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Abstract -- There exists no single quantity able to diagnose 

all possible failures taking place in induction motors. Currents 

and vibrations monitoring are rather common in the industry, 

but each of these quantities alone can only detect some specific 

failures. Moreover, even for the specific faults that a quantity 

is supposed to detect, many problems may rise. As a 

consequence, a reliable and general diagnosis system cannot 

rely on a single quantity. On the other hand, it would be 

desirable to rely on quantities that can be measured in a non-

invasive way which is a crucial requirement in many industrial 

applications. This paper proposes a twofold method to detect 

electromechanical failures in induction motors. The method 

relies on analysis of currents (steady-state + transient) 

combined with analysis of infrared data captured by using 

appropriate cameras. Each of these non-invasive techniques 

may provide complementary information that may be very 

useful to diagnose an enough wide range of failures. In the 

present paper, the detection of three illustrative faults is 

analyzed: broken rotor bars, cooling system problems and 

bearing failures. The results show the potential of the 

methodology that may be especially suitable for large, 

expensive motors where the prevention of eventual failures 

justifies the costs of such system, due to the catastrophic 

implications that these unexpected faults may have. 

 
Index Terms-- Induction machines; fault diagnosis; infrared 

analysis; rotor asymmetries; bearing faults. 

I.   INTRODUCTION 

AULT detection in induction motors has become a 

topic with increasing interest both in the academia and 

in industry [1]. Catastrophic effects in such energy 

conversion devices justify the importance of carrying out 

proper maintenance programs of those machines. Large 

induction motors are especially critical due to several 

reasons; they are very expensive machines, they are often 

crucial components in the industrial processes where they 

participate (so their eventual failure may imply high costs in 

terms of unplanned production shutdowns) and, finally, 

their repair and transportation costs are huge [2]. Over 

recent years, many researchers have developed techniques 

with the aim of detecting a wide range of faults in these 

motors, when these faults are still in their early stages. Most 

of these techniques often rely on a single quantity, since the 

authors pursue the simplicity and economy of their methods. 

In this context, currents [1, 3-5], vibrations [6-7], stray 

fluxes [7-8, 25-26], voltages [9], active and reactive powers 

[10], etc… have been proposed as bases of the different 

diagnostic methodologies. However, in spite of the 

reliability of some of these approaches to detect certain 

specific faults, few of them has proven to be enough general 
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to diagnose a wide range of failures with high reliability. 

Moreover, several methods based on some of the 

aforementioned quantities have an invasive nature, since 

they often imply the installation of sensors, probes, coils or 

auxiliary equipment, that requires to stop the machine or 

other interferences with its operation process; this is often 

unacceptable in many industrial applications. 

Lately, current-based methods have gained prominence 

both in the literature of the area and in the industry. This is 

partially due to the fact that the stator current waveform can 

be registered in a non-invasive manner (a current clamp and 

an oscilloscope is often enough) and, also, the software that 

is needed for its processing is rather simple. In this regard, 

the classical method relying on current analysis, known as 

Motor Current Signature Analysis (MCSA)), is based on 

capturing the current demanded by the machine during 

steady-state operation and its subsequent analysis by using 

the Fast Fourier Transform (FFT); the idea is to identify, in 

the FFT spectrum, ‘fault indicating frequencies’, the 

amplitude of which has been amplified by the 

corresponding failure: the presence of these ‘frequencies’ is 

usually a reliable indicator of the existence of the fault. 

This classical current-based method, however, has some 

important drawbacks that have been reported in the 

literature: difficulty when diagnosing some faults under 

certain operating conditions (pulsating load torques [11-12], 

unloaded machines [12], etc…) that may be rather common 

in the industry, unsuitability when detecting certain failures 

in specific machines (motors with rotor cooling axial ducts 

[13], double cage rotor motors [14], etc…), problems for 

fault discrimination… All these problems may have 

disastrous consequences, especially in large motors; as an 

example coming from an own industrial experience, MCSA 

was used to diagnose the condition of several large motors 

(powers of MW, unitary cost around 1,5 million $) in a real 

industrial facility. One of these motors was diagnosed as 

faulty due to the presence in the FFT spectrum of some 

components with significant amplitudes at frequencies 

similar to fault-related ones; this motor was subsequently 

transported to the repair workshop and later disassembled. 

