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Abstract Reliable characterization of hydraulic parameters is important for the understanding of
groundwater flow and solute transport. The normal-score ensemble Kalman filter (NS-EnKF) has proven to
be an effective inverse method for the characterization of non-Gaussian hydraulic conductivities by
assimilating transient piezometric head data, or solute concentration data. Groundwater temperature, an
easily captured state variable, has not drawn much attention as an additional state variable useful for the
characterization of aquifer parameters. In this work, we jointly estimate non-Gaussian aquifer parameters
(hydraulic conductivities and porosities) by assimilating three kinds of state variables (piezometric head,
solute concentration, and groundwater temperature) using the NS-EnKF. A synthetic example including
seven tests is designed, and used to evaluate the ability to characterize hydraulic conductivity and porosity
in a non-Gaussian setting by assimilating different numbers and types of state variables. The results show
that characterization of aquifer parameters can be improved by assimilating groundwater temperature data
and that the main patters of the non-Gaussian reference fields can be retrieved with more accuracy and
higher precision if multiple state variables are assimilated.

1. Introduction

Reliable characterization of hydraulic parameters is important for the understanding of groundwater flow
and solute transport [G�omez-Hern�andez and Wen, 1994; G�omez-Hern�andez et al., 2003]. However, in reality,
due to practical reasons, the information we can get is sparse, what makes direct characterization difficult
[Zhou et al., 2014]. Better characterization can be achieved by stochastic inverse modeling, making use of
observed data of state variables.

In the last decades, many works have focused on the inverse characterization of hydraulic parameters by
assimilating piezometric heads. Less attention has been paid on the joint assimilation of two or more types
of state variables; Franssen et al. [2003] presented an extension of the self-calibrating method [Wen et al.,
1999] and showed the importance, for aquifer characterization and flow predictions, of conditioning on pie-
zometric head and concentration data; Li et al. [2012a] jointly characterized hydraulic conductivity and
porosity by the simultaneous assimilation of piezometric heads and solute concentration using the ensem-
ble Kalman Filter (EnKF); Fu and G�omez-Hern�andez [2009] analyzed the characterization of aquifer conductiv-
ities by conditioning on piezometric head data as well as on solute travel time data via a blocking Markov
chain Monte Carlo method.

Recently, groundwater temperature data are attracting attention thanks to the wide use of inexpensive tem-
perature loggers. Groundwater temperature data and heat transport modeling could be used in inverse
modeling together with head and solute transport data, [e.g., Anderson, 2005; Ma and Zheng, 2010].
Groundwater temperature can provide additional information on aquifer structure, especially about the
connectivity patterns within an aquifer [Kurtz et al., 2014]. There are already works demonstrating the bene-
fits of the joint assimilation of temperature data and other state variables, particularly in the analysis of sur-
face water-groundwater interaction. For example, Doussan et al. [1994] characterized river-groundwater
exchanges by the coupled use of hydraulic heads and temperature data in a river-aquifer system; Bravo
et al. [2002] estimated simultaneously hydraulic conductivities and inflow to wetland systems by the joint
inversion of head and temperature data with PEST [Doherty et al., 1994]; and Kurtz et al. [2014] characterized
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hydraulic conductivities and leakage coefficients by the assimilation of piezometric heads and groundwater
temperatures in a river-aquifer system using the EnKF.

However, except for works in the analysis of surface water-groundwater interactions, groundwater tempera-
ture is seldom used for aquifer characterization. We want to show the importance of the use of temperature
data, together with other state variables for the characterization of non-Gaussian hydraulic conductivities in
inverse modeling using the EnKF.

In the last decades, many inverse modeling methods have been developed and successfully applied for
hydraulic conductivity characterization, such as the gradual deformation method, the sequential self-
calibration, the Markov chain Monte Carlo method, the Representer method, the Pilot Points method, the
particle filter, the inverse sequential simulation method, and the EnKF [e.g., Capilla and Llopis-Albert, 2009;
Hu, 2000; G�omez-Hern�anez et al., 1997; Fu and G�omez-Hern�andez, 2009; Oliver et al., 1997; Alcolea et al., 2006;
Wen et al., 2002; RamaRao et al., 1995; Franssen et al., 2003; Gordon et al., 1993; Losa et al., 2003; Van
Leeuwen, 2009; Xu and G�omez-Hern�andez, 2015a, 2015b; Evensen, 2003; Gu and Oliver, 2006; Wen and Chen,
2006]. Of all of them, the EnKF has proven to be the most computationally efficient and capable to handle
non-Gaussianities and nonlinearities between parameters and state variables.

