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Abstract 

A massive implementation of Distributed Energy Resources (DER) requires the development of 

innovative approaches to identify, based on the energy market requirements, fast-track options for such 

implementation.  These approaches should assess the potential for DER of the different customer 

segments and simulate DER adoption for those with highest potential, in order to evaluate accurately the 

impact of this implementation on the different energy actors. This paper introduces a methodology to 

asses the DER implementation potential of customer segments, based on a multicriteria analysis, 

considering DER as including Distributed Generation (DG), Distributed Storage (DS) and Local Trading 

Strategies1 (LTS). Application of the methodology to commercial sector for DG installation, considering 

different motivations (cogeneration, renewable, emergency generator and peaking power) and the 

obtained results for five different segments in this sector are presented. 
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1. Introduction 

The benefits of DER implementation [1] include reduction in greenhouse gas emissions and 

improvements in the reliability of the whole power system, by countering existing distribution 

constraints, deferring distribution upgrades and reducing the need for additional transmission capacity. 

                                                 
  Corresponding author. Address: Instituto de Ingeniería Energética, Universidad Politécnica de 

Valencia, Camino de Vera s/n, 46022 Valencia, SPAIN. Phone: +34 963877270; Fax: +34 963877272, 

e-mail: daalso@die.upv.es 
1  Local Trading Strategies (LTS) are defined as trading mechanisms for an optimized management of 

customer energy consumption and/or production through the interaction with the supply mechanisms 

and markets in which end-users play an active role. 

 



All these benefits justify the on going research efforts to find innovative approaches, based on energy 

market requirements, to facilitate the large scale penetration of DER in Europe [2]. In these approaches, 

once the demand segmentation [3], according to energy end use criteria, has been completed, a ranking of 

the typical customer in each segment will be needed in order to select the most suitable ones for DER 

implementation. Final decision on the segment to select as fast track option will be based on additional 

studies: physically-based modelling of the involved energy processes, estimated market size for the 

segments and its impact on the different energy actors: customer, distributors, regulators, generators, etc.  

In this paper, we are presenting a methodology to rank those customer segments by analyzing its 

suitability for DER implementation. This ranking implies to consider the suitability for DG (distributed 

generation), DS (distributed storage) or LTS (local trading strategies). The methodology here described is 

only focused on assessing DG implementation potential according to main customer motivations 

(cogeneration, renewable, emergency generator and peaking power), but it can be directly extrapolated to 

the other two categories: DS and LTS. 

Paper is organized as follows: the developed methodology for segment ranking is described in detail in 

section 2; examples of its application to the commercial sector are presented in section 3, and main 

conclusions are presented in a final section. 

 

2.  Methodology 

The developed customer segment ranking methodology is based on the general approach depicted at the 

scheme of the figure 1. It is based on the consideration of a set of factors needed to account for all the 

features that are relevant for DER implementation. These factors are quantified through a variable that 

evaluates the corresponding factor for the segment under consideration. A relationship, either analytical 

or numerical, should be defined to relate the variable with the potential for each of the factors. Once these 

assignments have been completed for all the factors, a DER suitability function Ak can be introduced. 

This function should provide a normalised value in the range (0,1), where higher value indicates higher 

suitability. The deduced values for Ak are used to rank the segments. This function Ak is computed as the 

weighted average of the segment potential for each of the considered factors: 

 

         (1) 
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Figure 1: General approach for DER suitability ranking of demand segments 
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Where f indicates each factor to be taken into account, ak,f is the potential (always in the range 0 to 1) of 

this segment in relation to this particular factor and f  is the factor weight assigned in the scenario 

considered for the ranking procedure.  

To evaluate ak,f  a two steps process is necessary. The first step addresses the scenario definition and the 

second one corresponds to the analysis, using that scenario, of each of the segments under consideration. 

