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‘I believe that we do not know anything for certain,

but everything probably.’

– Christiaan Huygens, Oeuvres Completes.
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Resumen

Desde las contribuciones de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob y
Johann Bernoulli en el siglo XVII hasta ahora, las ecuaciones en diferencias y
las diferenciales han demostrado su capacidad para modelar satisfactoriamente
problemas complejos de gran interés en Ingeniería, Física, Epidemiología, etc.
Pero, desde un punto de vista práctico, los parámetros o inputs (condiciones
iniciales/frontera, término fuente y/o coeficientes), que aparecen en dichos pro-
blemas, son fijados a partir de ciertos datos, los cuales pueden contener un error
de medida. Además, pueden existir factores externos que afecten al sistema
objeto de estudio, de modo que su complejidad haga que no se conozcan de
forma cierta los parámetros de la ecuación que modeliza el problema. Todo ello
justifica considerar los parámetros de la ecuación en diferencias o de la ecuación
diferencial como variables aleatorias o procesos estocásticos, y no como cons-
tantes o funciones deterministas, respectivamente. Bajo esta consideración
aparecen las ecuaciones en diferencias y las ecuaciones diferenciales aleatorias.
Esta tesis hace un recorrido resolviendo, desde un punto de vista probabilístico,
distintos tipos de ecuaciones en diferencias y diferenciales aleatorias, aplicando
fundamentalmente el método de Transformación de Variables Aleatorias. Esta
técnica es una herramienta útil para la obtención de la función de densidad de
probabilidad de un vector aleatorio, que es una transformación de otro vector
aleatorio cuya función de densidad de probabilidad es conocida. En definitiva,
el objetivo de este trabajo es el cálculo de la primera función de densidad de
probabilidad del proceso estocástico solución en diversos problemas basados
en ecuaciones en diferencias y diferenciales aleatorias. El interés por determi-
nar la primera función de densidad de probabilidad se justifica porque dicha
función determinista caracteriza la información probabilística unidimensional,
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como media, varianza, asimetría, curtosis, etc., de la solución de la ecuación
en diferencias o diferencial correspondiente. También permite determinar la
probabilidad de que acontezca un determinado suceso de interés que involucre
a la solución. Además, en algunos casos, el estudio teórico realizado se com-
pleta mostrando su aplicación a problemas de modelización con datos reales,
donde se aborda el problema de la estimación de distribuciones estadísticas
paramétricas de los inputs en el contexto de las ecuaciones en diferencias y
diferenciales aleatorias.
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Resum

Des de les contribucions de Isaac Newton, Gottfried Wilhelm Leibniz, Jacob i
Johann Bernoulli al segle XVII fins a l’actualitat, les equacions en diferències i
les diferencials han demostrat la seua capacitat per a modelar satisfactòriament
problemes complexos de gran interés en Enginyeria, Física, Epidemiologia, etc.
Però, des d’un punt de vista pràctic, els paràmetres o inputs (condicions ini-
cials/frontera, terme font i/o coeficients), que apareixen en aquests problemes,
són fixats a partir de certes dades, les quals poden contenir errors de mesura.
A més, poden existir factors externs que afecten el sistema objecte d’estudi,
de manera que, la seua complexitat faça que no es conega de forma certa els
inputs de l’equació que modelitza el problema. Tot açò justifica la necessitat
de considerar els paràmetres de l’equació en diferències o de la equació dife-
rencial com a variables aleatòries o processos estocàstics, i no com constants o
funcions deterministes. Sota aquesta consideració apareixen les equacions en
diferències i les equacions diferencials aleatòries. Aquesta tesi fa un recorre-
gut resolent, des d’un punt de vista probabilístic, diferents tipus d’equacions
en diferències i diferencials aleatòries, aplicant fonamentalment el mètode de
Transformació de Variables Aleatòries. Aquesta tècnica és una eina útil per a
l’obtenció de la funció de densitat de probabilitat d’un vector aleatori, que és
una transformació d’un altre vector aleatori i la funció de densitat de probabi-
litat és del qual és coneguda. En definitiva, l’objectiu d’aquesta tesi és el càlcul
de la primera funció de densitat de probabilitat del procés estocàstic solució en
diversos problemes basats en equacions en diferències i diferencials. L’interés
per determinar la primera funció de densitat es justifica perquè aquesta funció
determinista caracteritza la informació probabilística unidimensional, com la
mitjana, variància, asimetria, curtosis, etc., de la solució de l’equació en dife-
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rències o l’equació diferencial aleatòria corresponent. També permet determi-
nar la probabilitat que esdevinga un determinat succés d’interés que involucre
la solució. A més, en alguns casos, l’estudi teòric realitzat es completa mostrant
la seua aplicació a problemes de modelització amb dades reals, on s’aborda el
problema de l’estimació de distribucions estadístiques paramètriques dels in-
puts en el context de les equacions en diferències i diferencials aleatòries.
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Abstract

Ever since the early contributions by Isaac Newton, Gottfried Wilhelm Leib-
niz, Jacob and Johann Bernoulli in the XVII century until now, difference
and differential equations have uninterruptedly demonstrated their capability
to model successfully interesting complex problems in Engineering, Physics,
Chemistry, Epidemiology, Economics, etc. But, from a practical standpoint,
the application of difference or differential equations requires setting their in-
puts (coefficients, source term, initial and boundary conditions) using sampled
data, thus containing uncertainty stemming from measurement errors. In a-
ddition, there are some random external factors which can affect to the system
under study. Then, it is more advisable to consider input data as random va-
riables or stochastic processes rather than deterministic constants or functions,
respectively. Under this consideration random difference and differential equa-
tions appear. This thesis makes a trail by solving, from a probabilistic point of
view, different types of random difference and differential equations, applying
fundamentally the Random Variable Transformation method. This technique
is an useful tool to obtain the probability density function of a random vector
that results from mapping another random vector whose probability density
function is known. Definitely, the goal of this dissertation is the computation
of the first probability density function of the solution stochastic process in
different problems, which are based on random difference or differential equa-
tions. The interest in determining the first probability density function is
justified because this deterministic function characterizes the one-dimensional
probabilistic information, as mean, variance, asymmetry, kurtosis, etc. of co-
rresponding solution of a random difference or differential equation. It also
allows to determine the probability of a certain event of interest that involves
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the solution. In addition, in some cases, the theoretical study carried out is
completed, showing its application to modelling problems with real data, where
the problem of parametric statistics distribution estimation is addressed in the
context of random difference and differential equations.
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Chapter 1