The EnKF is developed after the Kalman filter [Kalman et al., 1960], overcoming the problem associated with
the estimation of the non-stationary autocovariances and cross covariances of parameters and state varia-
bles associated with nonlinear state-transfer functions. However, in its original implementation [Evensen,
2003], the EnKF fails to properly characterize parameters following a non-Gaussian distribution. Several
approaches have been developed for the EnKF to deal with parameters following non-Gaussian distribu-
tions. Xu et al. [2013] has grouped these approaches into four categories according to their characteristics:
(i) Combination of the EnKF with a Gaussian mixture model [e.g., Sun et al., 2009; Dovera and Della Rossa,
2011; Reich, 2011], (ii) reparameterization of the EnKF formulation [e.g., Chen et al., 2009; Chen and Oliver,
2010; Chang et al., 2010], (iii) iterative EnKF [e.g., Liu and Oliver, 2005; Gu and Oliver, 2007; Wang et al., 2010],
and (iv) combination of the EnKF with a normal-score (NS) transform [e.g., Simon and Bertino, 2009; Zhou
et al., 2011; Li et al., 2011].

In this paper, we analyze how well non-Gaussian hydraulic conductivity and porosity fields can be character-
ized by the joint assimilation of piezometric heads, solute concentration, and groundwater temperature
data using the normal-score Ensemble Kalman Filter (NS-EnKF) as proposed by Zhou et al. [2011]. The paper
starts with a description of the algorithms, and then we evaluate its performance in seven synthetic scenari-
os. The paper ends with a discussion and a summary.

2. Methodology

The NS-EnKF is applied for the characterization of a non-Gaussian conductivity field and a non-Gaussian
porosity field by the sequential assimilation in time of piezometric head, solute concentration, and ground-
water temperature data. There are three state variables of interest, and three state equations, which are
modeled in transient conditions with the corresponding numerical codes.

2.1. Transient Groundwater Flow
Piezometric heads evolve in time according to the following three-dimensional transient groundwater flow
equation with external sources/sinks [Bear, 1972]:

Ss
@H
@t

2r � ðKrHÞ5W (1)

where r� is the divergence operator, r is the gradient operator, Ss denotes specific storage (L21), H is the
hydraulic head (L), K is the hydraulic conductivity (LT21), W denotes sources and sinks per unit volume
(T21), and t is time (T).

This equation is numerically solved, given initial and boundary conditions, by finite differences using the
MODFLOW code [McDonald and Harbaugh, 1988], and the resulting specific discharges (q52KrH) are
used as input to the solute and heat transport equations presented next.
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2.2. Solute Transport
Solute concentrations evolve in time according to the following three-dimensional transport equation
[Zheng, 2010]:

11
qb

h
kd

� � @ hCð Þ
@t

5r � h Dm1a
q
h

� �
� rC

h i
2r � qCð Þ2qsCs (2)

where h is the effective porosity (dimensionless), qb (ML23) is the bulk density of the rock matrix
(qb5qsð12hÞ, where qs (ML23) is the density of the solid grains), kd is the distribution coefficient (L3M21), C
is the aqueous concentration (ML23), t is time (T), Dm is the molecular diffusion coefficient (L2T21), a is the
dispersivity tensor (L), q is the specific discharge vector related to the hydraulic head through, q5ð2KrHÞ
(LT21), qs is the volumetric flow rate per unit volume representing fluid sources or sinks (T21), and Cs is the
concentration of the source or sink flux (ML23).

This equation is numerically solved, given initial and boundary conditions, by the MT3DMS code [e.g.,
Zheng, 2010; Ma et al., 2012].