1.1 Scenario definition 

The first step to evaluate ak,f  is the definition of the scenario to consider for DER implementation. This 

process is common for all the segments and made only once at the beginning of the process. It includes 

the following actions: 

a) Selection of the factors to be taken into account in the evaluation of the DER suitability of the 

segments. 

b) Introduction of a variable vf  to quantify, after an analysis of all the elements affecting the factor, 

the factor importance for a segment. This variable could be directly one of the parameters 

obtained from the data of a specific parameter describing the segment or deduced from 

elaboration of one or several of those parameters.  

c) Definition of the factor potential af(vf), normalized to the range [0,1] for the entire range of 

variation of the chosen variable, either by an analytical dependence or an approximate 

histogram. This definition should be based on previous knowledge or studies regarding DER 

applications.  

d) Assignment of weights f to each factor in the ranking procedure. These weights take into 

account the importance of the factor in relation to the specific DER under consideration and 

should be normalised in order to facilitate that the final value obtained for the function A will be 

a direct indication of the DER suitability percentage, 

1.2 Segment analysis 

The second step is the segment analysis, specific for each segment and applied as many times as segments 

considered in the ranking, includes the following actions: 

e) Calculation, using definition introduced at  (b) and the basic data of the segment, of the value of 

the variable for the segment k:  vk,f   



f) Using this value of the variable, the corresponding value for ak,f  is deduced from the factor 

potential defined at (c) 

g) Calculation of the DER suitability Ak of the segment by the addition of all the obtained 

potentials, weighted in accordance with the considered scenario. 

h) Ordering of the segments based on their final Ak values. 

Next paragraphs clarify this methodology by applying it to a specific case of DER implementation, which 

is DG: Distributed Generation. The process would be essentially the same for the other two cases of DER: 

DS and LTS. 

 

3.  Application to DG ranking 

3.1 Factors for DG ranking 

The first step in any application of the proposed ranking methodology is the selection of the factors to be 

taken into account in this ranking. These factors are selected based on a set of considerations related to 

energy consumption and technological aspects [4][5]. The most significant ones are: 

1. Use of electricity along low system load periods is more convenient than using it when the 

system is heavily loaded. This may result in economic and environmental benefits. Obviously, 

the corresponding utilization factor has opposite importance for DG and DS. 

2. The more intensive the use of electricity by the customer, the best to implement DG. 

3. Uniformity in the use of the energy favours a higher utilization of any DG. 

4. Simultaneous requirements of electrical and thermal energy, especially if these requirements are 

coincident along the time, are also a positive fact for DG.  

5. Flexibility in the use of the energy is a key factor in the implementation of DG solutions. 

6. Reliability requirements in the supply, as well as the connection possibilities to the electricity 

and gas grids, may be strong issues when deploying DG. 

7. When implementing any equipment for DG, its utilization, in term of hours/year has to be 

significant (no lower than 2000, being 4000 a desirable target). 

8. According to the present technological availability for cogeneration, the higher is the rated 

power of the installed unit, the higher is its efficiency and the lower is its specific costs ($/kW).  



Table 1:  Factors to consider in DG ranking 

Factor Variable  Factor potential 

Power size 
avg

Annual electricity consumption(kWh)
P =

8760h/year
 avgAdg,ps = 0.13·Ln(P )  

Utilization tOP (hours) per year 2
opAdg,u = 1-exp[(t /4000) ]      

Thermal demand 

regularity  
TH S W S WReg = min(TH ,TH )/max(TH ,TH )  

2
THAdg,regth = 0,5·(1+Reg )      

Electric to thermal 

demand ratio 

24 24

0 0

( ) / ( )E THR P t dt P t dt    
R (R - 0.5)

Adg, r = 3·exp - · 1.28- exp -
2 2
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Thermal demand 

coincidence 
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Adg,coinc = ETC     

Load factor 
i

i

365
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P1
LF =

365 P
  

2Adg,lf =1.5·LF-0.5·LF  

Day/night use  

 

21 24

day Esup Esup

8 0

E = P (t)dt/ P (t)dt   

2
day dayAdg,peak =1.5·E -0.5·E   

Power quality 

PQ

6

i
i=1S =

6

q
 

2

PQS
Adg,q =1-exp -

50

 
 
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Power Reliability 
R backup avgP = P /P  RP

Adg,rel =1-exp -
30

 
 
 

 

Renewable 

energy 
RW Generation, RW avgP = P  / P  Adg,rw = RW    

 

Table 1 summarises the selected factors for the DG ranking of segments in the commercial sector, 

together with the variables used to defined them and the their potential as function of the variable values. 

All of them are detailed in the next paragraphs.  

 

3.2 Variables and DG potentials definition 

Next step in the methodology application would be the definition, for each of the selected factors, of the 

corresponding variable and the dependence on that variable value of the segment potential. This is done 

for factors at Table 1, by defining for each of them the variable to use and its DG potential dependence. 