Introduction

Difference and differential equations have demonstrated to be important ma-
thematical tools to model different phenomena in many areas. There is virtu-
ally no applied scientific area where these equations had not been used to deal
with relevant problems. Numerous examples can be found in Engineering,
Physics, Chemistry, Epidemiology, Economics, etc. From a practical stand-
point, the application of difference or differential equations requires setting
their input (coefficients, source term, initial and boundary conditions) using
sample data, thus containing uncertainty stemming from measurement errors.
Depending on the quality of these measurements, the results obtained from the
model can be satisfactory or not. In addition, there are some external sources
with a random nature that can affect the system, such as the environmental
and genetic factors in Epidemiology, for example. Then, it is more advisable
to consider the input data as random magnitudes rather than deterministic
ones. If what is to be measured is a magnitude functionally independent of
other values, it would be better to consider it as a random variable rather
than a deterministic constant. When dependency exists with respect to other
magnitudes, such as time, space, etc., it would be more advisable to interpret
it, not as a function but as a stochastic process. Under this approach, two
main classes of difference or differential equations, which consider into their
formulation uncertainty, have been proposed to formulate continuous and dis-
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Chapter 1. Introduction

crete models, namely stochastic difference or differential equations and random
difference or differential equations.

The uncertainty or noise considered in stochastic differential equations is con-
sidered by special classes of stochastic processes like Markovian processes, or,
being more specific the white noise process (the formal derivative of the Wiener
process, also called Brownian motion). The white noise restricts itself the un-
certainty to a Gaussian process with irregular sample behaviour since the tra-
jectories of the Wiener process are nowhere differentiable [71]. The Brownian
motion belongs to an important class of stochastic processes termed semi-
martingales. The resulting stochastic differential equation is handled using a
special calculus for semimartingales, usually referred to as Itô stochastic calcu-
lus, whose cornerstone result is the Itô Lemma [2, 71]. The Brownian motion
is characterized by Gaussian, stationary and independent increments. From a
deterministic point of view, Itô calculus considers perturbations in the para-
meters via the white noise. This implicitly entails that Gaussian uncertainty
is assumed via the perturbation of model parameters. Apart from Wiener pro-
cess, some authors have also considered other types of stochastic processes,
like the coloured noise [22, 23]. Additionally, stochastic differential equations
can be considered as a continuous version of autoregressive models which are
widely applied in statistics [89]. But, if it is possible stochastic differential
equations are solved using Itô calculus, when not numerical techniques can
be developed [57]. Stochastic differential equations have demonstrated to be
powerful mathematical representations to model many problems, for example
in Finance, Engineering, Biosciences, etc., [14, 36, 40, 93], but this approach
does not cover all the probabilistic casuistries.

A complementary approach to introduce uncertainty in differential equations,
and also in difference equations, is to allow the direct assignment of any pro-
bability distribution to input parameters, which is referred to as the random-
ization process of deterministic or classical difference or differential equations.
Random difference or differential equations constitute a natural generalization
of their deterministic counterpart. Random effects are directly manifested in
parameters, which are considered random variables or stochastic processes, i.e.,
parameters are assumed to have regular sample behaviour described by stan-
dard probabilistic distributions. The main advantage of random differential
equations with respect to their stochastic counterpart is that for the former a
wider range of probability distributions for input parameters are allowed, such
as, Beta, Gaussian, Exponential as well as other ad hoc distributions, like those
that can be built using copulas [70]. A good introduction to random differen-
tial equations can be found in [85]. The standard study of random difference or
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differential equations is based upon the so-called mean square calculus. Under
this approach, apart from solving the random difference or differential equa-
tion, the main objective is to compute the mean and variance of the solution
stochastic process of a random difference or differential equation, while this
dissertation deals with the computation of the probability density function of
the solution stochastic process, which is a more desirable goal. In addition, a
number of numerical and analytical methods, which extend their deterministic
counterpart, have been proposed to deal with random difference or differential
equations including numerical schemes, spectral methods and Fröbenius series,
for instance [13, 29, 41].

A common approach, in order to approximate the solutions of stochastic diffe-
rence or differential equations and random difference or differential equations,
is Monte Carlo sampling [59]. Although widely used due to its easy implemen-
tation, the main drawback of Monte Carlo is its slow convergence rate, since
the error is O

(
1/
√
M
)
, where M is the number of simulations. In addition,

Monte Carlo only provides numerical approximation of the solution stochastic
process, in spite of an exact representation could exist.

In this thesis, autonomous and non-autonomous random differential equations
and systems of random difference or differential equations will be solved. As
main difference with respect to the deterministic framework, solving a ran-
dom difference or differential equation means not only to compute, exact or
approximately, its solution stochastic process, say X(t), and to study depen-
dence of solution with respect to initial conditions and/or parameters, but to
determine the main statistical functions of X(t), such as its mean and variance
functions, are also important goals to be achieved. Although this information
is valuable, and most contributions focus on the computation of the solution
stochastic process and its mean and variance/standard deviation functions, a
more ambitious target includes the determination of the first probability den-
sity function, f1(x, t), in order to have a full probabilistic description of the
solution stochastic process in each instant time. Moreover, from the first pro-
bability density function one can calculate all the one-dimensional statistical
moments, in particular, from it the mean and the variance, and therefore, con-
fidence intervals, can be straightforwardly determined, as well as, skewness,
kurtosis and other higher one-dimensional statistical moments. This fact cons-
titutes crucial information from a practical standpoint because it permits to
provide more realistic answers than its deterministic counterpart, where pre-
dictions are just punctual values. In addition, the first probability density
function also enables to compute the probability that the solution lies within
a certain set of interest.
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Even though this thesis focusses on the computation of the first probability
density function of the solution, it is worth to underline that higher probabili-
ty density functions are also useful for giving further statistical characteristics.
That is, in order to have more probabilistic information, one can calculate the
n-dimensional probability density function of the solution stochastic process,
but it normally involves complex computations. For example, the second pro-
bability density function, f2(x1, t1;x2, t2), gives a full probabilistic description
of the solution stochastic process in each pair of times, t1 and t2. Particularly,
from the second probability density function the correlation function can be
calculated. This function provides a measure of linear statistical interdepen-
dence between the random variables coming from evaluating the stochastic
process in two different time instants. Furthermore, the correlation function
allows to compute the covariance function, once the mean function has also
been calculated from the first probability density function.

As it was pointed out previously, Itô type stochastic differential equations are
an alternative to random differential equations in order to model uncertainty.
Taking into account our principal objective, namely the computation of the
first probability density function of the solution stochastic process, under the
so called Itô approach it is also possible to determine the probability density
function solving the corresponding forward Fokker-Plank-Kolmogorov equa-
tion. This equation is a deterministic partial differential equation satisfied by
the transition probability density function of a diffusion stochastic process, [39,
42]. The key point that allows to use this result is that the solution of Itô type
stochastic differential equation is a Markovian diffusion process, [85]. But this
fact does not have to be fulfilled under the approach of this dissertation.