2.3. Heat Transport
Groundwater temperatures evolve in time due to heat convection with the fluid phase, heat conduction,
and dispersion through the fluid and aquifer sediment, and heat exchange between the aqueous phase
and the aquifer sediment. The state equation is the following [e.g., Healy and Ronan, 1996; Anderson, 2005]:
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where cs is the specific heat capacity of the solid (L2T22H21), qw is the density of the fluid (ML23), cw

is the specific heat capacity of the fluid (L2T22H21), T is the fluid temperature (H), ks and kw are the
thermal conductivities of the solid and fluid phase, respectively (MLH21T23); and Ts is the source/sink
temperature (H).

Comparing equations (3) and (2), we can find great similarity between them. Indeed, replacing cs=cwqw

in equation (3) with a fictitious distribution coefficient, and ðhkw1ð12hÞksÞ=hqw cw with a fictitious
molecular diffusion, and assuming that the changes in temperature are small and do not affect fluid den-
sity; equation (3) becomes equation (2). Therefore, the same MT3DMS code used for solute transport
modeling can be used for the modeling of heat transport [e.g., Zheng, 2010; Ma et al., 2012; Ma and
Zheng, 2010].

2.4. Modeling Process
Modeling is performed in transient conditions. First, the groundwater flow equation is solved to predict the
piezometric heads in the next time step. The flow solution is used to compute the specific discharges that
are needed for the solution of the solute and heat transport equations. Then, these two equations are
solved, independently of each other, to advance the prediction of concentrations and temperatures to the
next time step.

2.5. Normal-Score Ensemble Kalman Filter
Next, we present a generalized version of the NS-EnKF [e.g., Zhou et al., 2012; Li et al., 2011; Xu et al., 2013]
for the characterization of l kinds of non-Gaussian parameters (P1; P2; . . . ; Pl) with the assimilation of m
types of state variables (V1; V2; . . . ; Vm):

1. Initialization step: Ensembles of all the parameters (P1; P2; . . . ; Pl) are generated. In the examples ana-
lyzed next, the generation of the non-Gaussian fields consists of two steps: in the first step, facies realiza-
tions are generated, and then, these realizations are populated with parameter values according to
distributions specific for each facies and parameter.

2. Normal-score transform step: At each location, all parameter values of all realizations for each hydraulic
parameter are transformed into normal scores using specific transform functions at each location and for
each parameter:

Water Resources Research 10.1002/2016WR019011

XU AND G�OMEZ-HERN�ANDEZ MULTI-PARAMETER CHARACTERIZATION 6113



~Pi5/iðPiÞ; i51; . . . ; l: (4)

where /i is a vectorial normal-score transform function for the ith hydraulic parameter, which varies
from one location to another.

3. Forecasting step: State variables at time step t are calculated based on the state variables at time step t – 1 and the
last estimate of the parameter fields, using the corresponding numerical codes. As already mentioned, we use
MODFLOW to solve the three dimensional transient groundwater flow equation, and MT3DMS to solve the
solute transport equation and the heat transport equation.

V t
j 5wjðV t21

j ; Pt21
1 ; Pt21

2 ; . . . ; Pt21
l Þ; j51; . . . ;m: (5)

where wj is the jth state variable forecasting model.
This forecast is performed for each ensemble member.

4. Assimilation step: An augmented state vector S including transformed parameters and variables is built
and then updated on the basis of the discrepancies between forecast states and observed state
measurements:

S5

V1

V2

. . .

Vm

~P1

~P2

. . .

~Pl

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(6)

such a vector is built for each member of the ensemble, and it is updated (for each ensemble member)
according to

Sa
t 5Sf

t 1Gt½V o
t 1et2V̂ � (7)

with

Gt5Ft HT ðHFt HT 1RtÞ21 (8)

where Sa
t is the updated state vector at the tth time step; Sf

t is the forecasted state vector at the tth time
step; Gt is the Kalman gain; et is an observation error with zero mean and covariance Rt; V o

t represents
the observed values of the state variables, while V̂ are the state variables at the observation locations as
computed from the model forecast; Ft is the augmented state covariance matrix, and H is a measurement
matrix used to map forecasted values at the discretization nodes onto the observation locations. When
observation locations coincide with the model nodes, this matrix contains only 00s and 10s, and equation
(8) can be rewritten as:

Gt5C~SV̂ ðCV̂ V̂ 1RtÞ21 (9)

where C~SV̂ is the cross covariance between the augmented state vector and the state variables at the
observation locations; CV̂ V̂ is the covariance between state variables at observation locations. These
covariances are nonstationary and are computed from the members of the ensemble; they are comput-
ed only once at each time step.