This potential dependence is introduced, based on the available studies and expertise at the utilities and 

research centres [3], by histograms for ak,f  in the entire range of variation of that variable. Analytical 

expressions are deduced from these histograms to facilitate the ranking studies. 

 



3.2.1 Power size (Adg,ps) 

The real size of an installation is an important feature to be taken into account, so we will use Pavg , 

average electrical power based on the annual electricity consumption, as the representative variable for 

this factor. 

avg

Annual electricity consumption(kWh)
P =

8760h/year
    (2) 

High average power reduces DG installation costs per kW and provides higher efficiency [6][7]. This 

relation doesn't show a lineal tendency, because for higher power values (1- 10 MW), efficiency and costs 

remain almost invariable, but for low power values (i.e. < 300 kW) the size can be very important when 

assigning technical and economic suitability. These kinds of facts justify the dependence for the factor 

potential for DG shown at histogram in figure 2.1. We can approach analytically this dependence in the 

range 1 to 1500 kW by: 

avgAdg,ps = 0.13·Ln(P )      (3) 

 

3.2.2 Utilization (Adg,u) 

This factor takes into account the annual number of hours of normal activity when main energy 

consuming processes take place, and will assign higher suitability to higher operating times.   

Variable: tOP, operating time, defined as the total number of hours in which the power is higher than a 

minimum value P1, where we have used P1 defined as 0.75 the average power defined by eq. 2.  

Most of the cogeneration applications [7] in the commercial and institutional sectors meet the criteria of 

moderate to high operation times (~ 3000 hours per year), so these values are considered as indicative of a 

moderate potential. Operation times above 4000 hours per year correspond to high potential and those 

with use periods in the order of 6000 hours per year, typical for industrial customer or large hospitals,  

maximum potential will be assigned. Less than 2000 hours of operation, what is not common for the 

commercial sector, is considered low potential. This potential dependence on utilisation time is plotted at 

figure 2.2, together with the analytical adjustment, given by: 

2
opAdg,u = 1-exp[(t /4000) ]          (4) 

 

 



3.2.3 Thermal demand regularity (Adg,regth) 

This factor provides an indication of seasonality of the thermal demand during year by comparing winter 

and summer periods consumptions.  

Variable: RegTH, to characterize the ratio between thermal demand during high demand and low demand 

periods. As space cooling is also considered as a thermal load, higher thermal demand could be found in 

summer instead of winter (which is the most usual case), in order to cover this possibility the following 

definition has been considered: 

S W
TH

S W

min(TH ,TH )
Reg =

max(TH ,TH )
      (5) 

Where THS is the total thermal demand from April to September and  THW, the corresponding one from 

October to March, max(THS, THW) is the period of maximum thermal demand and min(THS, THW) the 

period of minimum demand.  

High thermal demand regularity, so very high potential, can be considered for RegTH values above 0.75 

what means thermal demand almost constant for the whole year. Values between 0.5 – 0.75 indicate a 

moderate difference between high/low thermal demand periods, but without severe partial load operation 

needs for a hypothetic cogeneration unit, so corresponding potential is high. Values below 0.5 indicate 

high differences between high demand and low demand period meaning shorter annual operating time for 

the cogeneration unit, severe partial load operation or smaller size, all these facts are not positive so it was 

considered medium potential.  

These considerations result on histogram of figure 2.3, together with the analytical approach, given by: 

2
THAdg,regth = 0,5·(1+Reg )           (6) 

 

3.2.4 Electric to thermal demand ratio (Adg, r)  

Variable: R, the ratio between electric and thermal power computed using the average electrical and 

thermal daily load curves, given by: 

24

0

24

0

( )

( )

E

TH

P t dt

R

P t dt





      (7) 



This factor will indicate how much the ratio between electric demand and thermal demand of the segment 

fits with common cogeneration technologies (internal combustion engines, microturbines or fuel cells), 

normally with values of this ratio from 0.5 to 2.5 so we assign maximum potential. High power-to-heat 

ratio (above 2.5) indicates low thermal demand so lower potential for cogeneration applications. Low 

ratios (below 0.5) indicate high thermal demand so the CHP system would be bigger and it would be 

necessary to sell electricity to the grid so it was considered high potential but not as high as that of ratio 

from 0.5 to 2.5. We can approach analytically this dependence (figure 2.4) by: 

R (R-0.5)
Adg,r =3·exp - · 1.28- exp -

2 2

    
    
    

         (8) 

 

3.2.5 Thermal demand coincidence (Adg,coinc) 

Variable: ETC, computed using the average electrical and thermal daily load curves as defined in the 

following equation: 
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    (9) 

Where PE and PTH are the average electrical and thermal daily load curves using fifteen minutes as time 

resolution, so 96 values per day. 

