centered on frequency 2 mN , with a 

bandwidth determined by α. At each time, the time-shifted 

window is repeatedly shifted in the frequency axis, multiplied 

by the current’s signal and summed up (27) to obtain a 

distribution of local energy measures of the signal [47]. But 

these repeated correlations in the frequency domain 

correspond to a simple element-wise product in the time 

domain. So, in (27) each column of the coefficients matrix is 

just the discrete Fourier transform (DFT) of the product of the 

current’s signal with the time-shifted Gaussian window, which 

can be very effectively computed using the FFT.  

 

[·, ] ( [ ] [ ])rc n FFT i k g k n  .

        

(28) 

 

So Gabor analysis can be considered as a particular case of 

the STFT, performed with a Gaussian window, and the energy 

contents of the current signal in the time-frequency plane 

corresponds to its spectrogram [83], [85]. But this spectrogram 

corresponds to the signal expansion (7) only under the 

assumption of the maximum degree of oversampling, which 

has been achieved by using a displacement of the sliding 

window equal to the minimum time step of the discretization 

process (24).  

 

E. Gabor analysis of the discrete current’s signal via CZT 

The analysis of the startup current (28) has a resolution 

problem: as stated in (24), time resolution can be improved by 

increasing the sampling frequency FS, but the frequency 

resolution is limited by the total sampling time TS. And, in the 

case of an IM startup transient, this time can be very short. In 
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the case of the LSHst of Fig. 3 (TS = 2 s, FS = 5 kHz, N=104),
 

t=1/FS=10-4 sec and f=1/TS=0.5 Hz. So, the number of 

points of the lattice used to represent the LSHst in the region 

of the time-frequency plane where the LSHst evolves ([0-2 s, 

0-50 Hz]) is (2/t) x (50/f), that is, 2·104 x 100
 
points. This 

gives a much distorted lattice, with a very few frequency 

intervals (100), compared with the number of time intervals 

(2·104). To solve this problem, in the proposed method, the 

FFT is replaced with the CZT [4], [11], [86]-[92]. The FFT 

evaluates the frequency spectrum of a signal in the whole 

range 0-Fs, as a z-transform of the signal following a full 

circular path with unitary radius. The CZT algorithm is more 

flexible, as it can follow any desired path in the z-plane. In 

particular, it can be adjusted to evaluate the DFT in a reduced 

range of frequencies, using the full number of signal samples, 

but covering a small fraction of the unity circumference. In 

this way, a much better spectral resolution is obtainable, 

compared with the FFT. This fact has been exploited in [16] to 

perform rotor fault diagnosis and in [93] to improve the 

accuracy in motor speed measurement. In the case of the 

LSHst of Fig. 4, the frequency band of interest is [0-50 Hz], 

which gives a spectral resolution: 

 
4 4' 50 / 50 / (2·10 ) 25·10 Hzf N     .

    
(29) 

 

So the lattice used to represent the LSHst has 

(2/t) x (50/f ’), that is, 2·104 x 2·104 points. Gabor 

coefficients are computed in this high resolution lattice as 

 

[·, ] ( [ ] [ ])rc n CZT i k g k n  .

        

(30) 

IV. ANALYSIS OF THE LSHST USING THE PROPOSED METHOD 

The proposed method for generating a high resolution 

image of the LSHst trajectory in the time-frequency plane can 

be summarized as follows: 

1. Determine the time needed to reach a slip s=0.5 during 

the startup transient, Ts=0.5. This gives the slope of the 

first chirp component of the LSHst. 

2. Construct a Gaussian window whose Heisenberg box 

has an aspect ratio σf /σt that matches the chirp slope, 

using (19). 

3. Compute the matrix of Gabor coefficients c[m,n] using 

(30). Each column n contains the CZT of the product 

between the startup current and the analyzing window, 

which has been previously shifted n samples from the 

origin. The squared Gabor coefficients display the local 

energy content of the startup current at each point of 

the time-frequency lattice. 

The application of the proposed method to the LSHst of 

Fig. 3 generates a high resolution 3D image (time-frequency-

amplitude) which shows the trajectory of the fault harmonic in 

the time frequency plane, as depicted in Fig. 12. 

In the case of the LSHst, the parameter α of the optimal 

Gaussian window, obtained with (18), has a value αopt = 341.5. 

The validity of this particular choice, and the sensitivity of the 

method to variations of this parameter, can be measured via 

the entropy of the normalized Gabor coefficient matrix [8], 

[94]: 

2 21 1

0 0 , ,

[ , ] [ , ]
log

N N

m n m n m n

c m n c m n
e

 

 

 

 
    

 


        

(31) 

with 
1 1

2

,

0 0

[ , ]
N N

m n

m n

c m n
 

 


 

.

           

(32) 

 

 
 
Fig. 12.  Time-frequency-amplitude pattern generated by the LSHst, obtained 

with the proposed method. 
 

