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Abstract 12 

Demand for water is expected to grow in line with global human population growth, but 13 

opportunities to augment supply are limited in many places due to resource limits and expected 14 

impacts of climate change. Hydro-economic models are often used to evaluate water resources 15 

management options, commonly with a goal of understanding how to maximise water use value and 16 

reduce conflicts among competing uses. The environment is now an important factor in decision 17 

making, which has resulted in its inclusion in hydro-economic models. We reviewed 95 studies 18 

applying hydro-economic models, and documented how the environment is represented in them 19 

and the methods they use to value environmental costs and benefits. We also sought out key gaps 20 

and inconsistencies in the treatment of the environment in hydro-economic models. We found that 21 

representation of environmental values of water is patchy in most applications, and there should be 22 

systematic consideration of the scope of environmental values to include and how they should be 23 

valued. We argue that the ecosystem services framework offers a systematic approach to identify 24 

the full range of environmental costs and benefits. The main challenges to more holistic 25 
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representation of the environment in hydro-economic models are the current limits to 26 

understanding of ecological functions which relate physical, ecological and economic values and 27 

critical environmental thresholds; and the treatment of uncertainty. 28 

 29 
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Highlights: 33 

• Representation of the environment in hydro-economic models (HEMs) is limited 34 

• There is no systematic inclusion of the environmental costs and benefits in HEMs 35 

• The ecosystem services approach identifies the full range of environmental values 36 

• Accurate ecological functions and uncertainty analysis are key challenges for HEMs 37 

  38 
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1. Introduction 39 

Adequate flows of fresh water in rivers support food and energy production, other economic 40 

activities such as river navigation and productive fisheries, as well as clean water provision through 41 

processes such as dilution and biological degradation (Momblanch et al., 2015). All these uses 42 

compete for water resources with diverse use rights (Babel et al., 2005), and different opportunities 43 

and costs associated with adapting to less water availability (Booker, 1995). 44 

The 1972 amendment to the US Clean Water Act established national water quality standard to 45 

preserve aquatic life, recreational uses, and their values (Copeland, 2010). Since then, there has 46 

been an increased focus on understanding the environmental and socio-economic benefits of 47 

leaving water in streams, rivers and aquifers rather than extracting it for consumptive use. For 48 

example, in the Murray-Darling Basin in Australia, Connor (2008) found that additional flows in the 49 

river could significantly reduce costs of salinity damage through dilution, and Crossman et al. (2015) 50 

documented substantial carbon sequestration, tourism, and freshwater quality values, among 51 

others, from reducing water extraction. Grossmann and Dietrich (2012) assessed carbon 52 

sequestration, boating, habitat and biodiversity values of different water management options for 53 

the Spreewald Wetland in Germany. These studies used the ecosystem services (ES) concept to 54 

report on the benefits. The core ES notion is that a wide range of natural ecosystem processes help 55 

sustain and fulfil human life (Daily et al., 1997), and that these services can be translated into 56 

economic values. Many ES are only substitutable at high economic costs, and in some cases cannot 57 

be replaced (Brauman et al., 2007; Costanza et al., 1997). For example, wetlands have the capacity 58 

to purify water by means of biochemical processes (Turner et al., 2008) with capacity being a 59 

function of wetland condition and health. The degradation of wetland ecosystems could increase 60 

treatment costs of the water extracted for consumptive use (Maltby and Barker, 2009) and/or a 61 

reduce the recreation potential (Kahil et al., 2015) leading to loss of income for the tourism industry. 62 
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According to the 5th assessment report of the Intergovernmental Panel on Climate Change (2014), 63 

renewable fresh water resources are likely to decrease over the 21st century, most significantly in 64 

arid and semi-arid regions where increased frequency of drought occurrence is expected (Schwabe 65 

et al., 2013). Additionally, water demand is expected to grow with global population growth (UN 66 

2015), resulting in more waste generation, pollution and land use expansion, which increases the 67 

pressure on land and water resources (Shama, 2004). Less water availability and lower quality, 68 

together with larger water demands, has led to increasing conflicts among water uses. Examples 69 

include conflicts between hydropower production and fisheries in the Mekong River in China (Ringler 70 

et al., 2004); irrigation and urban water uses in the Jucar and Vinalopó rivers in Spain (Andreu et al., 71 

2009); and environmental and irrigation water uses in the Murray Darling Basin in Australia (Qureshi 72 

et al., 2007) and the Colorado River Basin in the United States (Booker and Young, 1991).  73 

Integrated water resources management, defined as the coordinated development and 74 

management of water, land and related resources to maximise economic and social welfare without 75 

compromising the sustainability of vital ecosystems (GWP 2000), can inform decisions about water 76 

sharing in the face of competing water demands and increasing scarcity (Booker et al., 2012). Hydro-77 

economic models (HEMs) are one of the main tools used for integrated water resources 78 

management (Booker et al., 2012; Harou et al., 2009). HEMs combine hydrological and water 79 

infrastructure representation of water resources systems with economic demand functions for key 80 

water uses in order to allocate water subject to physical and institutional constraints (Heinz et al., 81 