The main objective of this dissertation relies on the application of the Random
Variable Transformation technique. This method, that will be introduced in
the next chapter, is a powerful tool to compute the probability density function
of a random vector, which results from mapping another random vector, whose
probability density function is known [20]. In [52] a generalization of this
technique is stated. This method has been successfully applied to different type
of problems: random partial differential equations [49, 51], random integral-
differential equations [50], random difference equations [17], and this technique
can be also applied to obtain numerical approximations [37].

The introduction is concluded by summarizing the contents of this dissertation.

• Chapter 2 is concerned with the fundamental principles and results in
probability, random variables and stochastic processes that will be re-
quired throughout theses pages. In addition, in Chapter 2 a brief intro-
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duction about Random Variable Transformation method will be provided,
for the sake of completeness.

• In Chapter 3, the first probability density function of the solution stochas-
tic process to the homogeneous Riccati random differential equation is
determined. The study is split in all possible cases regarding the deter-
ministic/random nature of the involved input parameters. An illustrative
example is provided for each one of the considered cases.

• Chapter 4 provides a complete probabilistic description of SIS-type epi-
demiological models. In particular, the distributions to describe the time
until a given proportion of the population remains susceptible and in-
fected is also determined and a probabilistic description of the so-called
basic reproductive number is included. The theoretical results are applied
in order to study the spread of smoking in Spain by using real data.

• In Chapter 5, the first probability density function of the solution stochas-
tic process to the Bernoulli random differential equation is determined.
The analysis is split into two cases for which an illustrative example is
provided. Finally, a fish weight growth model is considered to illustrate
the usefulness of the theoretical results previously established using real
data.

• In Chapter 6, the first probability density function of the solution stochas-
tic processes is computed to

– Random autonomous first-order linear systems of ordinary differen-
tial equations. In this part the theoretical results are illustrated for
planar systems and a probabilistic interpretation of phase portrait is
given.

– Random autonomous first-order linear systems of difference equa-
tions. In this case the computation of the first probability function
is applied to extend the classical stability classification of the zero-
equilibrium point.

In both problems, some numerical examples are provided.

• Chapter 7 is addressed to give a generalization of the classical Markov
methodology. This generalization allows the treatment of the entries of
the transition matrix and initial condition as random variables instead
of deterministic values lying in the interval [0, 1]. Important quantities
related to randomized Markov chains (steady state, hitting times, etc.)
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Chapter 1. Introduction

are determined. The theoretical results are illustrated by modelling the
diffusion of a technology using real data.

• Chapter 8 is aimed to give a technical generalization of classical Markov
methodology in order to improve modelling of the stroke disease. As
in Chapter 4, the probability density function of the time instants until
a certain proportion of the total population remains susceptible, reliant
and deceased are also computed. The study is completed showing the
usefulness of out computational approach to determine, from a proba-
bilistic point of view, key quantities in medical decision making, such as
the cost-effectiveness ratio.

• In Chapter 9, the first probability density function of the approximate so-
lution stochastic process to second-order linear differential equations with
random analytic coefficients about regular point is computed. And then,
the study of the convergence to the exact first probability density func-
tion is done. The validity of the proposed method and the convergence
is shown through several illustrative examples.

• In Chapter 10, the first-order random linear differential equation, where
the diffusion coefficient is an stochastic process, is considered. On the
one hand, in order to obtain the first probability density function this
coefficient is represented via Karhunen-Loève expansion. On the other
hand, to apply Random Variable Transformation method, the truncated
series is considered. Therefore, the first probability density function of
the approximate solution stochastic process will be obtained. Then, the
uniform convergence of the sequence of first probability density functions
is established applying the classical Cauchy condition. This theoretical
result is validated throughout some numerical examples.

• Finally, in Chapter 11 the main conclusions of this thesis are summed up.

For the sake of clarity, from Chapter 3 to Chapter 10 the same structure is fo-
llowed: a brief introduction; the probabilistic solution, that is, the computation
of the first probability density function and the main statistical functions of
the solution stochastic process of the corresponding problem, some numerical
examples and/or a specific mathematical model, and some conclusions of the
chapter.

6



Chapter 2

Preliminaries

In this chapter some previous results concerned with the prin-
ciples in probability, random variables and stochastic process, which
are fundamental in this dissertation, as well as the Random
Variable Transformation method with some specializations will be
stated.

The aim of this chapter is twofold. On the one hand, Section 2.1 is addressed to
give the fundamental principles and results in probability, Random Variables
(RVs) and Stochastic Processes (SPs). Notice that Section 2.1 is based on
the preliminaries of thesis [79] given that the mathematical tools explained in
this section are common in both dissertations. On the other hand, the main
results that will be required in next chapters, are summarized in Section 2.2.
That is, in Section 2.2 Random Variable Transformation (RVT) method, with
specialization of this technique, will be stated. Since the reader is assumed to
be familiar with the basic concepts in these subjects, the chapter is written in
a direct way in order to provide a brief introduction and a summary of those
results useful in the subsequent development. The reader is encouraged to
check classical references like [85], [72], [60], [95], [33], for further details.

7



Chapter 2. Preliminaries

2.1 Probability, random variables and stochastic processes

2.1.1 Probability space

The principal concept of probability theory is the probability space, which can
be represented mathematically as an ordered triplet (Ω,A,P), consisting of the
sample space, Ω, a σ-algebra A of subsets of Ω, called events, and a real-valued
set function P, defined on A, called a probability. Ω can be any arbitrary set,
while A and P must satisfy the following properties. First, for A

i) ∅ ∈ A.

ii) If A ∈ A, then AC ∈ A (where AC denotes the complement of A in Ω).

iii) If A1, A2, . . . ∈ A, then A =
⋃∞
i=1Ai ∈ A.

With respect to P

iv) If A ∈ A, then P[A] ≥ 0.

v) If A1, A2, . . . ∈ A is a family of disjoint sets, i.e., Ai
⋂
Aj = ∅ for i 6= j,

then

P

[
∞⋃
i=1

Ai

]
=
∞∑
i=1

P[Ai].

vi) P[Ω] = 1.

Properties i)-iii) define A as a σ-algebra of subsets of Ω, while properties iv)-v)
determine that P is a measure and, vi) defines P as a probability (measure).