This factor will deal with the temporal coincidence and shape similarity between thermal and electrical 

loads indicating the feasibility of using the waste heat produced by the generation unit. High coincident 

electric and thermal loads increase the overall efficiency and operating time of the system and allow the 

installation of higher powers. We can assume a linear dependence, as higher the coincidence, better the 

possibility to use cogeneration so higher the potential (figure 2.5): 

Adg,coinc = ETC         (10) 

 

3.2.6 Load Factor (Adg,lf)  

Variable: LF, defined as the average annual value of daily load factors of electricity supply, these factors 

are computed as the ratio of average power (Pavg) to maximum power (Ppeak) for each day: 

 



i

i

365
avg

i=1 peak

P1
LF =

365 P
        (11) 

High load factor indicates the capability to cover almost full load when installing a generation system and 

lower ones corresponds to the need for additional capacity to handle very high peak loads. Load factors 

above 0.8 are typical for large hospitals and industrial customers where it can be found lots of examples 

of DG installations, so potential for these range can be considered maximum. Medium/low values of load 

factors, in the range 0.4 – 0.6, corresponds to medium potential, while  load factors are in the range 0.6 – 

0.8 can be considered as  high potential. Load factor below 0.4 are not common in the commercial sector 

and are considered as low potential. We can approach analytically this dependence (figure 2.6) by: 

2Adg,lf =1.5·LF-0.5·LF       (12) 

 

3.2.7 Day/night use (Adg,peak) 

Variable: Eday, ratio between electricity consumption during on-peak period (8:00 to 21:00) and total 

electricity consumption:  

21

Esup

8
day 24

Esup

0

P (t)dt

E =

P (t)dt





     (13) 

Where PEsup(t),  is the annual load curve in hourly values. 

Typically, commercial customers have between 60 and 80% of their electricity consumption in the on-

peak period, so it can be considered that electricity is expensive, and this is a motivation for DG 

implementation so high potential is assigned. When the percentage of electricity was more than 80% 

maximum potential was considered. Percentages in the range 40 to 60% were considered as medium 

potential. Values lower than 40% are not common in the commercial sector and indicate low potential for 

DG implementation 

The assumed potential dependence on this peak consumption is plotted at figure 2.7. We can approach 

analytically this dependence by 

2
day dayAdg,peak =1.5·E -0.5·E     (14) 

 



3.2.8 Power quality (Adg,q)  

This factor indicates the consumer power quality requirements based on its sensitivity to each of the 

following six power quality events: Voltage Sags, Voltage Swells, Voltage Surges, Harmonic Distortion, 

Unbalanced Voltage and Voltage Flickers. Higher sensitivity to any of these events can justify totally or 

partially the installation of a generation unit for high quality backup supply [8].  

Variable: SPQ, Sensitivity to power quality events computed as the average percentage of customers in the 

segment that indicated they had sensitivity to any of the above-mentioned six events. These percentages 

(qi) are obtained from surveys performed to the customers of each segment. 

PQ

6

i
i=1S =

6

q
      (15) 

When more than 30% of the customers of the segment are sensitive to power quality events, high 

potential is assigned to the segment. For lower percentage the potential decreases linearly down to a lower 

limit of 0.2 for the less sensitive segments. These considerations result on histogram 8 of figure 2.8. 

Analytical approach to the potential is given by: 

   
2

PQS
Adg,q =1-exp -

50

 
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 

     (16) 

 

3.2.9 Power Reliability (Adg,rel)  

This factor indicates the sensitivity of the typical customer in the segment to loss of power. It should 

quantify the needs for implementation of generation systems for emergency power in the segment. It can 

be deduced the ratio of installed backup power to average electric power (which provides an estimation of 

the percentage of load with high reliability needs respect to the total load) [9].  