2007). HEMs typically use a node network structure with nodes representing points of diversion, 82 

inflow, outflow, storage or treatment and links between nodes representing river reach processes 83 

(Harou et al., 2009). HEMs can use optimisation or simulation approaches, but typically have the 84 

goal of allocating water among multiple uses to optimize economic value (Brouwer and Hofkes, 85 

2008). HEMs have been used to solve water management problems for more than 50 years, and 86 

have evolved from analysing single-water use problems at water supply scale (Lefkoff and Gorelick, 87 

1990; Wilchfort and Lund, 1997) to integrated multiple-demand and multiple-source problems at 88 
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single river basin scale (Davidson et al., 2013b; Divakar et al., 2011) and multi-basin scale (Bekchanov 89 

et al., 2015c; Fisher et al., 2002). Groundwater representation and its connection to the surface 90 

water system have also featured in HEMs (Daneshmand et al., 2014; Pulido-Velazquez et al., 2006; 91 

Pulido-Velazquez et al., 2008a). 92 

Several studies have reviewed HEMs. For example, Harou et al. (2009) focus on methodological 93 

aspects of HEMs, such as model formulation and design, economic valuation methods for the 94 

different water uses, and major applications. Heinz et al. (2007) discuss the role of economic 95 

approaches in water management to address the European Water Framework Directive (EC 2000) 96 

objectives, analysing diverse assessment and performance criterion, water policies and management 97 

options. Booker et al. (2012) review the advances in economic representation, policy objectives and 98 

water institutions, and level of integration and complexity of HEMs. 99 

Consistent across reviews of HEMs is the conclusion that representation of environmental costs and 100 

benefits in HEMs is patchy and limited. For example, Harou et al. (2009) conclude that 101 

environmental water uses are rarely represented with economic value functions in HEMs, although 102 

minimum-flow constraints are included more often. They also highlight the importance of 103 

incorporating water quality processes and values which are mostly lacking in HEMs. Booker et al. 104 

(2012) argue for the expansion of HEMs to jointly tackle environmental, economic, hydrologic and 105 

institutional water resources management problems. Other reviews highlight the limited 106 

representation of environmental in-stream uses and processes in HEMs (Ringler and Cai, 2006; Ward 107 

and Pulido-Velazquez, 2009; Ward and Pulido-Velázquez, 2008), and the dearth of HEMs which 108 

account for water management changes on non-market values provided by ecosystems (Griffin and 109 

Hsu, 1993; Kragt, 2013). 110 

There has not yet been any attempt at systematic cataloguing and critical assessment of the range of 111 

environmental impacts and values included in HEMs. Here we address this gap by: i) reviewing the 112 

range of environmental impacts included in HEMs; ii) documenting the methods used to represent 113 
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the economic value of environmental impacts in HEMs, and; iii) making recommendations to 114 

improve the inclusion of environmental impacts and values in HEMs. 115 

We use ES as an organising framework because it offers a systematic way to analyse the potential 116 

environmental impacts of changes to water management using the environment-economy 117 

connection. This connection is best demonstrated by the ES cascade (Potschin and Haines-Young, 118 

2011) which shows the causal links from a change in biophysical state as a result of altered 119 

management, to the ecosystem change and then the change to ES, economic values and human 120 

well-being (Figure 1). In recent years there has been a proliferation of ES frameworks (Haines-Young 121 

and Potschin, 2013; MA 2005; TEEB 2008; UK NEA 2011). Common to all ES frameworks is the 122 

provisioning category, which are directly consumed ES products. An example is fish production in 123 

rivers that people value as food. All ES frameworks also include the regulating category for ES that 124 

arise from maintenance and moderation of environmental conditions. The capacity of wetlands to 125 

purify water by means of biochemical processes (Turner et al., 2008) is an example. Also common to 126 

ES frameworks is a category for non-consumptive values such as recreational, educational, aesthetic 127 

and spiritual. The major difference between ES frameworks is how intermediate ecosystem 128 

processes are treated. Some frameworks only include end-products or services consumed or valued 129 

directly by humans (MA 2005; Wallace, 2007), while other frameworks include environmental 130 

processes which only indirectly contribute to human welfare, such as decomposition and nutrient 131 

cycling (Boyd and Banzhaf, 2007; Costanza, 2008; Fisher and Turner, 2008). We use the Common 132 

International Classification of Ecosystem Services (CICES) (Haines-Young and Potschin, 2013) as the 133 

reference framework to classify the environmental impacts addressed by our reviewed studies. 134 

CICES supports the System of Environmental-Economic Accounting (United Nations et al., 2012) and 135 

includes only final ES (Haines-Young and Potschin, 2013) which leads to clear environment-economy 136 

links consistent with the need of HEMs to include economic demand functions. 137 

2. Methods 138 
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Our review involved four stages: 1) identifying a comprehensive set of HEM studies that included 139 

representation of the environment; 2) cataloguing the selected studies according to a set key 140 

summary attributes; 3) applying the CICES to classify the types of environment representation in the 141 

HEMs, and; 4) cataloguing the methods used to value the environment in the HEMs. 142 

2.1. Literature search and selection 143 

We started with the set of papers reviewed by Heinz et al. (2007), Brouwer and Hofkes (2008) and 144 