If A ∈ A, P[A], the probability of A, can be interpreted as a measure of
the likelihood of occurrence of the event A in an experiment whose possible
outcomes are the elements of A. If P[A] = 0, A is virtually impossible, and A
is called a P-null set. If P[A] = 1, A is a certainty event and it is said that A
occurs with probability 1 (w.p. 1) or almost surely (a.s.).
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2.1 Probability, random variables and stochastic processes

2.1.2 Random variables

Now let (Ω1,A1) and (Ω2,A2) be measurable spaces, that is, Ai is a σ-algebra
of subsets of Ωi, i = 1, 2. If X is a mapping of Ω1 into Ω2, denoted by
X : Ω1 → Ω2, then X is measurable if for each A ∈ A2,

{ω : X(ω) ∈ A} = X−1(A) ∈ A1.

The collection A(X) = {X−1(A) : A ∈ A2} is a σ-algebra in Ω1, called the
σ-algebra generated by X, and it is the smallest σ-algebra such that X is
measurable. The cases where Ω2 = R (R denotes the set of all real numbers);
Ω2 = Rn (Rn denotes the set of n-dimensional vectors with real components);
Ω2 = Rn×m (Rn×m denotes the set of n×m matrices with real entries) are of
particular interest. In these cases A2 is usually taken to be the σ-algebra of
Borel sets of the appropriate dimensions: the σ-algebra generated by the set
of intervals (rectangles, etc.) and denoted by B, Bn or Bn×m, etc. respectively.
Measurable functions X : Ω1 → Ω2 are called RVs, random vectors, and ran-
dom matrices, respectively, in each of these cases. X is a random vector (resp.
matrix) if and only if each component Xi (resp. Xij) is a RV. Throughout this
thesis a random vector and a random matrix will be denoted by X. A function
X : Ω1 → R is a real RV if, and only if,

X−1(]−∞, a]) = {ω : X(ω) ≤ a} ∈ A1, ∀a ∈ R.

Notice that, throughout this dissertation the parameter ω will be omitted when
no confusion seems possible and capital letters will be used when dealing with
RVs, random vectors, or random matrices.

If the measurable space (Ω,A) represents an experiment, a RV X defined on
(Ω,A) can be considered as an abstraction of information from the possible
outcomes. This abstraction can be very coarse as in the case of an indicator
function or a constant function. However, the measurably requirement means
that only those subsets of Ω that are events can be distinguished by different
values of X. This restriction indicates how discerning can X be, in the sense
one that the information made available by X about the experiment cannot
exceed that provided by the full σ-algebra A, which describes all possible
outcomes of the experiment.

Usual algebraic operations of the analysis are, in general, preserved for the
case that RVs are managed. For example, sums, differences, products, and
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when they exist, quotients, extrema, and limits of RVs are also RVs. This
situation can be exploited to determine probabilities of compound events from
the probabilities of simpler constituent elements.

Given a random experiment with its associated RV X and given a real num-
ber x, let us consider the probability of the event {x : X(ω) ≤ x} or simply
P[X ≤ x]. This probability is a number, clearly dependent upon x. Function

FX(x) = P[X ≤ x],

is defined as the distribution function (DF) of X and always exists. By defini-
tion it is a non-negative, continuous to the right and non-decreasing function
of real variable x. Moreover, it satisfies

FX(−∞) = 0, FX(+∞) = 1.

A RV X is called a continuous RV if its associated DF is continuous and
differentiable almost everywhere. It is a discrete RV when the DF assumes the
form of a staircase with a finite or countable finite jumps. For a continuous
RV X, the derivative

fX(x) =
dFX(x)

dx
,

exists and it is called probability density function (PDF) of RV X. This
function satisfies the following properties

fX(x) ≥ 0,

∫ b

a

fX(x)dx = FX(b)− FX(a),

∫
D(X)

fX(x)dx = 1, (2.1)

where D(X) denotes the domain of RV X. Notice that throughout this thesis
if the domain is unknown or cumbersome, the whole real space ((−∞,∞))
will be used. If X is a RV that only takes a finite number of values, say,
x1, x2, . . . , xN , its PDF is usually called probability function or mass function
and it is defined by

fX(x) =
N∑
j=1

pjδ(x− xj), (2.2)
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2.1 Probability, random variables and stochastic processes

where δ(x) is the Dirac delta function and

pj = P [X = xj] , j = 1, 2, . . . , N.

This definition of fX(x) is consistent in sense that it has all properties indi-
cated in expression (2.1), and the DF is recoverable from equation (2.2) by
integration.

In order to introduce later the concept of independent RVs, first it is necessary
to introduce the concept of DF and PDF for two RVs (for the extension to
more than two RVs, see for instance, reference [85, p.13]). Given two RVs X
and Y , then, they induce a probability distribution in the Euclidean plane R2,
which is described by the joint DF

FXY (x, y) = P [{ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y}] .

Function FXY (x, y) is non-negative, non-decreasing, and continuous at the
right with respect to each of real variables x and y. Moreover, it satisfies the
following properties

FXY (−∞,−∞) = FXY (−∞, y) = FXY (x,−∞) = 0,

FXY (+∞,+∞) = 1, FXY (x,+∞) = FX(x), FXY (+∞, y) = FY (y),

where FX(x) and FY (y) denote the individual DF of RVsX and Y , respectively,
but in the context of several RVs, each (individual) DF is commonly referred
to as the marginal distribution function. If the second-order partial derivative

∂2FXY (x, y)

∂x∂y
,

exists, it is denoted by

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
,

11
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and it is called joint PDF of X and Y . This function satisfies similar properties
that previously enunciated for an individual PDF in (2.1), that is, it is non-
negative and∫

D(Y )

∫
D(X)

fXY (x, y)dxdy = 1,

∫ x

−∞

∫ y

−∞
fXY (u, v)dudv = FXY (x, y),

∫
D(Y )

fXY (x, y)dy = fX(x),

∫
D(X)

fXY (x, y)dx = fY (y).

Within this framework, PDFs fX(x) and fY (y) are called marginal density
functions of RVs X and Y , respectively.

Two RVs X and Y are said to be independent if their joint PDF fXY (x, y) can
be factorized as the product of each individual PDF fX(x) and fY (y), that is,

fXY (x, y) = fX(x)fY (y). (2.3)

The extension of previous definition to case of more than two RVs is straight-
forward. A family of n RVs, X1, X2, . . . , Xn, are mutually independent if, and
only if,

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1
(x1)fX2

(x2) · · · fXn(xn).

An important result concerning independence is the following.

Proposition 2.1 ([44]) If X and Y are independent RVs, then for any (mea-
surable) functions f and g, RVs f(X) and g(Y ) are also independent.

In practice a RV tries to model the uncertainty of a phenomenon. Some of the
most useful information concerning a RV is revealed by deterministic quantities
called moments that capture its statistical variability. Given a RV X, the n-th
moment with respect to origin is defined by

E [Xn] =

∫
D(X)

xnfX(x)dx, n = 0, 1, 2, . . . , (2.4)

whenever the following integral exists and satisfies
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∫
D(X)

|x|nfX(x)dx < +∞.