Variable:  PR,, ratio installed backup power (Pbackup) to average electric power (Pavg). 

backup

R

avg

P
P =

P
       (17) 

The values of potential were assigned looking at ratio (PR) typical values observed in the commercial 

sector. Values of PR> 0.3 are typical for hotels, offices and hospitals, where reliability needs are high 

because interruptions can cause strong loss of comfort, high costs or human losses. So, maximum 

potential was assigned to values exceeding this ratio. For PR<0,1 it can be considered that, approximately, 



less than the 10% of electricity consumed should be of high reliability, so emergency power is small and 

reliability cannot be considered as a main motivation, giving  very low potential to segments with ratios 

below this limit. Between the two limits (0.1<PR<0.3) a lineal dependence is assumed. These 

considerations result on figure 2.9. The potential can be approximate by: 

RP
Adg,rel =1-exp -

30

 
 
 

      (18) 

 

3.2.10 Renewable energy (Adg,rw) 

This factor deals with the technical, economical and regulatory motivations that can justify the installation 

of renewable generation technologies in a segment. It takes into account the potential renewable power 

that can be installed and compares it with the objectives of official policies in the promotion of the 

participation of renewable energies in the electricity generation. 

Variable: PRW, the power from renewable sources under operation or potentially installable, normalised to 

the average power needs of the segment.  

Generation, RW

RW

avg

P =
P

P
    (19) 

Where PGeneration,RW is the renewable power assigned to the segment based on present innovative 

applications, regulations, technical issues and estimations from sectorial studies. 

The potential values are deduced using the EU goal of the fraction of renewable energies, aprox. 20%,  in 

the total electricity production by 2010 [10]. 

We can approach analytically the potential dependence (figure 2.10) by: 

RWAdg,rw = P         (20) 
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Figure 2: Potential dependence for factors in DG implementation analysis.  

(The histogram is presented in black and, in grey, it has been included the analytical fitting) 

 



3.3 Weights  

Factor weights are defined by the specific scenario assumed for the ranking application. A possible 

scenario to consider is that one where higher efficiency by mean of cogeneration is the main motivation 

for the DG implementation. In this case, a weight distribution as the presented in Table 2 is the adequate. 

The factor related to the size of the installable system has the highest weight given higher size of 

equipment, always below the limits of DER systems in the order of several MWs, implies lower specific 

cost and, usually, higher efficiency). Factors related to thermal demand, (coincidence with and ratio to the 

electric demand) of the segment are also important in this scenario and they are assigned high potentials. 

Utilization and regularity factors are also important due to the need to optimise economically the use of 

the installed unit. All the remaining factors have less influence in the determination of the suitability of 

the segment for DG implementation in this scenario, so medium or low weights are assigned to them..  

 

Table 2 Weights for the factors considered in the DG ranking 

 

 

 

 

 

 

 

 

3.4 Results 

As an example of the application of this methodology, a set of different segments covering very different 

types in the commercial sector has been considered, and the developed methodology was applied to all of 

them trying to rank them in accordance with its degree of suitability for DG implementation in the above 

mentioned scenario. This set of segments includes: 

a. Large Hospitals in Northern Europe 

b. Standard Hotels in Northern Europe 

c. Big Offices in Northern Europe  

Factor Importance Weight 

Power size Very High 1 

Utilization High 0.5 

Electric to thermal demand High 0.5 

Thermal demand coincidence High 0.5 

Load factor Low 0.1 

Day/night use Medium 0.25 

Power reliability High 0.5 

Power quality Medium 0.25 

Thermal demand regularity High 0.5 

Renewable Energy Medium 0.25 



d. Small Offices in Southern Europe 

Table 3: Values of variables and potential for each factor considered in the DG ranking 

 

Large Hospitals 

Northern 

Europe 

Standard Hotels 

Northern 

Europe 

Big Offices    

Northern 

Europe 

Small Offices 

Southern 

Europe 

Factor Variable Potential Variable Potential Variable Potential Variable Potential 