No fault was found; the false ‘frequencies’ were maybe due 

to the operation duty of the machine (presence of driven 

load fluctuations). These false positives, implied a cost 

around one third of the motor cost (leaving aside the 

production losses). 

To overcome the problems of the classical MCSA 

method, several diagnosis strategies have been proposed 

over recent years. A quite recent alternative that has shown 

very good results is based on analyzing current signals by 

applying advanced signal processing tools [12, 15-16]. 

These approaches are able to process the current signal 

regardless of the machine regime (stationary or transient); 

their underlying idea is to track the evolutions of fault-

related frequency components over time (i.e. to detect a 
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time-frequency evolution). The detection of such evolutions 

is a very reliable indicator of the presence of the failure. As 

an example, when the machine is connected (assuming that 

it is grid-supplied) the frequency of the Lower Sideband 

Harmonic associated with broken rotor bars, follows a very 

characteristic evolution over time, as the machine 

accelerates. This evolution, well characterized in previous 

works [12, 14], leads to a very characteristic pattern that 

can be used to diagnose the presence of the failure. The 

same happens with other fault-related harmonics that also 

lead to particular evolutions, the detection of which 

increases the reliability of the diagnostic. Moreover, other 

faults also lead to patterns that are different depending on 

the failure. The only constraint of this methodology is that, 

to obtain such patterns, advanced signal processing tools 

(Time-Frequency Decomposition (TFD) tools), able to 

process non-stationary quantities, must be used. In this 

context, several TFD tools have been proposed and are 

valid for the stated goals [16]: wavelet transforms, Hilbert-

Huang transform (HHT), Wigner-Ville Distributions 

(WVD), Choi-Williams Distributions (CWD), etc… 

 This methodology has shown very good results for the 

diagnosis of some specific failures such as rotor failures or 

eccentricities. Moreover, it has been validated in motors 

with different sizes (from few kW till MW). However, 

despite the indubitable advantages of the new transient 

current-based methods, logically, they are not the panacea, 

i.e., they cannot provide a definitive diagnosis conclusion 

for every possible fault. There are some failures that, due to 

their inherent nature, are not easy to be detected by only 

using the analysis of the currents. This is the case, for 

instance, of bearing failures or insulation degradation. In 

this context, the use of other techniques is mandatory to 

build an enough general and reliable diagnostic system, able 

to detect a wide range of possible failures in the machine. In 

this paper, the infrared thermography technique is proposed 

as a complementary informational source for induction 

machine condition monitoring. The non-invasive 

characteristic of this technique makes it especially 

attractive. Moreover, its somehow complementary nature 

versus current analysis confers it with a potential that other 

quantities do not have. The cost increment provoked by the 

necessity of an infrared camera may be easily compensated 

by the advantage of a higher reliability, especially in large, 

critical motors. 

The paper is structured as follows: in Section II, the 

proposed twofold approach is explained; on the one hand, a 

transient current-based diagnosis approach based on the 

HHT is presented and, on the other, the infrared-based 

complementary technique is also analyzed. Section III 

describes the experimental setup employed for the 

validation of the method. In Section IV, the results are 

shown and discussed. Finally, the conclusions of the work 

are synthesized in Section V. 

II.   TWOLFOLD APPROACH 

A.   Currents analysis 

1) Traditional MCSA 
   MCSA has been extensively used in the industry for the 
diagnosis of certain failures. Based on the identification of 
particular ‘fault indicating frequencies’ in the FFT spectrum 
of the steady-state current, it has shown satisfactory results 

