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ABSTRACT 

Nowadays there is an evident concern regarding the efficiency and sustainability of the 

transport sector due to both the threat of climate change and the current financial crisis. 

This concern explains the growth of railways over the last years as they present an inherent 

efficiency compared to other transport means. However, in order to further expand their 

role, it is necessary to optimise their energy consumption so as to increase their 

competitiveness. 

Improving railways energy efficiency requires both reliable data and modelling tools that 

will allow the study of different variables and alternatives. With this need in mind, this 

paper presents the development of consumption models based on neural networks that 

calculate the energy consumption of electric trains. These networks have been trained 

based on an extensive set of consumption data measured in line 1 of the Valencia Metro 

Network. 

Once trained, the neural networks provide a reliable estimation of the vehicles 

consumption along a specific route when fed with input data such as train speed, 

acceleration or track longitudinal slope. These networks represent a useful modelling tool 

that may allow a deeper study of railway lines in terms of energy expenditure with the 

objective of reducing the costs and environmental impact associated to railways. 

1. INTRODUCTION

The current context of climatic change and financial crisis points out the need for more 

efficiency in all aspects of our economy. This is particularly important with regards to the 

transport sector, which is a key element of our society and greatly influences the global 

carbon footprint. Railways are inherently efficient compared to other transport means 

(Barkan, 2007; Garcia, 2007) but there is still ample room for improvement in terms of 

reducing their energy expenditure in order to make them more competitive and 
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environmentally friendly. However, measuring and evaluating the energy consumption of 

trains tends to be problematic and usually only average values and estimations are 

available for railway operators, both in diesel trains (Baumel, 2011) and electric (García 

and Martín, 2008). 

This context points out the need for more comprehensive data and reliable modelling tools, 

as these two elements are essential to achieve a proper assessment of the energy 

consumption of trains and develop new solutions and alternatives in order to improve their 

efficiency. Taking this into account, the paper aims to develop a modelling tool based on 

neural networks capable of estimating the energy consumed by metro trains during normal 

operation.  

The development, training and validation of the network are described in detail, paying 

particular attention to the network size and the input variables. The data used for training 

has been gathered during an extensive monitoring campaign carried out in the Valencia 

Metro Network (Spain). 

2. MATERIALS AND METHODS

2.1 Energy consumption data 

The consumption data used to train and validate the neural network was obtained from a 

comprehensive monitoring campaign carried out in the Valencia Metro Network (Spain) 

operated by FGV. A Metro Series 4300 train (Vossloh) with four carriages was equipped 

with three DC voltage and current measuring systems model MSAV-DC (Figure 1) 

developed by Mors Smitt in accordance with EN 50463. These devices provide real time 

values of voltage, current and power. 

Fig. 1 – DC voltage and current measuring device. Source: Mors Smitt. 

One device was installed in the catenary in order to measure the overall energy consumed 

by the train (including traction and auxiliary systems). Another device measured the 

energy used by said auxiliary systems (i.e. heating, lights, automatic doors, etc.) and the 

last one measured the energy consumed by the rheostatic braking system. The energy 

solely used for traction was then obtained from the difference between the total energy and 

the energy consumed by auxiliary equipment and braking. Additionally, train speed was 
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also measured through an odometer. The sampling frequency of the DC equipment was 1 

Hz while the speed was sampled at 100 Hz. 

Once fully equipped with the measuring devices, the train operated normally along lines 1, 

2, 3, 5 and 7 of the Valencia Metro Network between July and October 2014. The data was 

measured and stored on a laptop placed on board the train cabin. Up to 229 train services 

were monitored, which accounts for more than 230 hours of data. Data thus gathered was 

then processed in MATLAB 7.12.0 (The MathWorks, Inc.). 

 

 

 

Fig. 2 – Lines 1 of the Valencia Metro Network. Source: FGV.  

 

For the purpose of this paper, a subset of the whole data measured was chosen; 

corresponding to train services along line 1 (Figure 2). This line consist on a central 

underground stretch (‘Empalme-Sant Isidre’) operated automatically with ATO, and two 

surface stretches (‘Bétera-Empalme’ and ‘Sant Isidre-Castelló de la Ribera’) operated 

manually with ATP and FAP. The neural network has been trained only for the 

subterranean part of the line.   

 

2.2 Neural networks development and training 

Neural networks are computational models based on the underlying structure of biological 

nervous systems. A neural network is a made of components (i.e. the neurons) which work 

in parallel to provide an output value when fed with certain input values. The process of 

training the network consists on an iterative modification of the parameters which regulate 

the connections between the neurons until an error function is minimised according to pre-

established criteria. 

Although there are several possible network structures, one of the most common and 

widely used to fit functions is the two layer feed-forward network (Bishop, 1995) shown in 

Figure 3.  
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Fig. 3 – Two layer feed-forward network.  

 

This is the network structure chose for this study, whose overall equation (1) is:  

 

 𝑂𝑘 = �̃�(∑ 𝑤2𝑘𝑗 ∙ 𝑔(∑ 𝑤𝑗𝑖 ∙ 𝐼𝑖
𝑁
𝑖=0 )𝑀

𝑗=0 ) (1) 

 

Where Ok is the network output, M is the number of output elements, Ii is the input, N is 

the number of input variables, T is the number of neurons in the hidden layer, wij are the 

weights of the first layer and w2kj are the weights of the second layer (bias values 

correspond to wj0 and w2k0). Using this configuration it is possible to fit non-linear 

functions to an arbitrary degree of accuracy (Bishop, 1995) and thus it has been 

extensively used in many applications. 