Symbol E [ · ] in (2.4) is usually called expectation operator. The first moment
E [X] is particularly important because it gives the statistical average of RV X
and usually it is referred to as mean, mathematical expectation or statistical
average. In the following, it will be denoted by µX or E [X], indistinctly.

An important feature about existence of the moments with respect to origin is
given in the following result

If E [|X|p] < +∞, then E [Xq] < +∞, ∀ q ≤ p, (2.5)

where the term E [|X|p] is called the p-th absolute moment of RV X with
respect to origin. Hereinafter, the existence of the mean of a RV will be
assumed.

Given a collection of RVs, X1, X2, . . . , Xn, and constants a1, a2, . . . , an, the
expectation operator is linear, that is, it satisfies

E

[
n∑
i=1

aiXi

]
=

n∑
i=1

aiE [Xi] . (2.6)

The central moments of a RV X are the moments of X with respect to its
mean, µX . Hence, the n-th central moment of X is defined as

E [(X − µX)n] =

∫
D(X)

(x− µX)nfX(x)dx, n = 0, 1, 2, . . .

The second central moment measures the spread or dispersion of RV X about
its mean. It is usually called variance, and in the following, it will be denoted
by σ2

X or V [X], interchangeably. This statistical parameter can be expressed
in terms of the first and second moments with respect to origin as follows

V [X] = E
[
(X − E [X])

2
]

= E
[
X2
]
− (E [X])

2
. (2.7)
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In practice, the dispersion of a RV X is given in the same units that RV X.
It is done by means the square root of the variance, which is termed standard
deviation, and it will be denoted by σX .

Tables 2.1 and 2.2 collect, respectively, the mean, the variance and, the mo-
ments with respect to origin of some relevant RVs that will appear throughout
this thesis.

Distribution Notation Mean Variance

Uniform X ∼ Un([a, b]), a, b ∈ R
a+ b

2

(b− a)2

12

Beta X ∼ Be (α;β), α, β > 0
α

α+ β

αβ

(α+ β)2(α+ β + 1)

Gaussian X ∼ N (µ;σ), σ > 0, µ ∈ R µ σ2

Exponential X ∼ Exp (λ), λ > 0
1

λ

1

λ2

Gamma X ∼ Ga (r; a), r, a > 0
r

a

r

a2

Table 2.1: Some relevant RVs and their mean and variance.

It is worthwhile pointing out that an Exponential RV X ∼ Exp (λ) is a special
case of a Gamma RV of parameters r = 1 and a = λ. If α = β = 1, a Beta RV
becomes a Uniform RV on interval [0, 1].

The transformation of a RV into another one (or the transformation of a ran-
dom vector) will play a central role throughout this thesis. For resulting RV,
it is convenient to have a direct way to compute its statistical properties, like
expectation or variance, in terms of the information available for the original
RV. The following result shows how can be calculated the mean of a function
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Distribution Notation E [Xn]

Uniform X ∼ Un([0, 1])
1

n+ 1

Beta X ∼ Be (α;β), α, β > 0
(α+ n− 1)!(α+ β − 1)!

(α+ β + n− 1)!(α− 1)!

Gaussian X ∼ N (0;σ), σ > 0 0 if n = 2k + 1,
(2k)!

2kk!
σ2k if n = 2k

Exponential X ∼ Exp (λ), λ > 0
n!

λn

Gamma X ∼ Ga (r; a), r, a > 0
(r + n− 1)!

an(r − 1)!

Table 2.2: Some relevant RVs and their moments with respect to origin.

of a continuous RV X, say g(X), with PDF fX(x), without first determining
its distribution

E[g(X)] =

∫
D(X)

g(x)fX(x)dx. (2.8)

An analogous expression can be written for the discrete case replacing the
integral by a sum.

In particular, if g(x) = x, expression (2.8) becomes the mean E[X] and, if
g(x) = x2, taking into account (2.7), one can obtain the variance σ2

X .

The moments of two or more RVs are defined in a similar way. For the case
of two RVs X, Y , the joint moments of order (n,m) with respect to origin are
defined by

E [XnY m] =

∫
D(Y )

∫
D(X)

xnymfXY (x, y)dxdy, n,m = 0, 1, 2, . . . ,
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whenever they exist. In the particular case that X and Y are independent
RVs, by (2.3) one gets

E [XnY m] =

∫
D(Y )

∫
D(X)

xnymfX(x)fY (y)dxdy

=

(∫
D(X)

xnfX(x)dx

)(∫
D(Y )

ymfY (y)dy

)
= E [Xn]E [Y m] .

(2.9)

The joint central moments of RVs X and Y of order (n,m), n,m = 0, 1, 2, . . . ,
are given by

E [(X − E [X])
n

(Y − E [Y ])
m

] =

∫
D(Y )

∫
D(X)

(x−µX)n(y−µY )mfXY (x, y)dxdy.

The particular case

E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X]E [Y ] , (2.10)

is called covariance between X and Y and, in advance, it will be denoted by
Cov [X,Y ]. The term E [XY ] is usually referred to as correlation between X
and Y . In this case, its covariance coincides with its correlation, whenever
the second moment of RV X exists. From (2.10), if X = Y then it is seen
that covariance becomes the variance of X. Covariance, Cov [X,Y ], has great
importance in the statistical analysis of two RVs X,Y because it provides a
measure of their statistical linear interdependency in sense that its value is
a measure of accuracy with which one RV can be approximated by a linear
function of the other [85, p.18].

Two RVs X and Y are said to be uncorrelated if Cov [X,Y ] = 0 or equivalently
from (2.10) if E [XY ] = E [X]E [Y ]. Note that if X and Y are independent RVs
with finite second moments with respect to origin, then they are uncorrelated,
however the converse of this statement is not true in general, but an important
exception is the case where X and Y are Gaussian RVs.
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In closing this section a set of inequalities, involving the moments with respect
to origin of RVs, that will be used throughout this thesis are collected. If X
and Y are RVs with finite second moments, then Schwarz inequality assures

E [|XY |] ≤
(
E
[
X2
])1/2 (E [Y 2

])1/2
. (2.11)

A generalization of Schwarz inequality is known as Hölder inequality

E [|XY |] ≤ E [|X|n]
1/n E [|Y |m]

1/m
, n,m > 1:

1

n
+

1

m
= 1.

Let f be a convex function on R. If E [|X|] and E [|f(X)|] are finite, then
Jensen inequality assures

f (E [X]) ≤ E [f (X)] . (2.12)

In the particular case that f(x) = x2, Jensen inequality (2.12) guarantees that
the variance given by (2.7) is non-negative.