Thermal demand coincidence 0,87 0,87 0,95 0,95 0,84 0,84 0,58 0,58 

Day/night use (%) 64 0,75 58 0,50 67 0,75 77 0,75 

Electric to Thermal Demand 0,88 1,00 0,24 0,65 0,03 0,65 0,40 0,65 

Load Factor 0,74 0,75 0,79 0,75 0,75 0,75 0,55 0,50 

Power Quality 0,00 0,50 0,00 0,50 0,50 1,00 0,50 1,00 

Power Reliability 2,5 1,00 3,7 1,00 1,2 1,00 0,00 0,50 

Power Size 1250 1,00 82 0,50 63 0,50 9,9 0,30 

Renewable energy 0,90 0,90 0,70 0,70 0,50 0,50 0,60 0,60 

Thermal Demand Regularity 0,43 0,50 0,41 0,50 0,22 0,50 0,09 0,50 

Utilization 6600 1,00 8100 1,00 4700 0,75 3650 0,75 

 

Using the standard values for the characteristics of the typical customer in each of these segments [3], we 

deduce the values of variables and factor potentials summarised at Table 3. Considering the weights 

defined at Table 2, the final ranking parameter is deduced for each segment, resulting the ranking 

presented in Table 4 

These results show that hospitals and hotels obtain the highest DG potential. Analysis of the current 

situation confirms this result because nowadays DER applications in the commercial sector are focused 

on these two segments. Characteristics of energy use in hospitals in the aspects of electric to thermal 

demand ratio, high coincidence between electric and thermal loads, high utilization, high reliability needs 

and large power size provides a high suitability for this DG implementation. Standard hotels present also 

high potential for DG applications, but their requirements on smaller power size and higher electric to 

thermal demand ratio does not exactly fit with common cogeneration technologies, making its suitability 

lower than the hospital segment for the assumed scenario.  

Low suitability is obtained for small offices buildings. This result can be explained, in the case of those 

located in hot climates, because of their low values for utilization times, load factors, coincidence 

between electric and thermal loads, in addition to the small electric size and lower needs of power 

reliability. It is observed that suitability increases when these offices buildings are located in colder 

climates, due to their larger energy consumption. 



Table 4: Ranking for the studied commercial segments 

Ranking position Segment DG Suitability 

1 Large Hospitals Northern Europe 0.88 

2 Standard Hotels Northern Europe 0.72 

3 Big Offices  Buildings  Northern Europe 0.69 

4 Small Offices Buildings Southern Europe 0.53 

 

Sensitivity of the ranking factors to dispersion in the data of each typical customer has been addressed by 

using the analytical expressions deduced for the factor potentials. These formula, detailed at Table 1, 

enable to deduce the ranking potential error by propagation of the data uncertainties to this final ranking 

potential. Previously to apply then to a specific ranking, we have compared the errors deduced 

analytically with the corresponding ones deduced by MonteCarlo using the histograms as the 

relationships between variables and potential. Results prove the analytical approach is more pessimistic in 

about a 60% about the final errors, as can be seen at figure 3  

Assuming a 30% relative uncertainty in the customer data, the analytical approach gives a 12% error for 

the ranking parameter. This result proves the difference between the segments considered in our 

application is significant enough because they exceed the error value. 
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Figure 3: Errors 

 

The methodology can be applied in identical form to the other two main elements in DER: DS and LTS, 

by defining the set of factors to be taken into account to analyse the segment suitability for these two 

types of applications and the scenario for the specific application under consideration. In table 5 it is 

presented a list of factors that can be employed to analyse DS and LTS suitability 

 

 



Table 5: Factor taken into account to analyze DS and LTS suitability 

Distributed Storage Local Trading Strategies 

- Space heating and cooling thermal loads - Load patterns 

- Load factor - Demand flexibility and reliability/quality needs 

- Day/night use - Attitude and investment capabilities 

- Power reliability - End uses ratios and general size 

- Power quality - Supply and storage options 

 - Geographic concentration 

 

4. Conclusions 

Benefits associated to DER in the economical, technical and environmental aspects justify its 

implementation in the highest possible degree and makes necessary the identification of  new demand 

segments where they can be implemented. A methodology, based on a multicriteria approach to quantify 

the suitability for DER implementation in demand segments according to their requirements and 

motivations for DER applications in a specific scenario, has been developed to facilitate such 

identification. 

The methodology is based on a set of factors evaluated according to data about energy supply, energy end 

use and general description of demand segments. It has been tested for DG in the commercial sector with 

demand segments as hotels, hospitals or offices were general DG suitability is known.  Methodology 

application showed very high potential, for hotels and hospitals in northern Europe and lower, but still 

significant, potential for offices of southern Europe countries. 
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