Harou et al. (2009) (n = 124). These were supplemented with papers from 2009 to the present using 145 

a SCOPUS search containing the key words ‘hydro-economic model’, ‘water management’, 146 

‘optimization’, and ‘network flow’ (n = 877). We then refined the scope to case studies dealing with 147 

economic analysis of water management, including environmental aspects, at river basin scale (n = 148 

144). For environmental aspects we considered environmental flows, water quality in water bodies, 149 

nature related recreation activities, flood control, and broader concepts such as habitat or 150 

vegetation. We screened the titles, abstracts and journals to remove irrelevant papers (n = 135), and 151 

then downloaded and read the full papers in order to select the final collection of papers (n = 95).  152 

We classified all papers by year of publication and identified the water use sector to which each 153 

HEM was applied. We also documented the spatial scale of analysis, the major water management 154 

problem addressed based on the categories established in Harou et al. (2009), the assessment 155 

criteria used according to the proposal by Heinz et al. (2007), and how uncertainty was treated. We 156 

assessed whether the environment was considered as a constraint or valued in economic terms. For 157 

the papers in the latter group, we extended the review as described in sections 2.2 and 2.3. 158 

2.2. Classifying representation of the environment 159 

We used CICES to classify the representation of the environment in the reviewed studies. CICES uses 160 

the three main ES categories of provisioning, regulating and maintenance, and cultural services. Each 161 

of these broad ES types is successively split into divisions, groups and classes, following a hierarchical 162 

structure. The elements within a level of hierarchy are conceptually similar to one another according 163 
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to the ways they are used by people (Haines-Young and Potschin, 2013). We identified which ES in 164 

CICES are potentially provided by freshwater bodies (Table 1). 165 

2.3. Economic valuation methods 166 

The next step was to identify the economic valuation methods used to estimate environmental 167 

values included in the HEMs. We classified valuation methods into the standard typologies common 168 

throughout the literature (Costanza et al., 2011; Chee, 2004; de Groot et al., 2002; TEEB 2010; 169 

Tietenberg and Lewis, 2009). The typologies we used are: 170 

• Market value: Used when the valued ES is a good that has a market price, e.g. cultivated crop. 171 

However, for the ES whose price does not include the impact of abstraction/use on their 172 

availability for other users and the environment, e.g. drinking water, the value is derived from 173 

the marginal willingness-to-pay using econometric approaches. 174 

• Production-based: Used when the valued ES is a factor of production for a good or service 175 

traded on the market, e.g. water for agricultural production. Value is estimated as the 176 

contribution to the net revenues obtained from the produced good or service in the market. 177 

• Cost-based: This method approximates the value of the ES based on the costs of replacing it 178 

(replacement cost method). This approach is applicable to ES such as mediation of waste. The 179 

method can also consider the avoided mitigation damages given the presence of the ES (avoided 180 

cost method), e.g. flood protection. 181 

• Revealed preference: Often used to value recreation and amenity values of water. The travel 182 

cost method assumes that the value of an ES can be approximated with the expenses incurred to 183 

enjoy it. This method is applicable to ES such as aquatic recreation by considering transportation 184 

expenses, on site spending and protected area entrance fees. The hedonic price method relates 185 

the value of an ES with the price variation of associated goods for different production levels or 186 

quality of the ES. A common example is the difference in market prices for real estate with more 187 
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and less aesthetic water related amenity, assuming all other variables influencing real estate 188 

sales are equal. 189 

• Stated preference: Surveys designed to elicit the values people ascribe to an ES. Respondents 190 

are usually asked how much they would be willing to pay for a specific improvement in the ES 191 

(contingent valuation method), or they are asked to select one among a number of alternatives 192 

for improvement of the ES, where price or cost required to pay for improved ES condition is a 193 

key attribute (choice experiment method). This method is applicable to non-consumptive ES 194 

such as aquatic biodiversity. 195 

• Benefit transfer (or meta-analysis). Takes estimates of ES value from one site and applies them 196 

to another site. 197 

In HEMs, these valuation methods are used to produce a value function for the different water uses 198 

and environmental benefits and costs, given the variation in the physical variables such as water 199 

flow or volume. In the studies we assessed, these functions are estimated using econometric or 200 

statistical methods, or by combining mathematical representations of an ecological production 201 

function with a unit production value obtained with one of the valuation approaches. 202 

3. Results 203 

3.1. General features of the studies 204 

As a result of the literature search and selection, 95 papers were reviewed. Table 2 cites the final set 205 

of papers which was assigned unique ID numbers for easy citation. 206 

The 95 papers covered the period 1984 to 2015, with less than 2 papers published per year on 207 

average prior to 2002 (Figure 2). About 6 papers were published per year on average after 2002, 208 

with the most studies in 2013 (n = 13). 209 

We found that the water use sectors most represented by HEMs were urban, agricultural, industrial, 210 

and hydropower sectors (Table 3). Other sectors such as livestock, tourism, navigation, and industry 211 
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were rarely included except within the twelve studies that included five or more sectors. The river 212 

basin was the most common spatial scale of the papers we reviewed. We also found that HEMs have 213 