for the detection of rotor faults or eccentricities [1, 27]. 
Most of the commercial devices with current-monitoring 
features rely on this technique to assess the rotor condition. 
As it is well-known, in the event of broken rotor bars, two 
prominent peaks, known as sideband components (lower 
and upper) appear at both sides of the supply frequency. In 
the case of mixed eccentricities, other components appear. 
For instance, for an eccentric machine with two pole pairs, 
two ‘fault indicating frequencies’ rise at f/2 and 3•f/2 Hz 
(f=supply frequency) [6]. 
   MCSA has, however, some important drawbacks, some of 
them already stated in Section I. Most of these problems are 
related to the relatively frequent possibility of leading to 
wrong diagnostic conclusions, either false positives 
(diagnosing a healthy machine as faulty) or false negatives 
(diagnosing a faulty machine as healthy). These erroneous 
diagnostics have been reported in situations that may be 
rather common in industrial sites.  
   As an example, when assessing the rotor condition, false 
positives may be caused by the following situations: 

1) 1) Presence of load torque oscillations (motors driving 
compressors, pumps, gear reducers) may introduce in the 
FFT spectrum harmonics at frequencies rather similar to the 
fault-related ones, as proven in [11-12, 15, 28].  

2) 2) Cooling rotor axial ducts may introduce components 
similar to rotor fault-ones when the number of cooling ducts 
(Nd) and machine poles (Np) are equal [2, 13]. 

3) 3) Magnetic anisotropy issues may also lead to false 
positive indications as recently proven in [35]. 
     On the other hand, false negatives may appear in the next 
cases: 
1) Motors diagnosed in unloaded conditions: in this case, 
since the slip s is low, the sideband components overlap the 
supply frequency becoming very difficult their identification 
[12, 15].  
2) Detection of outer cage breakages in double cage rotors: 
in steady-state, the current flow is mostly confined in the 
inner cage, so an eventual bar breakage in the outer cage 
may not lead to significant harmonics in the FFT spectrum 
[14, 36]. 
3) Diagnosis of non-adjacent bar breakages; it is well-
known that, if the breakages take place in non-consecutive 
bars, for certain relative positions, their effects may even 
compensate leading to low amplitudes of the sideband 
harmonics and eventually to false negative indications [37]. 
 

2) Advanced Harmonic Tracking Techniques 
   To overcome the drawbacks of MCSA, alternative 
strategies have been proposed over recent years. One of the 
most successful approaches relies on not restricting the 
analysis to the stationary regime, but extending it to the 
transient regimes through which the machine operates. In 
other words, instead of only focusing on the steady-state 
current, the approach proposes the analysis of the current 
regardless of the operation regime of the machine (hence, 
including the analysis of transient current signals such as the 
current during the startup, sudden load variations, plug 
stopping, etc…) [15]. 
   The problem in this case is that, if we want to analyze 
non-stationary quantities, the FFT is no longer suitable. The 
use of adequate signal processing tools suited for the 
analysis of such quantities becomes necessary. Is in this 
context where the Time-Frequency Decomposition (TFD) 
tools play a crucial role. These tools enable to obtain a 
time-frequency ‘picture’ of the analyzed signal. Hence, they 
allow the observation not only of the frequency components 



  

present in the signal but also of how they evolve over time. 
Indeed, it is precisely their ability to track the time-
frequency evolution of fault-related components which 
confers them with a high reliability, since the patterns 
created by such evolutions are very difficult to be caused by 
other phenomena different from the failure (unlike what 
happens with the ‘fault indicating frequencies’ in the FFT 
spectrum). There are many possible TFD tools that are able 
to accomplish this function [16]: wavelet transforms 
(Continuous (CWT), Discrete (DWT), Undecimated 
(UDWT), Wavelet packets (WP), etc…), Hilbert-Huang 
Transforms (HHT), Wigner-Ville Distributions (WVD), 
Choi-Williams Distributions (CWD)… have been applied in 
previous literature to this end. As an example, Fig. 1 shows 
the Hilbert-Huang spectrum of the second intrinsic mode 
function (IMF2, that covers the frequency band below 50 
Hz) resulting from the application of the HHT to the startup 
current of a healthy machine (Fig. 1 (a)) and to a machine 
with two broken bars (Fig. 1 (b)). This spectrum is just a 
time-frequency representation of the analyzed current 
signal. It can be observed a V-shaped pattern caused by the 
evolution of a particular fault component, the lower 
sideband component (LSC), during this transient. Logically, 
this pattern does not appear for the healthy machine, since 
the fault component is absent. 
 