If, these covariances are split into the auto and cross covariances of each of the l parameters and
m state variables, and we define d5V01e2V̂ and DV̂ V̂ 5ðCV̂ V̂ 1RtÞ21, the updating equation (7)
becomes:
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where all the auto and cross covariances between the different components of the augmented vector
are explicitly shown. Recall that this updating is performed for each ensemble member, where only the
vector with the d values changes from one ensemble member to another.

As already mentioned, the covariances in (10) are computed from the ensemble of realizations. When
the ensemble size is small, chances are that spurious correlations may appear between variables at long
distances, or that covariances are repeatedly underestimated with the risk of collapsing to zero into what
is referred to as ensemble in-breeding. These two problems are addressed with the use of covariance
localization and inflation [Xu et al., 2013]. In the present example, with an ensemble size of 600 members,
it was not necessary to use neither localization nor inflation. The application of either technique to a mul-
tivariate case should not be much different than when dealing with a single parameter: each of the cova-
riances matrices should be localized to avoid the existence of nonzero correlations at long distances; the
same localization function could be used for all the covariances, or they could be different, with the only
caution of not forcing too small covariances at distances for which correlation is expected (this step can
be supervised by plotting some of the experimental covariances to determine the distance at which the
spurious values appear); similarly, each covariance should be inflated, and the inflation could be comput-
ed for each variable using the standard algorithms for that purpose.

5. Back transformation step: All the updated normal scores of the parameters of all ensemble members are
transformed back into parameter space using the inverse of the previously used transform functions:

Pi5/21
i ð~PiÞ; i51; . . . ; l: (11)

6. Return to step 3 and repeat the processes until all the observed data are assimilated.

3. Synthetic Example

A synthetic channelized confined
aquifer of size 50 m by 50 m by
5 m is constructed and discretized
into 50 by 50 by 1 cells. The chan-
nels represent 35% of the aquifer
and contain high permeability-
intermediate porosity material,
whereas the 65% nonchannel
material is of low permeability and
high porosity. The aquifer is con-
structed in two steps; in the first
step a binary facies realization is
generated using the SNESIM code
[Strebelle, 2002] with the training
image in Figure 1 and with eight
conditioning facies data shown in
Figure 2. Then, the GCOSIM3D
code [G�omez-Hern�andez and
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N
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Sand

Figure 1. Training image.
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Journel, 1993] is used to populate each
facies, independently, with lnK and poros-
ity values drawn from multiGaussian dis-
tributions with the parameters given in
Table 1. In our example, both parameters
are generated independently; however,
they could be cross correlated, and such
a cross correlation should be taken into
account here. Later on, during the updat-
ing process, the ensemble cross correla-
tion between the parameters will be
accounted for in the calculation of the
covariances needed to determine the Kal-
man gain.

The resulting reference fields of lnK
and porosity and their histograms are
shown in Figures 3 and 4, respective-
ly. Globally, both lnK and porosity fol-
low clearly non-Gaussian models, with
a mean of 20.3 ln(m/d), and a stan-
dard deviation of 3.1 ln(m/d) for lnK,
and a mean of 0.3, and a standard
deviation of 0.1 for porosity. All other

parameters needed for the modeling of groundwater and solute and heat transport are considered
homogeneous and uniform throughout the entire aquifer, with values that are described next.

All four boundaries of the aquifer are impermeable to flow and solute and heat transport. Specific storage is
set to 0.03 m21. (Strictly speaking, we should have used a heterogeneous specific storage strongly correlated with
the porosity; however, such a consideration implied an additional parameter and an added complexity that we

Figure 3. Reference fields of lnK and porosity. The dashed line is the source line for solute release into the aquifer.