been applied to administrative regions (15 papers: 1, 18, 21, 22, 24, 26, 28, 32, 35, 36, 44, 45, 51, 55, 214 

and 81), water supply systems (7 papers: 11, 12, 29, 31, 65, 84, and 91), and international regions (5 215 

papers: 17, 86, 88, 89, and 90). 216 

The major water management problems tackled by the HEMs we reviewed were resource allocation, 217 

with emphases on inter-sectoral allocation (n = 48), water institutions (n = 13), and water supply 218 

infrastructure (n = 13). Other water issues such as drought or climate change management, trans-219 

boundary water management, conjunctive surface-groundwater use, and land use management 220 

were less common. The HEMs used different types of assessment criteria to design and test water 221 

management solutions. We identified 58 papers which used a net benefit maximisation approach. 222 

Table 4 presents the number of papers addressing each major issue and the type of assessment 223 

used.  224 

We found that there were very few studies that treated uncertainty in physical variables and 225 

parameters. Uncertainty was analysed by means of probabilistic approaches (2 and 11) and 226 

sensitivity analyses in deterministic models (17 and 77). Only two studies (6 and 34) assessed 227 

uncertainty of economic parameters. 228 

We distinguished between HEMs that included economic valuation of the environment versus those 229 

that accounted for the environment using only biophysical units. We found that 61 papers 230 

considered environmental uses as constraints (e.g. 12, 33 and 93) or as decision variables in the 231 

optimisation function via ecological functions (e.g. 66 and 72). These studies mainly included 232 

minimum flows and, occasionally, water quality as environmental aspects. Some calculated the 233 

opportunity costs of environmental constraints, which provided useful economic information for 234 

decision making but did not allow comparison of environmental and other water use values. 235 
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3.2. Environmental impacts classification 236 

Among the reviewed studies, 34 defined environmental benefits and costs and used economic 237 

functions to value these within water management analysis (2, 3, 5, 6, 7, 8, 9, 10, 11, 16, 27, 28, 29, 238 

30, 34, 37, 49, 53, 57, 60, 65, 67, 68, 71, 73, 74, 75, 77, 84, 88, 89, 90, 91, and 94). The aspects of the 239 

environment considered were diverse and broadly covered vegetation and fauna, water quality and 240 

flood control. Most studies analysed only one (2, 3, 5, 8, 9, 16, 30, 37, 49, 53, 57, 60, 68, 73, 74, 75, 241 

77, 84, and 91) or two (i.e. 6, 7, 11, 27, 28, 29, 34, 65, 71, and 94) environmental aspects, and only 242 

five papers covered more than three (10, 67, 88, 89, and 90). Table 5 uses the CICES framework to 243 

summarise the environmental impacts included in the HEMs we reviewed. Some HEMs included 244 

components of ecosystems which could not readily be allocated to the CICES framework, such as 245 

wetlands and environmental flows (16, 27, 28, 29, 34, 60, 73, 74, 88, 89, 90, and 94). 246 

We found no systematic approaches to valuation of the environment and ecosystems in HEMs 247 

although there were some recurring methods (Table 6). Production-based valuation methods were 248 

more commonly applied for provisioning ES such as commercial fishing. Water quality improvement 249 

(e.g. salt dilution and nutrients abatement) was most often valued using cost-based methods (e.g. 250 

agricultural production losses due to salinity, and treatment for drinking water). Flood control and 251 

carbon sequestration valuation were also valued with cost-based methods. Recreation activity 252 

related values were mainly estimated using the travel cost method. When valuing impacts on habitat 253 

and biodiversity, in general, or for specific natural vegetation types and native animals, stated 254 

preferences techniques were used, but in some cases results were obtained through the benefit 255 

transfer method rather than with case specific studies. Among the impacts which cannot be 256 

categorised according to CICES, benefit transfer was the main valuation technique for wetlands, and 257 

other non-specified or bespoke valuation methods were used for the environment as a general 258 

concept. The greatest diversity in valuation methods was found for environmental flows in rivers or 259 

volumes in aquifers. 260 
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HEMs require demand functions which relate the value of the impacts to water supply. For most in-261 

stream use studies, the values were dependent on river flows (3, 10, 27, 34, 77, 88, 89, and 90), 262 

whilst for uses in lakes and reservoirs values relied on the water level or the stored volume (49, 65, 263 

84, and 91). Finally, there were few examples of more complex demand functions which captured 264 

the relationship between the value and the ecological response using more than one hydrological 265 

variable (67, 71, and 94). 266 

4. Discussion 267 

We selected 95 HEM studies which cover environmental aspects of water management at river basin 268 

or comparable scales. The majority of HEMs analysed inter-sectoral water allocation between two or 269 

three water use sectors, including environmental, agricultural and urban uses, with the aim of 270 

maximising net benefits. The consideration of uncertainty issues was rare. From the initial 95 271 

studies, about two thirds considered environmental aspects in physical terms, mostly as constraints 272 

to realising other use values. The third which valued at least one environmental impact in economic 273 

terms were mostly limited to a single environmental aspect, or included very broad or vague 274 

environmental aspects. Recreation, commercial fishing and salt dilution were the most frequently 275 

valued in HEMs. We also found that established and traditional valuation methods were used to 276 

assign economic value to the environment, with little deviation from methods recommended in the 277 