 
 
 
 
 
 
 
                        (a)                                                 (b) 
Fig. 1. Application of HHT (HH spectrum of IMF2) to the startup current 
of a: (a) healthy motor and (b) motor with two broken rotor bars 

   The qualitative identification of fault-related patterns must 
be accompanied by a quantitative perspective in order to 
determine the severity of the failure in the machine. In this 
regard, several quantification indicators have been proposed 
relying on different TFD tools. Most of the indicators are 
based on the computation of the energy in specific regions 
or ‘boxes’ of the time-frequency map that the fault-
components trespass during their evolutions. Based on 
numerous tests performed with different motors and levels 
of failure, approximate intervals have been created, so that 
each one of these intervals is linked to a certain fault 
severity level. As an example, (1) gives the expression of a 
rotor asymmetry indicator based on the HHT [17], where ij 
is the value of the j sample of the current signal;  imf2(j)  is 
the j element of the IMF2 signal covering the frequency 
range in which the LSC evolves during the startup transient; 
Ns is the number of samples of the signal, until reaching the 
steady-state regime and Nb is the number of samples 
between the origin of the signals and the extinction of the 
oscillations due to border effects. 
 
 
                                                        (1) 
 
 
   This new diagnosis philosophy, relying on tracking the 
components linked to the failure and on the further 
computation of fault indicators has shown very satisfactory 
results for the diagnosis of certain failures (namely, rotor 
failures and eccentricities), both in small and in large AC 

motors, while avoiding false indications provided by MCSA 
[2, 12, 15, 17, 36-37]. However, the viability of the method 
is uncertain for the detection of some failures that are 
traditionally difficult to be detected via current analysis. 
This is the case of bearing faults or incipient stages of stator 
winding failure (e.g. turn-to-turn shorts [29-33], few broken 
turns in one phase…). For the detection of bearing failures, 
the information provided by other quantities such as 
vibrations or temperatures may be very useful to achieve a 
reliable conclusion. The use of vibrations has been also 
proposed for turn fault detection [34]. On the other hand, 
stray flux analysis has been revealed as a very reliable 
quantity to diagnose winding failures even when these are in 
their early stages [25, 29-33]. 

B.   Infrared data analysis 

   The infrared thermography technique enables to visualize 
with high precision the superficial temperatures of a certain 
object in a non-invasive way, without necessity of any 
contact with the analyzed object. The underlying bases rely 
on converting infrared radiation measurements into 
temperature measurements. This is achieved by measuring 
the radiation emitted by the object surface within the 
infrared portion of the electromagnetic spectrum and by 
converting these measurements into electrical signals. The 
measurement device consists of an infrared camera, which 
measures the superficial temperature gradients by means of 
its infrared sensors, through the capture of high quality 
images.  

The application of the infrared thermography technique 
to condition monitoring of electric motors is certainly 
limited. The few papers in the area (not only restricted to 
motors) have focused on the diagnosis of faults as: 
insulation failures in the magnetic circuit, deficient 
connections or misalignments [18]-[22]. However, most of 
the works aim to detect simple failures, often external to the 
machine. In addition, the interpretation of the resulting 
images is carried out in a very qualitative way, requiring the 
user expertness for the identification of the anomaly. In 
[22], groundwall insulation system is evaluated in medium 
voltage motors by using infrared thermography. On the 
other hand, [23] points out that infrared thermography is 
currently employed to monitor high resistance connections. 
Misalignment effects and their implications in 
thermography are studied in [21]. In concordance to these 
facts, the use of the infrared thermography for the study of 
the thermal behaviour of electric motors has neither been 
very abundant, despite some interesting results obtained in 
recent contributions [24].  
     Due to the recent technological development in the area 
of infrared cameras, new opportunities are presented for the 
use of such equipment in motor diagnostics: there are 
cameras, with affordable prices, that enable the capture of 
high resolution images so that the user can visualize with 
great precision the accurate temperatures in different points 
of the registered area. Most of these cameras make even the 
capture of thermal transients possible (nowadays, the 
minimum cost of a camera enabling thermal transient 