 
 

Fig. 13.  Entropy of the Gabor expansion of the LSHst as a function of the 

parameter α of the Gaussian analyzing window. The vertical line marks the 

value obtained by applying the criteria of maximum overlapping between the 
window and the LSHst, as in the proposed method. 

 

Small entropy corresponds to good energy concentration. 

Fig. 13 shows the entropy (31) of the LSHst series expansion 

(7), for values of parameter α in (19) varying from 1 to 1200. 

Two conclusions can be drawn from Fig. 13: first, the rule 

used for selecting the optimal value of α (19) corresponds 

indeed to the choice of minimum entropy (maximum energy 

concentration) of the LSHst representation in the time-

frequency plane (αopt=341.5, entropy=3.102). And, second, the 

entropy curve around this optimal value is a smooth one. This 

indicates that the computation process of α (19) can tolerate 

small errors in determining the ts=0.5 value. For example, if the 

motor speed cannot be measured, ts=0.5 can be roughly 

estimated as half of the total startup transient duration, ts=0.5≈ 1 

s. Using this approximate value instead the real one, 

α’opt=314.16, gives an entropy of 3.108. This represents a very 

small deviation from the minimal entropy, so the Gabor 
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representation of the LSHst obtained with this approximated 

value of ts=0.5, shown in Fig. 14, is very similar to the one 

obtained with the exact value of αopt (Fig. 12) 

 

 
 
Fig. 14.  Time-frequency-amplitude pattern generated by the LSHst, obtained 
with the proposed method without measurement of the motor speed. 

V. EXPERIMENTAL SETUP 

The proposed method has been applied to the analysis of a 

1.1 kW, 50Hz induction motor, whose data are given in 

Appendix A. The test equipment, displayed in Fig. 15, left, 

consists of a current transformer, a 200 pulse/revolution 

incremental encoder, a Yokogawa DL750 Oscilloscope and a 

Personal Computer connected to it via an intranet network. 

Tests have been carried out under two different conditions: 

healthy state and faulty condition, in which a single bar has 

been broken by drilling a hole in the selected bar (Fig. 15, 

right). In both cases the operating conditions are identical: the 

supply voltage is 160 V, and the machine is started at no load, 

driving a pure inertia load with an inertia constant of J=0.0024 

kg.m2. The startup current and the speed have been recorded 

during 2 seconds using a sampling frequency of 10 kHz. Fig. 

16 shows the current and the speed of the motor with a broken 

bar during a startup transient. 

The proposed method has been applied to the current shown 

in Fig. 16. In this case ts=0.5=0.63 s, so (19) gives 

 
1/4 2( ) (158.73) exp( 79.36 )g t t 

       
(33) 

 
Fig. 15.  Experimental setup used for validation of the methodology. 

 
 

Fig. 16.  Current (top) and speed (bottom) of the experimental motor with a 

broken bar during the startup transient. The vertical line corresponds to the 

time when the slip s=0.5 is reached (ts=0.5). 

 

Fig. 17 shows the squared Gabor coefficients of this signal, 

obtained via CZT. 

 

 
 

 
Fig. 17.  Gabor analysis of the startup current of the machine with a broken 

bar. Top: 3D view. Bottom: 2D view. 

 

 The Gabor analysis of the current’s signal, using the 

window (33), is shown in Fig. 17. Two problems arise in this 

representation: the main component of the current has a much 

higher value than that of the LSHst, which is not well 

resolved, and the end effects of the CZT (Gibb’s phenomenon) 

appear at the beginning of the transient. To solve these 

problems, the upper limit of the frequency range has been 

reduced to 40 Hz, and the initial region, where the end effects 

occur, has not been represented. The results are shown in Fig. 

18, where the trajectory of the LSHst is clearly identified in 

the time-frequency plane. 
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Fig. 18.  Gabor analysis of the startup current of the machine with a broken 

bar, avoiding the effects of the mains leakage and the end effects of the 

transform. 

 

 The same analysis has been made with a healthy motor, 

with the same characteristics than the healthy one, under the 

same startup conditions. Fig. 19 shows the startup current of 

this motor, and Fig. 20 the Gabor analysis of this current, 

using the proposed method. There is no trace of the LSHst in 

this figure, so the diagnostic is of a healthy motor condition. 

 

 
Fig. 19.  Current (top) and speed (bottom) of the experimental healthy motor 
during the startup transient. The vertical line corresponds to the time when 

slip s=0.5 is reached. 

 

 
 

Fig. 20.  Gabor analysis of the startup current of the healthy machine, 
excluding the effects of the mains and the end effects of the transform.  