Table 1. Parameters of the Random Functions Describing the Heterogeneity of lnK and Porosity for the Two Materialsa

Facies Proportion Mean Std. Dev Variogram type k x (m) ky (m) Sill

lnK (m/d) Channel 0.35 3.5 0.9 Spherical 20 20 1
Nonchannel 0.65 22.5 0.6 Spherical 20 20 0.4

Porosity Channel 0.35 0.15 0.04 Spherical 40 40 1
Nonchannel 0.65 0.42 0.08 Spherical 40 40 1

akx and ky are the correlation ranges in the x and Y directions.

Easting

N
or

th
in

g

50.00

50.00

0
0

Figure 2. Conditional data locations. The red nodes are in the low permeability/
high porosity material; the green nodes are in the high permeability/medium
porosity material.
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decided to leave outside of the analysis at this time). Figure 5 shows the distribution of injection, pumping, and
observation wells: well #1 injects 16 m3/d, well #2 injects 15 m3/d, well #3 pumps 7.5 m3/d, well #4 pumps
7.5 m3/d, and well #5 pumps 14.5 m3/d. The rest of the wells are used as observation wells, the state
variables observed at these wells for the first 50 time steps (equivalent to 135.4 days) will be used in the
assimilation step of the NS-EnKF algorithm described previously. In addition, wells #6, #7, and #8 are used
as verification wells to evaluate the performance of the inversion beyond the assimilation period and up to
500 days. The initial head is set to 8 m throughout the whole domain.

For the modeling of solute transport, we consider advection, dispersion, and linear sorption. The distribu-
tion coefficient kd is 9.3�1024 m3/kg. The longitudinal dispersivity is 1 m, and the transverse dispersivity is
0.01 m. The molecular diffusion coefficient Dm is set to zero. The solute is uniformly released along a line at
x 5 8 m (see Figure 3a). The source concentration is 50 mg/L. The initial solute concentration is set to zero
throughout the whole domain.

For the modeling of heat transport, the density of the fluid qw is 1000 kg/m3, the density of the solid grains
qs is 2700 kg/m3, the specific heat capacity of the fluid cw is 4200 J/(kg/K), the specific heat capacity of the
solid cs is 800 J/(kg/K), the longitudinal dispersivity is 1 m, and the transversal dispersivity 0.01 m, the ther-

mal conductivity of the fluid is 0.6 W/
(m/K), and the thermal conductivity of
the solid is 2.2 W/(m/K). Groundwater
temperature along the solute release
line (Figure 3a) is constant to 258C, and
the temperature of the two injection
wells #1 and #2 is also 258C. The initial
temperature of the aquifer is 108C.

The total simulation time is 500 days,
discretized into 100 time steps with
increasing size following a geometric
series with ratio 1.02. Observations of
all three state variables are taken dur-
ing 50 time steps (for a total of 135.4
days) and are used to update the aug-
mented state as described above.

Seven scenarios are designed to analyze
the trade-off between the different
state variables for the purpose of char-
acterizing the hydraulic conductivity
and porosity fields. The combinations of
conditioning information in each sce-
nario are listed in Table 2.

0
0

Easting

N
or

th
in

g

50.00

50.00

#1

#2

#3

#4

#5

#6

#7

Distribution of wells

#8

Figure 5. Well locations. Red triangles denote observation wells; blue squares
denote injection (#1, #2) and pumping wells (#3, #4 and #5). The observation wells
labeled #6, #7, #8 are used as verification wells.

Figure 4. Histogram of lnK and porosity from the reference fields.
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4. Analysis

The aim of this section is to analyze
how conditioning to different state
variables influences the characteriza-
tion of the hydraulic conductivity and
porosity in a channelized aquifer. For
this purpose, the NS-EnKF as
described before is used. The condi-

tions under which the analysis is performed are as follows:

1. There are eight conditioning points for facies, porosity, and hydraulic conductivity values, at the locations
shown in Figure 2. These values are taken from the reference fields.