ES literature (Banerjee et al., 2013; de Groot et al., 2002; TEEB 2010). 278 

We found that the use of the ES framework to identify the aspects of the environment likely affected 279 

by alternative water management actions is a systematic and thorough way to select relevant 280 

impacts and values. The ES framework should more comprehensively capture the ecological 281 

processes, values and interactions in HEMs. To some extent, the ES approach is already influencing 282 

the inclusion of environmental and economic values in HEMs. For example, Bryan et al. (2013) 283 

selected environmental impacts based on the main water demands and the important river 284 

ecological and ES components were identified using river basin mapping. 285 
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A reason for the poor representation of the environment, especially in economic terms, in many 286 

HEMs is the limited availability of data and models characterising relevant environmental processes 287 

and associated economic values (Dandy et al., 2013). Although good quality information is complex 288 

and costly to obtain, we think that in well studied river basins omissions may be a result of the single 289 

issue focus of many studies. Many river basins have a good knowledge base which can be used to 290 

include more environmental values. For example, water quality processes related to flow are 291 

reasonably well understood and they are not difficult to value using cost-based methods (Keeler et 292 

al., 2012; La Notte et al., 2015; Terrado et al., 2016). Similarly, it is possible to estimate values of 293 

recreational opportunities related to flow or water level (Grossmann and Dietrich, 2012; Hurd et al., 294 

1999), and obtain values of provisioning services such as fisheries using production functions and 295 

market values (Mullick et al., 2013; Ringler and Cai, 2006), although for these ES the difficulty relies 296 

on having reliable data about underlying biophysical processes for water bodies in the basin. 297 

Environmental impacts can be valued with more than one method and, in agreement with de Groot 298 

et al. (2002), we suggest that following a rank ordering of valuation methods for each type of ES 299 

adds rigour and value comparability. Selection of the appropriate method depends on the data 300 

available and on the type of ES. Market valuation methods are generally more suited to provisioning 301 

ES or use values, cost-based methods to regulating ES, and revealed and stated preferences methods 302 

to cultural ES (TEEB 2010; Turner et al., 2008).  303 

Uncertainty in ES values can be a consequence of the valuation approach and of the quality of the 304 

economic data. For instance, revealed and stated preference valuation methods have been criticised 305 

for their subjectivity and bias (Bateman et al., 2006; Chee, 2004; La Notte et al., 2015), while market 306 

value, production and cost based valuation techniques are more objective. Benefit transfer can 307 

increase the range of values included in HEMs when local valuation studies are absent. However, 308 

transferring values introduces additional uncertainty if there is inadequate correspondence between 309 

the original and new studies (Plummer, 2009). This uncertainty may lead to highly variable results 310 

that would prevent decision makers from using HEMs to support decisions. 311 
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Expanding the representation of the environment and its values in HEMs will likely increase model 312 

uncertainties. Since the number of ES values associated with environmental impacts can be the 313 

greatest source of uncertainty (Boithias et al., 2016), there will need to be more systematic 314 

incorporation of uncertainty analyses into HEMs, including assessment of implications of uncertainty 315 

in decision making (Cai et al., 2002). We show that very few HEMs currently treat uncertainty, a 316 

conclusion drawn by a number of other studies (Bateman et al., 2006; La Notte et al., 2015; Lund 317 

and Ferreira, 1996). We suggest that Monte Carlo based analysis, an approach used more often in 318 

integrated analysis such as integrated assessment of global climate change impacts and adaptation 319 

(Gao et al., 2016), be also used to assess uncertainty in HEMs. Monte Carlo analyses consider non-320 

linearities and are probabilistic, which is in line with actual measurement processes (Papadopoulos 321 

and Yeung, 2001). 322 

Although there are arguments for expanding the number of monetised environmental values in 323 

HEMs, not all the potential environmental values impacted by water management need to be 324 

included to support good decisions. It may be the case that inclusion of additional environmental 325 

values does not influence the decision path. For example, in the case of a decision that has high net 326 

benefit based on the social, economic and environmental benefit values that are already quantified, 327 

quantifying additional benefits in monetary terms may add little to the conclusion (Kandulu et al., 328 

2014). It may also be the case that monetised environmental values, such as those characterising 329 

productivity of wetlands or environmental flows (e.g. €/ha and €/m3, respectively), disguise the 330 

diverse pluralistic values of the environmental assets. These aggregated values are incompatible 331 

with ES classification and valuation, though in some cases they may provide information that could 332 

be unpacked into distinct components that could be valued in an ES framework. 333 