registration can be of  $10,000 but the trend is that it will 
be even lower in the near future). These transients are 
represented by means of sequences of images that enable to 
obtain the temperature evolution in any point of the 
captured image, as well as to compute diverse statistic 
parameters related to the registered thermal map. Therefore, 
the application of the thermography to electric motors is far 
from being enough exploited. There is a wide area in which 
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the application of this technique can provide very valuable 
information both for electric machine diagnosis and for 
behaviour analysis. 

C.   Proposed twofold method 

   The proposed approach relies on the joint use of current 
data and infrared thermography data. The method starts 
with the capture of the stator current signal (a single phase 
is enough) with a sampling rate enabling the visualization of 
all possible fault related components (as a reference, 5 kHz 
is usually enough). With regards to the registered time 
interval, it determines the frequency resolution in the 
MCSA analysis but, also, the longer the interval the better 
the tracking of possible fault-related harmonics (it is more 
feasible to identify eventual fault harmonics and their 
evolutions). Usually 10 seconds is enough. Once the current 
signal has been captured, it is analyzed by using the 
conventional MCSA approach. MCSA diagnostic result is a 
good approximation to know the machine condition but it is 
not conclusive since it may lead, as commented, to eventual 
false positives or false negatives. 
   Hence, a subsequent analysis by using the advanced 
harmonic tracking techniques is necessary (regardless, of 
MCSA result), either to ratify the MCSA results or to 
discard them. If both techniques lead to the conclusion that 
the machine is faulty, it is very likely that the fault is present 
in the machine and no further analysis is, in principle, 
required. However, if their conclusions are different or even 
if both of them lead to the conclusion that the machine is 
healthy, further analysis of infrared data is advisable (in this 
latter case, it may happen that current analysis is not able to 
detect the fault). In these situations, analysis of infrared data 
may help to reach a diagnostic conclusion increasing the 
reliability of the diagnostic. Fig. 2 shows a schematic 
flowchart that illustrated the application process of the 
proposed twofold methodology. 

III.   EXPERIMENTS 

The proposed twofold diagnosis method was validated in 

a laboratory three-phase, 4-pole, 1,1 kW induction motor. 

The rated characteristics of the motor are shown in Table I. 

In the experiments, the motor was driving a DC machine 

acting as a load. The variation of the excitation current of 

the DC machine enabled to easily test the induction motor at 

different load levels. In each test, the induction motor was 

started direct on-line, i.e., directly supplied from the grid. A 

waveform recording instrument (Yokogawa DL-850 

Scopecorder) connected to a current probe enabled the 

registration of a phase stator current signal both during the 

startup and during steady-state.  These current signals were 

later transferred to a PC for the analyses in MATLAB. 

On the other hand, an infrared camera was used for 

recording the whole transient cooling process of the 

machine, till the steady-state regime was well reached.  

Images were captured at each second by using a high-

sensitivity long wave FLIR S65 Series camera, fitted with a 

firewire connection. The camera was connected with a 

portable computer, which was provided with an acquisition 

and analysis software, Thermacam Researcher. This 

software allows the visualization of the captured images, as 

well as knowing, with high accuracy, the temperature 

distribution on the frame of the motor at any time. The 

software program enables an accurate temperature 

measurement and computation of different statistical tools.  

Fig. 3 shows a picture of the experimental bench.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Flowchart of the proposed twofold diagnosis approach 

 
TABLE I 

RATED CHARACTERISTICS OF THE TESTED MOTOR 

 

 

 

 

 

 

 

 
Fig.3. Experimental bench 

Model 1LA2080-4AA10 

Rated power (PN) 1.1 kW 

Rated speed (nN) 1410 rpm 

Rated voltage (UN) 400(Y)/230 (Δ) 

Rated current (IN) 2.7(Y)/4.6 (Δ) 

Rated power factor (Cos φ) 0.8 

Number of rotor bars 28 
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IV.   RESULTS AND DISCUSSION 

A.   Rotor bar failures 

   Rotor bar failures were forced by drilling a hole in the 

corresponding bars. Different faulty cases were tested (one, 

two and nine broken rotor bars) and under different load 

levels (from no-load till full load). In each case, once the 

faulty rotor was installed, the motor was line-started. Phase 

currents were registered by means of the waveform 

recorder. At the same time, infrared images were captured 

by using the camera described above. 