2. The rest of the parameters, sinks, and sources, and initial and boundary conditions are the same as for
the reference case. Although this may seem unrealistic (neither the parameters will be homogeneous or
perfectly known in a real case), it allows us to isolate the influence of porosity and hydraulic conductivity
heterogeneity in the flow and transport and to measure how the use of observational data on the three
state variables affects parameter characterization.

3. The reference case has been modeled and the state variables have been retrieved at the end of each of
the 50 time steps; these will be used as observational data for characterization purposes.

4. An ensemble of 600 realizations of both hydraulic conductivity and porosity is generated conditioned to the
eight well values in Figure 2 following the same procedure as to generate the reference field, i.e., first a facies
realization is generated, then each facies is populated with parameter values.

5. The multiparameter multistate-variable implementation of the NS-EnKF is run for 50 time steps. After
each time step, the porosity and hydraulic conductivity fields are updated according to the Kalman filter
equation (10).

Next, we analyze the seven scenarios in two aspects: the ability to capture the channel heterogeneity of both
log conductivity and porosity reference fields, and the uncertainty associated to such a characterization.

Figures 6a and 6b show the lnK histogram and porosity histograms for the initial ensemble of 600 heteroge-
neous lnK and porosity realizations, respectively. Figures 7a–7g and Figures 8a–8g show the lnK histograms
and porosity histograms for each scenario after the 50th assimilation step. Comparing the updated histo-
grams with the reference ones, we can see that the bimodality of the histograms of both lnK and porosity is
retained in all scenarios. It is very important to note that the updated histograms have not drifted towards
unimodal Gaussian distributions, as it would have happened if the standard implementation of the EnKF
had been applied [Zhou et al., 2011].

Figure 9 shows ensemble means and ensemble variances of the initial ensembles of realizations for both
lnK and porosity. The heterogeneity associated with these initial ensembles is related to the different values
at the eight conditioning points, but it is quite distant from the real channelized heterogeneity of the
reference.

Figure 6. Histogram of the initial ensemble of lnK and porosity realizations

Table 2. Definition of Scenariosa

Scenario S1 S2 S3 S4 S5 S6 S7

lnK � � � � � � �
Porosity � � � � � � �
Piezometric head � � � �
Concentration � � � �
Temperature � � � �

aState variables assimilated in each scenario.
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Figure 7. Scenarios S1–S7. Histogram of lnK for the updated ensemble of realizations after the 50th assimilation step.
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Figure 8. Scenarios S1–S7. Histogram of porosity for the updated ensemble of realizations after the 50th assimilation step.
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Figures 10 and 11 show the ensemble means of the updated lnK realizations after the 10th and the 50th
assimilation time step, respectively, for all seven scenarios. Their corresponding ensemble variances are
shown in Figures 12 and 13. Similarly, Figures 14 and 15 show the ensemble means of the updated porosity
realizations after the 10th and the 50th assimilation time step, respectively. And, Figures 16 and 17 show
the corresponding ensemble variances.

From a visual analysis of the above mentioned figures, it is clear that, in all scenarios, assimilating the tran-
sient behavior of one or several state variables helps in delineating the underlying heterogeneity; and that
this delineation improves as time passes by and is better when all state variables are assimilated. It is also
clear that not all state variables have the same information content regarding the characterization of the
two parameters of interest. Comparing the different scenarios we could reach the following conclusions:

1. It is best to use all the state variables. Scenario S4 uses the data from the three state variables to update
the parameter fields, and reaches the best approximation after 50 time steps, and also the smallest local
uncertainties.