Something that is rarely dealt with explicitly in HEMs, despite many studies noting its importance, is 334 

the role of critical thresholds and system irreversibilities in the ecosystems response functions (Folke 335 

et al., 2002; Folke et al., 2004; Scheffer et al., 2001; Spangenberg et al., 2014). An exception is Kahil 336 
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et al. (2015) who use a piecewise function to consider the shifts in the benefits provided by a 337 

wetland depending on inflow critical thresholds. Another aspect, not often considered in valuation 338 

functions in HEMs, is the correlation between ecological functions and other biophysical variables 339 

apart from water flows and volumes. Water quality has an important bearing on environmental 340 

aspects such as fauna and flora, and so water quality should be represented with environmental 341 

processes and linked to valuation functions. Although none of our reviewed studies consider the 342 

impact of water quality on environmental uses of water, some studies do consider impacts on 343 

traditional uses. For instance, Hurd et al. (1999) account for the impact of salinity on agricultural, 344 

urban and industrial uses. We suggest water quality variables (e.g. salinity, temperature) should be 345 

sufficiently detailed in HEMs to assess environmental impacts. 346 

5. Conclusion 347 

We used an ES framework to catalogue how HEMs have represented and valued the environment. 348 

Even though water management affects many environmental values, the HEMs we reviewed did not 349 

apply any systematic approaches to identify potential environmental impacts. This unsystematic 350 

approach to inclusion of the environment in HEMs risks over-looking potential trade-offs (between 351 

environment and economy) and unintended ecosystem impacts from water management decisions. 352 

The ES framework can be used to screen many environmental impacts that could be more widely 353 

applied in setting scope of analysis for water management actions. 354 

Some important challenges remain. Firstly, the biophysical variables impacted by water 355 

management should be better understood in order to undertake a proper impact assessment and 356 

valuation. Aggregated environmental indexes which lose information about relevant detailed 357 

environmental impact values should then be avoided. Secondly, environmental functions which 358 

capture non-linearities and thresholds in ecological processes should be better defined, as should 359 

the role that water quality plays in broader aspects of environmental quality. Finally, uncertainty in 360 
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both biophysical and economic variables should be more often addressed to improve the decision-361 

support capabilities of HEMs. 362 
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Table 1. CICES framework for ecosystem accounting (v4.3) modified with the inclusion of the potential services provided 788 
by water bodies. 789 

Section Division Group Class Water 
bodies* 

Provisioning Nutrition Biomass Cultivated crops  
Reared animals and their outputs  
Wild plants, algae and their outputs √ 
Wild animals and their outputs √ 
Plants and algae from in-situ aquaculture √ 
Animals from in-situ aquaculture  √ 

Water Surface water for drinking √ 
Ground water for drinking √ 

Materials Biomass Fibres and other materials from plants, algae 
and animals for direct use or processing 

√ 

Materials from plants, algae and animals for 
agricultural use 

√ 

Genetic materials from all biota √ 
Water Surface water for non-drinking purposes √ 

Ground water for non-drinking purposes √ 
Energy Biomass-based energy 

sources 
Plant-based resources  
Animal-based resources  

Mechanical energy  Animal-based energy  
Regulation & 
Maintenance 

Mediation of 
waste, toxics 
and other 
nuisances 

Mediation by biota Bio-remediation by micro-organisms, algae, 
plants, and animals 

√ 

Filtration/sequestration/storage/accumulation 
by micro-organisms, algae, plants, and animals 

√ 

Mediation by ecosystems Filtration/sequestration/storage/accumulation 
by ecosystems 

√ 

Dilution by atmosphere, freshwater and 
marine ecosystems  

√ 

Mediation of smell/noise/visual impacts  
Mediation of 
flows 

Mass flows Mass stabilisation and control of erosion rates √ 
Buffering and attenuation of mass flows √ 

Liquid flows Hydrological cycle and water flow maintenance √ 
Flood protection √ 

Gaseous / air flows Storm protection  
Ventilation and transpiration  

Maintenance 
of physical, 
chemical, 
biological 
conditions 

Lifecycle maintenance, 
habitat and gene pool 

Pollination and seed dispersal √ 
Maintaining nursery populations and habitats √ 

Pest and disease control Pest control  
Disease control  

Soil formation and 
composition 

Weathering processes  
Decomposition and fixing processes  

Water conditions Chemical condition of freshwaters  
Chemical condition of salt waters  

Atmospheric composition 
and climate regulation 

Global climate regulation by reduction of 
greenhouse gas concentrations 

√ 

Micro and regional climate regulation √ 
Cultural Physical and 

intellectual 
interactions 

Physical and experiential 
interactions 

Experiential use of plants, animals and land-
/seascapes 

√ 

Physical use of land-/seascapes √ 
Intellectual and 
representative 
interactions 

Scientific √ 
Educational √ 
Heritage, cultural √ 
Entertainment √ 
Aesthetic √ 

Spiritual, 
symbolic and 
other 
interactions  

Spiritual and/or 
emblematic 

Symbolic √ 
Sacred and/or religious √ 

Other cultural outputs Existence √ 
Bequest √ 
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* They comprise all the river basin elements that can be affected by water management (quantity and quality): rivers 790 
including riverbed and riverbanks; wetlands considering the different types (e.g. US Hydrogeomorphic classification or 791 
the simplification proposed by Turner et al. (2008)); aquifers; reservoirs. 792 