Subsequent analyses of the results reveal that this is a  

(conventional MCSA + Advanced Harmonic Tracking 

Analysis). MCSA is a reliable technique for rotor 

assessment [2, 38]. However, as commented, it may have 

problems in some specific cases where the fault related 

components may not be discerned (e.g. no-load conditions 

[12-15], non-adjacent breakages [37], detection of broken 

outer bars in double cage rotors [14, 36]) or may be 

confused with other similar frequencies (presence of load 

torque oscillations [11-12, 15, 28], existence of cooling 

axial ducts [2, 13] or magnetic anisotropy issues [35]). The 

case of unloaded machine is illustrated in Fig. 4 that shows 

the FFT spectrum of the steady-state phase current of such 

machine. However, in these problematic cases the 

Advanced Harmonic Tracking Analysis is an excellent 

complement, since it enables to reliably detect the fault 

component signatures in the t-f maps and, hence, to 

diagnose the presence of the failure. This is shown in Fig. 5 

where the HH spectrum of the IMF2 for the no-load 

machine with two broken bars is plotted (an alternative 

color representation is adopted in that figure). The V-

shaped pattern associated with the fault can be clearly 

observed there. 
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Fig. 4. MCSA analysis for the faulty machine under no-load (two 

broken bars) 
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Fig. 5. HH spectrum of IMF2 of the startup current for a machine with 

two broken rotor bars under no-load 

 

   The application of the infrared technique for the 

detection of this specific fault does not lead to conclusive 

results. As shown in Fig. 6, the infrared images for the 

faulty machine reveal a general increase of the temperature 

in the motor frame. This increment, however, does not fit a 

specific pattern and could not be employed to reliably 

detect the failure since it may be caused by another 

abnormality or operation condition. Moreover, this 

increment is clearly noticeable only when a significant 

number of broken bars is present (as in Fig. 6). In any case, 

the general temperature increment detected in the infrared 

images somehow informs on the fact that the machine is not 

operating as it should do in healthy conditions. The absence 

of an accurate pattern is due to the fact that this is an 

internal fault. When the bar breaks, higher currents flow 

through the adjacent bars leading to temperature 

increments. However, the temperature dissipation is very 

fast and no punctual temperature increment can be observed 

in the motor frame. A similar conclusion is reached when 

analyzing the evolution of the average temperature in the 

motor nameplate (Fig. 7). A general increment is detected 

for the faulty motor, but no conclusive diagnostic can be 

obtained only relying on this fact. 

 

 

 

 

 

 

 

 

 
                   (a)                                                (b) 

Fig. 6. Steady-state infrared thermograms for: (a) healthy motor and 

(b) motor with nine broken bars 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Temperature heating profiles for healthy motor (black) and 

motor with nine broken bars (blue) 

B.   Bearing damages 

   In practice, bearing damages are not easy to be detected 

by current analysis [39, 40], in spite of the fact that some 

authors have proposed current-based techniques to such 

purpose [41]. For some types of bearing failures, the 

damage does not lead to an evident increment of specific 

frequencies. Moreover, even if specific components are 

amplified due to the fault, it is necessary to know 

constructive characteristics of the bearing to be aware of the 

specific frequencies to be studied.  

   With regards to the analysis of transient currents, some 

recent works have proven the potentiality of the continuous 

transforms for tracking the fault-related harmonics, even if 

they have low amplitudes [42]; the extension of these 

techniques to the case of bearing failures is being 

investigated. On the other hand, the application of tools as 
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the HHT or DWT has proven to be difficult for the 

detection of components with similar nature as those 

introduced by this fault, a proven in previous works [43-

44]. 