2.1.3 Stochastic processes

RVs are adequate for to describe results of random experiments which assume
scalar or vector values in a given trial. In many physical applications, however,
the outcomes of a random experiment are represented by functions depending
upon a parameter. These outcomes are then described by a random function
X(t), where t is a parameter assuming values in a reference set T , usually called
index set. A typical example of random experiments giving rise to random
functions is found in the theory of Brownian motion, where each coordinate of
a particle executing Brownian motion exhibits random behaviour as a function
of time. Other examples of random functions appearing in physical contexts
are thermal noise, earthquake motion, epidemics, etc.

A SP {X(t) : t ∈ T } is a collection of RVs, that is, for each t ∈ T , X(t) is a
RV. Depending on the index set T one classifies the SP as follows: If T is a
countable set, the SP is said to be a discrete-time SP. For instance, a sequence
of RVs {Xn : n = 0, 1, 2, . . .} is a discrete-time SP indexed by the non-negative
integers. If T is an interval of real line, the SP is said to be a continuous-
time SP. For instance, {X(t) : t ≥ 0} is a continuous-time SP indexed by the
non-negative real numbers.
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Note that, every SP is defined not only on an index set T , but also on a
probability space, say, (Ω,A,P). Then, it is more correct to denote it as
{X(t;ω) : t ∈ T , ω ∈ Ω}, that is, as a function of two variables, although the
usual notation suppresses the probability space variable ω (sometimes called
as hidden parameter) for convenience. For each fixed t ∈ T , X(t; ·) denotes
a RV on the probability space (Ω,A,P); while for each fixed ω ∈ Ω, X(·;ω)
corresponds to a real-valued function defined on T . The latter is called a
sample path, trajectory, or realization of the process. The theory of SPs relates
these inherent random and sample path structures.

As it has been emphasized previously, at a fixed t ∈ T , a SP {X(t) : t ∈ T }
is a RV. Hence, another characterization of a SP is to regard it as a family of
RVs, say, X(t1), X(t2), . . ., depending upon a parameter t ∈ T . The totality
of all RVs define the SP {X(t) : t ∈ T }. For discrete-time SPs, this set of RVs
is finite or countably infinite. For continuous-time SPs, the number is of non-
countable infinite. The mathematical description of a SP is equivalent to the
description of an infinite and generally non-countable number of RVs. Then,
a SP {X(t) : t ∈ T } is defined by a family of joint DFs or PDFs, dealing with
infinitely many RVs. More exactly, if to every finite set {t1, t2, . . . , tn} of t ∈ T ,
there corresponds a set of RVs X1 = X(t1), X2 = X(t2), . . . , Xn = X(tn), have
a well-defined joint probability DF

FX1,...,Xn(x1, t1;x2, t2; . . . ;xn, tn)

=P ({ω ∈ Ω: X1(ω)≤x1∩X2(ω)≤x2∩. . . Xn(ω)≤xn}) , n ≥ 1,
(2.13)

then this family of joint DF defines a SP {X(t) : t ∈ T }. Usually, the following
shorten notation will be used

Fn(x1, t1;x2, t2; . . . ;xn, tn) = FX1,...,Xn(x1, t1;x2, t2; . . . ;xn, tn).

It is called the n-th DF of SP {X(t) : t ∈ T }. The collection of DFs is not
arbitrary; they must satisfy the Kolmogorov compatibility conditions

i) For m>n:

Fm(x1, t1; . . . ;xn, tn; +∞, tn+1; . . . ; +∞, tm)=Fn(x1, t1; . . . ;xn, tn).

ii) The joint DF given by (2.13) is invariant under an arbitrary permutation
of the indexes 1, 2, . . . , n, i.e.,
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Fn(x1, t1;x2, t2; . . . ;xn, tn) = Fn(xi1 , ti1 ;xi2 , ti2 ; . . . ;xin , tin),

where {i1, i2, . . . , in} is an arbitrary permutation of {1, 2, . . . , n}.

Given the n-th DF Fn(x1, t1;x2, t2; . . . ;xn, tn) of an arbitrary SP {X(t) : t ∈ T },
its associated n-th joint PDF, assuming that it exists, is defined as

fn(x1, t1;x2, t2; . . . ;xn, tn) =
∂nFX1,...,Xn(x1, t1; . . . ;xn, tn)

∂x1 · · · ∂xn
.

As in the case of RVs, some of the most important properties of a SP are
characterized by its moments, mainly, those of first and second order. In the
sequel, existence of DF shall be assumed. In terms of its first PDF (1-PDF),
f1(x, t), the n-th moment of a SP {X(t) : t ∈ T } at a fixed t ∈ T is defined by

E [(X(t))n] =

∫
D(X)

xnf1(x, t)dx.

The first moment represents the mean of the SP at t. It will be sometimes
denoted by µX(t) or E [X(t)]. E [X(t)2] represents the mean square value of
SP at t.

The n-th central moment of {X(t) : t ∈ T }, at a given t ∈ T , is

E [(X(t)− µX(t))n] =

∫
D(X)

(x− µX(t))nf1(x, t)dx.

Of particular interest is when n = 2, that represents the variance of SP at t,
and it will be denoted by σ2

X(t) or V [X(t)].

2.1.4 Mean square calculus

As it was pointed at the introduction, in this dissertation random difference
and differential equations will be studied. In dealing with this goal it can be
advisable the use of mean square (m.s.) calculus. Although in this thesis the
problem will be focused from another point of view, it is necessary to recall
some concepts and notations related to it that may be found in [85]. Let
(Ω,A,P) be a probability space, here it will be considered real RVs X : Ω→ R
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whose second-order moment with respect to origin is finite, that is, E [X2] <∞,
called second-order RVs (2-RVs). From Schwarz inequality (2.11) and property
(2.6) it follows directly

E
[
(X + Y )

2
]
<∞, E

[
(cX)

2
]

= c2E
[
X2
]
<∞, ∀c ∈ R.

Hence the class of all second order RVs on a probability space constitutes a
real linear space if all equivalent RVs are identified by the following equivalence
binary relationship: two RVs X and Y are said to be equivalent if, and only
if, P[X 6= Y ] = 0.

Defining

〈X,Y 〉 = E[XY ], (2.14)

by Schwarz inequality (2.11) and Jensen inequality (2.12), one gets |〈X,Y, 〉| <
∞. It is easy to prove that 〈 〉 given by (2.14) defines an inner product when
X and Y are 2-RVs. This inner product automatically defines a norm

||X||2 = +
√
〈X,X〉 =

(
E
[
X2
])1/2

, (2.15)

and a metric

d(X,Y ) = ||X − Y ||2 = +
√
E [(X − Y )2].