 793 

Table 2. Final selection of papers reviewed. 794 

ID Citation ID Citation ID Citation 
1 (Vaux and Howitt, 1984) 33 (Pulido-Velazquez et al., 2006) 65 (Yang and Cai, 2011) 
2 (Brown et al., 1990) 34 (Ringler and Cai, 2006) 66 (Ahmadi et al., 2012) 
3 (Booker and Young, 1991) 35 (Schoups et al., 2006) 67 (Grossmann and Dietrich, 2012) 

4 (Diaz et al., 1992) 36 (Tanaka et al., 2006) 68 (Ward and Pulido-Velazquez, 
2012) 

5 (Booker and Young, 1994) 37 (Ward et al., 2006) 69 (Yang et al., 2012) 
6 (Booker, 1995) 38 (Houk et al., 2007) 70 (Blanco-Gutiérrez et al., 2013) 
7 (Lund and Ferreira, 1996) 39 (Mainuddin et al., 2007) 71 (Bryan et al., 2013) 
8 (Ward and Lynch, 1996) 40 (Medellín-Azuara et al., 2007) 72 (Connor et al., 2013) 
9 (Ward and Lynch, 1997) 41 (Qureshi et al., 2007) 73 (Davidson et al., 2013a) 
10 (Hurd et al., 1999) 42 (Cai et al., 2008) 74 (Davidson et al., 2013b) 

11 (Watkins Jr and McKinney, 
1999) 43 (Harou and Lund, 2008) 75 (Divakar et al., 2013) 

12 (Jenkins and Lund, 2000) 44 (Medellín-Azuara et al., 2008a) 76 (Geng and Wardlaw, 2013) 
13 (Rosegrant et al., 2000) 45 (Medellín-Azuara et al., 2008b) 77 (Mullick et al., 2013) 
14 (Bielsa and Duarte, 2001) 46 (Pulido-Velazquez et al., 2008b) 78 (Pulido-Velazquez et al., 2013) 
15 (Tisdell, 2001) 47 (Reynaud and Leenhardt, 2008) 79 (Riegels et al., 2013) 
16 (Cai et al., 2002) 48 (Volk et al., 2008) 80 (Roozbahani et al., 2013) 

17 (Fisher et al., 2002) 49 (Ward and Pulido-Velázquez, 
2008) 81 (Wan et al., 2013) 

18 (Newlin et al., 2002) 50 (Li et al., 2009) 82 (Yang and Yang, 2013) 
19 (Cai et al., 2003a) 51 (Medellín-Azuara et al., 2009) 83 (Daneshmand et al., 2014) 
20 (Cai et al., 2003b) 52 (Ward, 2009) 84 (Debnath, 2014) 

21 (Draper et al., 2003) 53 (Ward and Pulido-Velazquez, 
2009) 85 (Erfani et al., 2014) 

22 (Knapp et al., 2003) 54 (Alcoforado de Moraes et al., 
2010) 86 (Hasler et al., 2014) 

23 (Burke et al., 2004) 55 (Harou et al., 2010) 87 (Yang and Yang, 2014) 
24 (Jenkins et al., 2004) 56 (Zoltay et al., 2010) 88 (Bekchanov et al., 2015b) 
25 (Letcher et al., 2004) 57 (Divakar et al., 2011) 89 (Bekchanov et al., 2015c) 
26 (Pulido-Velazquez et al., 2004) 58 (George et al., 2011a) 90 (Bekchanov et al., 2015a) 
27 (Ringler et al., 2004) 59 (George et al., 2011b) 91 (Debnath et al., 2015) 
28 (Assimacopoulos et al., 2005) 60 (Grafton et al., 2011) 92 (Erfani et al., 2015) 
29 (Babel et al., 2005) 61 (Munoz-Hernández et al., 2011) 93 (Girard et al., 2015) 
30 (Booker et al., 2005) 62 (Grafton and Jiang, 2011) 94 (Kahil et al., 2015) 
31 (Marques et al., 2006) 63 (Riegels et al., 2011) 95 (Roozbahani et al., 2015) 
32 (Null and Lund, 2006) 64 (Varela-Ortega et al., 2011)   

 795 

Table 3. Water use sectors considered in the reviewed HEM studies indicating the number of papers and their ID. 796 

Sectors Num. 
papers ID papers 

Single 
sector Environmental 2 65, 71 

Two 
sectors 

Environmental and agricultural 23 15, 22, 23, 25, 31, 35, 38, 39, 41, 48, 60, 61, 
62, 64, 66, 67, 70, 72, 76, 80, 88, 90, 92 

Environmental and hydropower 2 8, 9 
Environmental and urban 3 12, 50, 81 

Three 
sectors 

Environmental, agricultural and hydropower 2 14, 89 
Environmental, agricultural and industrial 3 82, 85, 86 
Environmental, agricultural and navigation 1 77 
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Sectors Num. 
papers ID papers 

Environmental, urban and agricultural 23 1, 18, 21, 24, 26, 28, 33, 37, 40, 43, 45, 46, 
47, 49, 51, 52, 53, 55, 68, 69, 78, 93, 94 

Environmental, urban and hydropower 2 84, 91 
Four 
sectors 

Environmental, urban, agricultural and hydropower 13 2, 6, 13, 16, 19, 20, 27, 32, 36, 42, 44, 58, 59 
Environmental, urban, agricultural and industrial 9 5, 17, 30, 73, 74, 79, 83, 87, 95 