   In this context, infrared data may provide very interesting 

information to reach a diagnostic conclusion. A level of 

bearing damage was forced in the laboratory, by combining 

a bad lubrication with an artificial damage forced with a 

hammer. The machine was operating during some months 

until the bearing finally collapsed (i.e. until the eccentricity 

level caused by the failure was so high that the rotor and 

stator rubbed). Infrared images, captured during the tests, 

are rather revealing. As shown in Fig. 8, clear differences 

are observed versus those of the healthy machine. 

Moreover, a significant temperature increase is 

concentrated in the bearing element (see Fig. 9). This 

increase was already evident after the fault was forced. This 

temperature increment in the bearing region leads to a quite 

reliable infrared pattern (totally different from those 

appearing in other faults) that informs on the presence of an 

abnormality in that element. Logically, further work should 

be necessary to accurately determine the level of failure 

based on the temperature increase of that element, but at 

least thermography analysis can serve as an alarm to warn 

the maintenance staff about a possible failure of that 

element, so that they can adopt corresponding maintenance 

actions in enough advance. 

 

 

 

 

 

 

 

 

 
                 (a)                                                    (b) 

Fig.8. Steady-state infrared thermograms for: (a) healthy motor and (b) 

motor with damaged bearing 
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Fig 9. Temperature heating profiles for healthy motor (black) and motor 

with damaged bearing (blue). 

C.   Cooling system problems 

Problems in the motor cooling system were simulated by 

inserting a cardboard in the internal part of the motor, so 

that the air penetration in the motor was obstructed (see Fig. 

10). In real applications, this problem may be caused by the 

deposit of dust or dirtiness that obstructs the air input 

channels. 

As for the previous tests, current and infrared data were 

captured since the motor was connected until the steady-

state regime was well-established. 

Obviously, neither MCSA nor advanced transient 

harmonic tracking are useful for  the blocked input channel 

fault mode, since they will not lead to any fault indicating 

frequency. 

On the other hand, infrared data reveals a generalized 

temperature increment in the motor (as it happened for 

broken bars), as observed in Fig. 11.  

However, the temperature evolution profile is rather 

different if compared with that at the same point (motor 

nameplate) for the previous faults (Fig. 12). This specific 

profile could be indicative of the occurrence of this specific 

fault in the machine. 

 

 
                  Fig. 10. Simulation of cooling system failure 

 

 

 

 

 

 

 

 

 
                 (a)                                                       (b) 

Fig.11. Steady-state infrared thermograms for: (a) healthy motor and 

(b) motor with cooling system failure. 

 

 

 

 

 

 

 

 

 

 

 
Fig 12. Temperature heating profiles for healthy motor (black) and motor 

with cooling system failure (blue). 

V.   CONCLUSIONS 

    A twofold approach combining the use of current and 
infrared data is proposed in the present work. The first stage 
of the approach relies on analyzing the registered current 
signals (both during transient and steady-state operation). 
Classical MCSA and Advanced Harmonic Tracking 
Analysis are combined in this stage in order to reach a 
diagnosis conclusion.  
   In the case that these techniques are not able to detect any 
fault or that they show discrepancies in their diagnostic 
results, infrared data are used in a second stage. In this 
second stage, qualitative analysis of thermography images 
can be used to either to discard or to ratify the presence of 
the failure in the machine. In general terms, it can be said 
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that, as expected,  the infrared technique is more sensitive to 
faults located near the machine frame surface rather than to 
internal failures. 
   On the other hand, the study of the temperature profiles 
during the heating process at different points of the machine 
frame can provide very useful information to determine the 
type of failure that is present. In this case, the only 
limitation is the length of the required data due to the long 
duration of the heating transient.     
   The proposed approach relying on non-invasive 
monitoring of the machine, can be especially useful in the 
case of large, critical motors in which the occurrence of 
eventual false positives/negatives may lead to severe 
repercussions in terms of economic losses or production 
shutdowns. For these motors, the implementation cost of the 
approach is far compensated by the higher reliability in the 
diagnostic. 
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