2. The worst results are obtained when only solute concentration is assimilated. The results are still good,
but neither the channels are so well-identified nor the uncertainty reduced as much. The reason for this
result lies in the slower movement of the solute plume as compared to the movement of the tempera-
ture plume, which diffuses strongly.
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Figure 9. Ensemble mean and ensemble variance of the initial ensemble of realizations for lnK (top) and porosity (bottom).
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Figure 10. Scenarios S1–S7. Ensemble mean of lnK for the updated ensemble of realizations after the 10th assimilation step.
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3. The state variables dependent on fluid advection introduce a clear improvement in the characterization
at the latter time steps; parameter variances, especially that of hydraulic conductivity is quite high at the
10th time step for those scenarios that do not assimilate piezometric heads, but this variance reduces
drastically at the 50th time step and becomes similar to the variances of the other scenarios (except for
scenario S5, which only assimilates concentration data). This behavior is because many of the observa-
tion wells are ‘‘inactive’’ during the initial time steps and do not sample neither the solute nor the varia-
tions in temperature.
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Figure 11. Scenarios S1–S7. Ensemble mean of lnK for the updated ensemble of realizations after the 50th assimilation step.
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S1_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S2_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S3_t10: variance of lnK

Easting
N

or
th

in
g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S4_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S5_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S6_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

S7_t10: variance of lnK

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Figure 12. Scenarios S1–S7. Ensemble variance of lnK for the updated ensemble of realizations after the 10th assimilation step.
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4. For this particular case, assimilating temperature seems to be more beneficial than assimilating concentra-
tions, because temperature migrates faster than the solute and therefore, at the same time step, it carries
more spatial information than by the concentrations. But this result is specific of this example, for a differ-
ent combination of parameters describing the mass and heat transport, the reverse could be true.

5. In general, it is best to assimilate two state variables than just one, except as mentioned before for earlier
time steps in which the assimilation of piezometric heads can be more beneficial than assimilating varia-
bles dependent on advection.

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Easting

N
or

th
in

g

000.050.
.0

50.000

0.0

1.000

2.000

3.000

4.000

5.000

Figure 13. Scenarios S1–S7. Ensemble variance of lnK for the updated ensemble of realizations after the 50th assimilation step.
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Figure 14. Scenarios S1–S7. Ensemble mean of porosity for the updated ensemble of realizations after the 10th assimilation step.
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Figure 15. Scenarios S1–S7. Ensemble mean of porosity for the updated ensemble of realizations after the 50th assimilation step.
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Figure 16. Scenarios S1–S7. Ensemble variance of porosity for the updated ensemble of realizations after the 10th assimilation step.
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Figure 17. Scenarios S1–S7. Ensemble variance of porosity for the updated ensemble of realizations after the 50th assimilation step.
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In order to perform a more quantitative comparison between the different scenarios, and taking advantage
that we have access to the underlying truth (the reference fields) we can compute the square root of the mean
square error, RMSE, and the square root of the ensemble variance, ES, for each of the parameters of interest as:

RMSEi5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j51

ðPiðjÞref
2hPiðjÞiÞ2

vuut ; i51; . . . ; l: (12)

ESi5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j51

r2
PiðjÞ

vuut ; i51; . . . ; l: (13)

where N is the number of model elements; PiðjÞref is the ith hydraulic parameter at node j in the reference
field; hPiðjÞi is the ensemble mean, and r2

PiðjÞ is the ensemble variance.

The RMSE and ES values should be comparable in magnitude and are a quantitative measure of the accura-
cy and precision, respectively, with which the updated fields reproduce the reference fields. Optimally, both
values should tend to zero as the characterization improves.

Figure 18 shows the evolution in time of the RMSE and ES for both lnK and porosity and for all scenarios. As
anticipated in the visual analysis, scenario S4 displays the smallest RMSE at time step 50, and also the largest
reduction of ensemble variance with time, together with scenario S3. When only piezometric heads are
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Figure 18. RMSE and ES as a function of time for all scenarios.
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used (scenario S1), there is a time, around the 15th time step, after which only a marginal improvement is
obtained with the assimilation of additional data; whereas, when other state variables are used jointly with
the piezometric heads, we can see that the improvement for both RMSE and ES continues past time step 15
(more notably for lnK). It is also interesting to note that, about time step 25, the RMSE and ES curves for the
scenarios S6 and S7 (assimilating temperature or temperature and solute concentration) cross the curve for
scenario S1, marking a trade-off point: before that time, assimilating only piezometric head is more informa-
tive than assimilating only temperature (or temperature and solute concentration jointly), but, after that
time, the roles are exchanged, and it is better to assimilate temperature than piezometric heads.