In order to train the network, a Back-Propagation method is used, which aims to minimise 

the Mean Square Error (MSE) between the network output and the target data, as defined 

in equation (2). 

 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑁
𝑖=1  (2) 

 

Where N is the number of data, ti is the target output and oi is the network output. The 

Levenberg-Marquardt Algorithm of minimisation, combined with an Early Stopping 

Method, was used to effectively carry out the training. Early stopping consists, as its name 

suggests, on stopping the training before the MSE is completely minimised. This is done 

by dividing randomly the data in three subsets: a larger one used for Training and two 

smaller (Validation and Test) used to control the process. This training methodology is 

efficient and reliable (Bishop, 1995) and ensures generalisation while avoiding overfitting 

i.e. an excessive learning of the network, which becomes affected by the errors and noises 

of the specific data used for training. 

Two criteria were defined to assess the goodness of the training process. The first one was 

to require the Pearson correlation coefficient (R) between target and output to be 0.9 or 

greater. The second one was that the relative MSE (i.e. the ratio between the MSE and the 
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variance of the target data) must be lower than 0.2. This means that less than 20% of the 

network variance estimated by the MSE is due to the training data variance (Molines, 

2011). 

An element of the network required special attention during training: the network size i.e. 

the number of neurons in the hidden layer. A larger network is more powerful and capable 

of modelling complex trends, but too large a network may experience overfitting even after 

training with early stopping. Therefore, a balance between complexity and capacity must 

be achieved. This was done by testing different networks sizes and comparing the MSE 

obtained for the training and the validation datasets. When the latter started to rise with the 

addition of more neurones (while the former kept decreasing), an optimum size was 

reached (Van Gent et al., 2007). 

 

3. RESULTS AND DISCUSSION 

 

Table 1 shows the results obtained during the training process for different combinations of 

input variables, namely train speed and acceleration and the track longitudinal slope and 

radius of curvature, taking into account the two criteria previously defined (R coefficient 

and rMSE). 

 

Input variables 
Training Validation Test 

R rMSE R rMSE R rMSE 

Speed 0.35 0.872 0.33 0.883 0.42 0.874 

Acceleration 0.74 0.460 0.76 0.441 0.69 0.488 

Speed & acceleration 0.88 0.230 0.91 0.185 0.89 0.201 

Speed, acceleration & slope 0.89 0.208 0.88 0.232 0.89 0.217 

Speed, acceleration & radius 0.89 0.220 0.88 0.236 0.88 0.192 

Speed, acceleration, slope & 

radius 

0.90 0.190 0.90 0.200 0.90 

 

0.159 

 

Table 1 – Training, Validation and Test results for different input combinations 

 

As the table shows, using the speed or the acceleration as a single input variable gives a 

rather poor result, although the latter seems to provide more information to the network. 

Combining both variables gives a result that almost fulfils both criteria, but there is still 

room for improvement. By adding information regarding the track geometry (i.e. the 

longitudinal track slope and the radius of curvature) the network finally reaches a 0.9 value 

of the R coefficient and an rMSE below 20% for the three stages of development. 

Therefore, the combination of the four variables is chosen as input for the network. 

Regarding the network size, Figure 4 shows the evolution of the MSE for training and 

validation as the number of neurons in the hidden layer increases. Notice that each marker 

in the figure represents the average MSE after twenty training processes. 

As expected, the training MSE tends to decrease as the network complexity increases, 
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while the validation MSE decreases at first and then tends to rise, thus pointing out the size 

after which the network is overfitting. Therefore, the optimum size network is set to 15 

neurons in the hidden layer.   

 

 

 

Fig. 4 – Training and validation MSE vs number of neurons.  

 

Once the network main features have been settled, the training process has been 

completed. Figure 5 shows the comparison between network output and target data. 

 

 

 

Fig. 5 – Network output vs target data.  

 

As Figure 5 shows, there is a good agreement between the network and the data. The 

overall energy consumption measured for that service is 83.852 kWh, while the network 

yields a value of 83.131 kWh. 

As a further test, the trained network was used to model the energy consumption of a 
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different service along the same line (but in the opposite direction), and the output was 

compared to the measured energy. This comparison is shown in Figure 6. 

 

 

 

Fig. 6 – Energy consumption modelled vs measured.  

 

In this case the agreement is not as good, as the network apparently underestimates the 

negative peaks of power, which correspond to braking events and energy generated back to 

the catenary. For this reason, the network yields a total energy consumed equal to 44.579 

kWh while the energy actually consumed was 38.974 kWh. Nevertheless, both criteria are 

still fulfilled as the R coefficient in this case is 0.9 and the rMSE is 0.192. This points out 

that, although the network has been fully trained and provides a good estimation of the 

energy consumption, there is still room for improvement. 

 

4. CONCLUSIONS 

In order to develop a useful tool to estimate the train energy consumption of electric trains, 

a neural network has been built, trained and validated using real consumption data 

measured in line 1 of the Valencia Metro Network (Spain). Different input variables were 

considered, including train speed and acceleration and track longitudinal slope and radius 

of curvature. 

The training process was carried out by means of a combination of the Levenberg-

Marquardt Algorithm of minimisation and the Early Stopping Method. The optimum 

network size was also assessed and found to be 15 neurons in the hidden layer.  

The network was properly trained according to predefined criteria, and shows a good 

agreement with the target data. As an additional test, the network output was compared 

with another subset of measured data and once again it provided a good estimation of the 

energy consumption, although a slight underestimation of negative energy peaks was 

observed, pointing out the need for further refinement of the network with additional data.  
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