VI. DETECTION OF A MIXED ECCENTRICITY FAULT WITH THE 

PROPOSED METHOD 

The proposed method can be applied to the detection of any 

fault that generates LMF harmonics in transient regime: 

eccentricity, bearings faults, inter-turns short circuits, etc. It 

suffices to adjust the aspect ratio of the synthesis window, the 

value of  in (11), to the theoretical slope of the fault 

harmonic. In this section, the proposed method is applied to 

the diagnosis of a mixed eccentricity (ME) fault. An ME fault 

can be detected by the presence of its characteristic harmonics, 

whose frequencies are given by 

 

( ) (1 )  ME supply supplyf s f s f p  
      

(34) 

 

An eccentric four pole induction machine, whose 

characteristics are given in Appendix A, has been prepared for 

the experimental validation of the proposed method. The static 

and dynamic eccentricities have been obtained through the 

machining of the external and internal bearing housings, 

respectively. Fig. 21 shows the assembled unit and its 

components (top), and the unit mounted in the shaft (bottom). 

The degree of eccentricity obtained with this experimental unit 

is 30% of static eccentricity and 50% of dynamic eccentricity.  

 

  
Fig. 21.  Eccentric motor unit. Top, from left to right: assembled unit, 

asymmetric external and internal housings, and healthy bearing. Bottom: 

mounted unit on the shaft. 
 

The motor has been fed at rated voltage, and it has been 

mechanically coupled to a high inertia, non-energized 

synchronous generator, to obtain a longer startup transient. 

The current and the peed during this transient are shown in 

Fig. 22. 

 

 
Fig. 22.  Current (top) and speed (bottom) of the experimental eccentric motor 

during the startup transient. 
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In the case of p=2, (34) becomes 

 

( ) (1 )( / 2)ME supply supplyf s f s f  
      

(35) 

 

As (35) indicates, during a startup transient, the lower 

characteristic harmonic of an ME fault, iMEst(t), follows a 

straight path in the time-frequency plane, travelling from fsupply 

at s=1 to fsupply/2 at s0 (steady regime), so 

 

22 /2

0

/ 2
( ) ( ) with

supplyj t

MEst

s

f
i t A t e

t

 



 
 

.

 

(36) 

 

Following the same process described in detail in Section 

III, the synthesis window (11) whose aspect ratio matches the 

harmonic’s slope   in (36) is given by  

 

 
1/41/4 2 2( ) ( ) exp( 2) 2 exp( )g t t t        .

   
(37) 

 

Using the values of the machine startup current and speed 

represented in Fig. 22 (fsupply = 50 Hz, ts0  5 s), the synthesis 

window (37) becomes  

 

 
1/4 2( ) 10 exp( 5 )g t t  .

        
(38) 

 

 Due to the symmetric nature of both ME harmonics, the 

Heisenberg box given by (38) is valid for both of them. The 

Gabor analysis of the current’s signal, using the window (38), 

is shown in Fig. 23, where the upper and lower ME fault 

characteristic harmonics are clearly visible around the 

fundamental component. 

 

 
 

 Fig. 23.  Gabor analysis of the startup current of the eccentric machine, 
showing the characteristic fault harmonics of the fault. 

 

As in the preceding section, if the upper limit of the 

frequency range is reduced (to avoid the strong influence of 

the mains current), and the initial region (where the end effects 

occur) is not represented, the lower fault harmonic appears 

very clearly (see Fig. 24), which facilitates the diagnosis 

process. 

 
Fig. 24.  Gabor analysis of the startup current of the eccentric machine, 

avoiding the effects of the mains leakage and the end effects of the transform. 

VII. CONCLUSIONS 

Transient MCSA is a recent technology that can diagnose 

motor faults by analyzing the current during a speed transient. 

With the addition of a new dimension in TMCSA, the time, 

new methods capable of representing the time-frequency-

amplitude of the fault harmonics are needed to replace 

traditional FT based methods, which are not designed to cope 

with non-stationary signals. In this paper, a new method has 

been proposed for detecting the characteristic harmonics that 

induction motor faults generate during a transient regime, such 

as those generated by broken bars during a startup transient 

(LSHst) or by mixed eccentricity (MEst). The startup current 

is analyzed using a Gaussian window. The combined use of a 

matched window, a maximally oversampled lattice and the 

chirp z-transform, allow for the generation of a very high 

resolution image of the trajectory of these harmonics, with the 

highest concentration in the time-frequency domain (minimum 

entropy). This new method has been theoretically presented, 

numerically optimized, and experimentally validated with 

three industrial 1.1 kW, three-phase induction motors, one in 

healthy state, one with a broken bar and the other one with a 

mixed eccentricity fault. The application of the proposed 

method to other types of fault is currently under research. 

APPENDIX A 

MACHINE USED IN THE EXPERIMENTAL TESTS  

Machine parameters: Three-phase induction motor. Rated 

characteristics: P=1.1 kW, f=50 Hz, U=230/400 V, I=2.7/4.6 

A, n=1410 rpm, cos φ=0.8.   
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