Figure 19 shows the evolution in time of the piezometric heads (in the top row), the solute concentrations
(in the middle row), and the temperatures (in the bottom row) at verification wells #6, #7, and #8 for the
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Figure 19. Evolution in time of (top) piezometric head, (middle) solute concentration, and (bottom) temperature at the three verification wells for the initial ensemble of porosity and
log-conductivity realizations. Each black solid line corresponds to a member of the ensemble. The green line is the average of all ensemble curves. The red line corresponds to the
evolution of the state variable in the reference. The vertical-dashed lines marks the end of the state data assimilation period.
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Figure 20. Evolution in time of the piezometric head at the three verification wells with the lnK and porosity fields obtained after the 50th
assimilation time step for scenarios S1–S7. Each black solid line corresponds to a member of the ensemble. The green line is the average
of all ensemble curves. The red line corresponds to the evolution of the state variable in the reference. The vertical-dashed lines marks the
end of the state data assimilation period.
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Figure 21. Same caption as previous figure but now for solute concentration.
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Figure 22. Same caption as previous figure but now for fluid temperature.
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initial ensemble of lnK and porosity fields. Each solid curve corresponds to one of the ensemble members,
and the green curve is the mean of the 600 solid curves. For comparison, the red curve shows the evolution
in the reference field. The vertical-dashed line shows the period at which assimilation stops (time step num-
ber 50, equivalent to 135.4 days). Since none of these ensemble members accounts for any state variable,
the spread of these curves is extreme.

Figures 20–22 are similar to Figure 19 with the evolution of the state variables computed on the updated
parameter fields after 50 assimilation steps. More precisely, Figure 20 shows piezometric heads, Figure 21
shows solute concentrations, and Figure 22 shows temperature, all three figures for all scenarios S1-S7.
From the analysis of these figures, we can conclude that: (i) the spread of all state variables is greatly
reduced after updating the parameter fields through the assimilation of the observations; (ii) piezometric
heads are almost perfectly reproduced in the updated parameter fields, when the piezometric heads are
being assimilated, with the best results for scenario S4; (iii) there is also an improvement in the reproduction
of the heads when they are not assimilated, especially for scenarios S6 and S7, the improvement for scenar-
io S5 is lesser, indicating that solute concentrations alone do not carry much information about the piezo-
metric head evolution during the first 50 time steps; (iv) solute concentrations, when assimilated, are
greatly improved, especially for scenarios S4 and S7, but not as much as the piezometric heads; (v) when
solute concentrations are not assimilated, the improvement is clear if temperatures are assimilated, since it
is another variable subject to advection-dispersion; (vi) temperatures are also greatly improved, when
included in the assimilation, but again not as much as the piezometric heads; (vii) when temperatures are
not assimilated, the improvement is more noticeable if concentrations are observed, for the same reason
mentioned before for the temperatures; (viii) for solute concentration and temperature, the well configura-
tion has a clear impact on the ability of reproducing the observed state variables, since well #6 is connected
to well #1 and to the upper zone of the solute release zone through the top channel, and transport is more
affected by such a channeling than piezometric heads.

5. Summary and Conclusion

In this paper, we have presented an extension of the normal-score ensemble Kalman filter to work with
multiple state variables for the characterization of several parameters whose spatial variability follows non-
Gaussian distributions. Specifically, the NS-EnKF has been applied for the characterization of hydraulic con-
ductivity and porosity fields by the assimilation of piezometric heads, solute concentrations, and tempera-
ture data. As expected, the larger the number of state variables used and the longer the assimilation period,
the better the characterization of both fields. By analyzing different combinations of the different state vari-
ables, we realize that the information content on the observed variables varies as a function of time; in par-
ticular, in this specific example, there is a point in time up to which it is best to assimilate piezometric
heads, but after which the assimilation of temperature data produces better results. The main conclusion
from this demonstration is that there are tools capable to account for different sources of data when charac-
terizing complex aquifer heterogeneities, and that they should be considered in real applications in order
to effectively produce realistic models of heterogeneity with associated uncertainties.
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