The linear vector space of 2-RVs with this inner product, the norm, and
the distance defined above is called L2-space. The convergence that above
norm defines in L2 is referred to as m.s. convergence. A sequence of 2-RVs
{Xn : n ≥ 0} is m.s. convergent to X if

lim
n→∞

||Xn −X||2 = lim
n→∞

(
E
[
(Xn −X)

2
])1/2

= 0.

A sequence {Xn : n ≥ 0} in L2 is said to be a Cauchy sequence in m.s. sense
if

||Xn −Xm||2 → 0, as n,m→∞.

20



2.2 Random Variable Transformation method

It can be proved that a sequence {Xn : n ≥ 0} of 2-RVs is m.s. convergent to
a RV X as n→∞ if, and only if, is a Cauchy sequence.

2.2 Random Variable Transformation method

As it was pointed in the introduction, the main result that will be used in this
thesis is the Random Variable Transformation (RVT) technique. This method
states as follows in its general form.

Theorem 2.1 (Multidimensional RVT method, [85]) Let us consider
X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) two m-dimensional absolutely con-
tinuous random vectors defined on a complete probability space (Ω,A,P). Let
r : Rm → Rm be a one-to-one deterministic transformation of X into Y, i.e.,
Y = r(X). Assume that r is continuous in X and has continuous partial
derivatives with respect to X. Then, if fX(x) denotes the joint probability den-
sity function of vector X, and s = r−1 = (s1(y1, . . . , ym), . . . , sm(y1, . . . , ym))
represents the inverse mapping of r = (r1(x1, . . . , xm), . . . , rm(x1, . . . , xm)), the
joint probability density function of vector Y is given by

fY(y) = fX (s(y)) |Jm| , (2.16)

where |Jm|, which is assumed to be different from zero, denotes the absolute
value of the Jacobian defined by the determinant

Jm = det


∂s1(y1, . . . , ym)

∂y1

· · · ∂sm(y1, . . . , ym)

∂y1
...

. . .
...

∂s1(y1, . . . , ym)

∂ym
· · · ∂sm(y1, . . . , ym)

∂ym

 . (2.17)

Now, several specializations of RVT technique, Theorem 2.1, that will be re-
quired throughout this dissertation, will be established. In particular, Propo-
sitions 2.2–2.6 are applied in Chapter 3; Propositions 2.6 and 2.7 in Chapter
4; and Propositions 2.8 and 2.9 in Chapter 5.
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Chapter 2. Preliminaries

Proposition 2.2 Let U be an absolutely continuous real RV defined on a com-
plete probability space (Ω,A,P), with PDF fU(u) such that U(ω) 6= 0, ∀ω ∈ Ω.
Then, the PDF fV (v) of the inverse transformation V = 1

U
is given by

fV (v) =
1

v2
fU

(
1

v

)
. (2.18)

Proof. Let us consider the mapping v = r(u) = 1
u
. Its inverse mapping exists

and is given by u = s(v) = 1
v
, being its derivative s′(v) = − 1

v2
. Then, by

applying RVT technique, Theorem 2.1, with the identification X = U , Y = V ,
m = 1 and |J1| = 1/v2, which is nonzero and is well defined as U 6= 0 a.s., the
expression (2.18) is straightforwardly obtained.

�

Proposition 2.3 Let U=(U1, U2) be an absolutely continuous real random vec-
tor defined on a complete probability space (Ω,A,P), with joint PDF fU(u1, u2)
such that U1(ω) 6= 0, ∀ω ∈ Ω. Then, the joint PDF fV(v1, v2) of the inverse-
opposite transformation V = (V1, V2) = ( 1

U1
,−U2) is given by

fV(v1, v2) =
1

(v1)2
fU

(
1

v1

,−v2

)
. (2.19)

Proof. Let us consider the two-dimensional transformation (v1, v2) = r(u1, u2)
= (1/u1,−u2). Notice that its inverse mapping is given by (u1, u2) = s(v1, v2) =
(1/v1,−v2), being its Jacobian

J2 = det
(
− 1

(v1)2
0

0 −1

)
=

1

(v1)2
6= 0 ,

which is well defined since V1 = 1/U1 and U1 6= 0 a.s. Then, applying RVT
technique, Theorem 2.1, for m = 2 and the identification Xi = Ui, Yi = Vi,
i = 1, 2, the expression (2.19) is straightforwardly obtained.

�

Proposition 2.4 Let U=(U1, U2) be an absolutely continuous real random vec-
tor defined on a complete probability space (Ω,A,P), with joint PDF fU(u1, u2).
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2.2 Random Variable Transformation method

Then, the joint PDF fV(v1, v2) of the opposite-opposite transformation V =
(V1, V2) = (−U1,−U2) is given by

fV(v1, v2) = fU (−v1,−v2) . (2.20)

Proof. Let us consider the two-dimensional transformation (v1, v2) = r(u1, u2)
= (−u1,−u2). Notice that its inverse mapping is given by (u1, u2) = s(v1, v2) =
(−v1,−v2), being its Jacobian

J2 = det
(
−1 0
0 −1

)
= 1 6= 0 .

Then, applying RVT technique, Theorem 2.1, for m = 2 and the identification
Xi = Ui, Yi = Vi, i = 1, 2, the expression (2.20) follows straightforwardly.

�

Proposition 2.5 Let U = (U1, U2, U3) be an absolutely continuous real ran-
dom vector defined on a complete probability space (Ω,A,P), with joint PDF
fU(u1, u2, u3) such that U1(ω) 6= 0, ∀ω ∈ Ω. Then, the joint PDF fV(v1, v2, v3)
of inverse-opposite-opposite transformation V=(V1, V2, V3)=(1/U1,−U2,−U3)
is given by

fV(v1, v2, v3) =
1

(v1)2
fU (1/v1,−v2,−v3) . (2.21)

Proof. Let us consider the three-dimensional transformation (v1, v2, v3) =
r(u1, u2, u3) = (1/u1,−u2,−u3). Notice that its inverse mapping is given by
(u1, u2, u3) = s(v1, v2, v3) = (1/v1,−v2,−v3), being its Jacobian

J3 = det

 − 1
(v1)2

0 0

0 −1 0
0 0 −1

 = − 1

(v1)2
6= 0 ,

which is well defined since V1 = 1/U1 and U1 6= 0 a.s. Then, applying RVT
technique, Theorem 2.1, for m = 3 and the identification Xi = Ui, Yi = Vi,
i = 1, 2, 3, the expression (2.21) follows straightforwardly.