Five or more sectors 12 3, 4, 7, 10, 11, 29, 34, 54, 56, 57, 63, 75 
 797 

Table 4. Cross relationship between major issues and assessment criteria in the reviewed papers indicating the number 798 
of papers and their ID. See Heinz et al. (2007) for description of assessment criteria. 799 
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Conjunctive use of surface 
and groundwater 0 0 4 (26, 31, 35, 83) 1 (33) 0 0 5 

Drought/climate change 
management 0 0 4 (10, 30, 37, 94) 3 (36, 44, 

55) 0 1 (6) 8 

Inter-sectoral water allocation 
4 (52, 

58, 59, 
67) 

3 (38, 
64, 
93) 

28 (3, 4, 8, 9, 13, 14, 
15, 20, 25, 39, 41, 42, 
47, 50, 54, 56, 57, 60, 
61, 62, 69, 70, 77, 79, 

84, 89, 90, 91) 

1 (46) 

11 (29, 65, 
66, 71, 75, 
76, 80, 81, 
82, 87, 95) 

1 
(28) 48 

Land use management 0 1 (48) 0 0 0 0 1 
Trans-boundary management 
and conflict resolution 0 1 (86) 5 (16, 17, 19, 27, 34) 1 (40) 0 0 7 

Water institutions (prices, 
markets, rights) 0 0 12 (1, 5, 18, 22, 23, 49, 

53, 63, 78, 85, 88, 92) 0 0 1 
(72) 13 

Water supply, engineering 
infrastructures and capacity 
expansion 

1 (45) 0 5 (24, 43, 68, 73, 74) 6 (7, 11, 12, 
21, 32, 51) 0 1 (2) 13 

Total 5 5 58 12 11 4 95 
 800 

Table 5. Classification of environmental and non-environmental impacts included in HEM studies (and papers ID) 801 
according to the CICES framework. 802 

Section Class Number of papers 

Provisioning 

Wild animals and their outputs Commercial fishing (11, 27, 34, 77, 88, 89, and 90 ) 
Surface water for drinking Urban demands (2, 3, 5, 6, 7, 10, 11, 16, 27, 28, 29, 30, 

34, 37, 49, 53, 57, 68, 73, 74, 75, 84, 91, and 94) Ground water for drinking 
Surface water for non-drinking purposes Agricultural and/or Hydropower and/or Industrial 

and/or Navigation and/or Livestock and/or Commercial 
(2, 3, 5, 6, 7, 8, 9, 10, 11, 16, 27, 28, 29, 30, 34, 37, 49, 
53, 57, 60, 67, 68, 74, 75, 77, 84, 88, 89, 90, 91, and 94) 

Ground water for non-drinking purposes 

Regulation & 
Maintenance 

Filtration/sequestration/storage/accumulation 
by micro-organisms, algae, plants, and animals 

Water quality (28) + Wastewater treatment (10) 
Filtration/sequestration/storage/accumulation 
by ecosystems 
Dilution by atmosphere, freshwater and marine 
ecosystems  Salt dilution (2, 3, 5, 6, 10, 57, and 75) + Waste heat (10) 

Flood protection Flood control (7, 10, and 65) 
Global climate regulation by reduction of 
greenhouse gas concentrations Carbon sequestration (67) 

Cultural Experiential use of plants, animals and land-
/seascapes Tourism (88, 89, 90, and 94) 
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Section Class Number of papers 

Physical use of land-/seascapes 
Recreation (6, 10, 11, 29, 30, 65, 84, and 91) + 
Recreational fishing (8, 9, 37, 49, 53, and 68) + Boating 
(67) 

Symbolic Habitat (67) + Biodiversity (67) + Natural vegetation (71) 
+ Native animals (71) 

 803 

Table 6. Valuation methods used in HEM studies for the considered environmental and non-environmental impacts. 804 

  
Consumer 

Surplus 
Production-

based Cost-based Revealed 
preferences 

Stated 
preferences 

Benefit 
transfer Other 

Pr
ov
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io

ni
ng

 

Commercial fishing  + + +      
Urban demands + + +       
Agricultural demands + + + + +      
Hydropower demands  + + +      
Industrial demands + + + + + +     
Navigation demands  + + +     + + 
Livestock demands  + + +      

Re
gu

la
tio

n 
&

 
M

ai
nt

en
an

ce
 Water quality   + + +     

Wastewater treat.   + + +     
Salt dilution   + + +     
Waste heat   + + +     
Flood control   + + +    + + 
Carbon sequestration   + + +     

Cu
ltu

ra
l 

Tourism  + +  + + +    
Recreation    + + +  + + + 
Recreational fishing    + + +    
Boating    + + +    
Habitat      + + +  
Biodiversity      + + +  
Natural vegetation     + + +   
Native animals     + + +   

N
ot

 in
 

CI
CE

S Wetlands  + +    + + +  
Environmental flows   + + +  + + + + + + + + + 
Environment       + + + 

* The most used method on which the calculation was based is indicated with +++, the second most with ++, and the 805 
third most with +; empty values mean that the method was not used. Based on de Groot et al. (2002). 806 