�
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Chapter 2. Preliminaries

Proposition 2.6 Let U be an absolutely continuous real RV defined on a com-
plete probability space (Ω,A,P), with PDF fU(u). Then, the PDF fV (v) of the
linear transformation V = aU + b, a 6= 0 is given by

fV (v) =
1

|a|
fU

(
v − b
a

)
, (2.22)

If a = 0, then V = b w.p. 1 and

fV (v) = δ(v − b) , −∞ < v < +∞ ,

being δ(·) the Dirac delta function.

Proof. Let us consider the mapping v = r(u) = a u+ b with a 6= 0. Its inverse
mapping exists and is given by u = s(v) = (v−b)/a, being its derivative s′(v) =
1/a. Then, applying RVT technique, Theorem 2.1, with the identification
X = U , Y = V , m = 1 and |J1| = |1/a| 6= 0, which is well defined since a 6= 0,
the expression (2.22) is straightforwardly obtained. If a = 0, RV V takes the
punctual value b a.s., then by expression (2.2) the PDF is obtained.

�

Proposition 2.7 Let U=(U1, U2) be an absolutely continuous real random vec-
tor defined on a complete probability space (Ω,A,P), with joint PDF fU(u1, u2)
such that U1(ω) 6= 0, ∀ω ∈ Ω. Then, the PDF fV (v) of the quotient V = U2/U1

is given by

fV (v) =

∫
D(U1)

fU1,U2
(ξ, vξ)|ξ| dξ, (2.23)

where D(U1) denotes the domain of RV U1.

Proof. Let us consider the RV V1 = U2/U1. Then, introducing the auxil-
iary RV V2 = U1 and denoting by V = (V1, V2), one can define the mapping
(v1, v2) = r(u1, u2) = (u2/u1, u1). Notice that its inverse mapping is given by
(u1, u2) = s(v1, v2) = (v1 v2, v2), being its Jacobian

J2 = det
(

0 1
v2 v1

)
= −v2 6= 0 .
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2.2 Random Variable Transformation method

Notice that v2 6= 0 since V2 = U1, which by hypothesis is nonzero a.s. Then,
by applying RVT technique, Theorem 2.1, for m = 2 and the identification
Xi = Ui, Yi = Vi, i = 1, 2, the joint PDF of random vector V = (V1, V2) is
given by

fV1,V2
(v1, v2) = fU1,U2

(v2, v1v2)|v2| .

Hence, the PDF of the quotient V1 = U2/U1 is obtained as the V2-marginal
PDF of fV1,V2

(v1, v2), i.e.,

fV1
(v1) =

∫
D(U1)

fU1,U2
(u1, v1u1)|u1|du1,

where D(U1) denotes the domain of RV U1, and the relationship V2 = U1 has
been used.

�

Proposition 2.8 Let U=(U1, U2) be an absolutely continuous real random vec-
tor defined on a complete probability space (Ω,A,P), with joint PDF fU(u1, u2)
such that U1(ω) > 0 and U2(ω) 6= 1, ∀ω ∈ Ω. Then, the PDF fW (w) of the
transformation W = (U1)

1
1−U2 is given by

fW (w) =

∫
D(U2)

fU1,U2
(w1−u2 , u2)

∣∣(1− u2)w−u2
∣∣ du2. (2.24)

where D(U2) denotes the domain of RV U2.

Proof. Let us consider the RV V1 = (U1)
1

1−U2 . Then, introducing the auxi-
liary RV V2 = U2 and denoting by V = (V1, V2), one can define the mapping
(v1, v2) = r(u1, u2) = ((u1)

1
1−u2 , u2). Notice that its inverse mapping is given

by (u1, u2) = s(v1, v2) = ((v1)1−v2 , v2), being its Jacobian

J2 = det
(

(1− v2)(v1)−v2 −(v1)1−v2Log(v1)
0 1

)
= (1− v2)(v1)−v2 6= 0 .

Notice that J2 6= 0 because by hypothesis U1(ω) > 0 and U2(ω) 6= 1 w.p. 1.
Then, applying RVT technique, Theorem 2.1, for m = 2 and the identification
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Chapter 2. Preliminaries

Xi = Ui, Yi = Vi, i = 1, 2, the joint PDF of random vector V = (V1, V2) is
given by

fV1,V2
(v1, v2) = fU1,U2

((v1)1−v2 , v2)
∣∣(1− v2)(v1)−v2

∣∣ .
Hence, the PDF of RV W = V1 is obtained as the V2-marginal PDF of
fV1,V2

(v1, v2), i.e.,

fW (w) =

∫
D(U2)

fU1,U2
(w1−u2 , u2)

∣∣(1− u2)w−u2
∣∣ du2,

where D(U2) denotes the domain of U2 and the relationship V2 = U2 has been
used.

�

Proposition 2.9 Let Z : Ω→ R be an absolutely continuous real random vari-
able defined on a complete probability space (Ω,A,P), with probability density
function fZ(z). Assume that Z(ω) 6= 0 for all ω ∈ Ω. Then, the probability
density function fW (w) of the transformation W = Z3 is given by

fW (w) =
1

3
fZ
(

3
√
w
)
|w|−2/3. (2.25)

Proof.This result is a direct consequence of Theorem 2.1 for n = 1, X = Z,
Y = W and W = r(Z) = Z3. Notice that the inverse transformation of r is
s(w) = 3

√
w and its Jacobian is given by h′(w) = 1/3w−2/3. It is well-defined

because Z(ω) 6= 0 w.p. 1, by hypothesis. Then, applying (2.17) one obtains
directly expression (2.25).

�
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Chapter 3

Random homogeneous Riccati
differential equation

This chapter deals with the determination of the first prob-
ability density function of the solution stochastic process to ho-
mogeneous Riccati random differential equation taking advantage
of both linearization and Random Variable Transformation tech-
niques. The study is split in all possible cases regarding the deter-
ministic/random character of the involved input parameters. An
illustrative example is provided for each one of the considered cases.

3.1 Introduction

The aim of this chapter is to compute the 1-PDF of the solution SP of the fol-
lowing random IVP based on a homogeneous Riccati-type differential equation

Ẋ(t) = CX(t) +D(X(t))2, t ≥ 0 ,
X(0) = X0 ,

}
(3.1)

where all input parameters X0, C and D are assumed to be absolutely conti-
nuous RVs defined on a common complete probability space, (Ω,A,P). Their
PDFs will be denoted by fX0

(x0), fC(c), and fD(d), respectively. Hereinafter,
D(X0), D(C) and D(D), will represent their respective domains. For sake
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Chapter 3. Random homogeneous Riccati differential equation

of generality, statistical dependence among input RVs X0, D and C will be
also considered. In such case, functions fX0,D(x0, d), fX0,C(x0, c), fD,C(d, c)
and fX0,D,C(x0, d, c), will denote the joint PDFs of random vectors (X0, D),
(X0, C), (D,C) and (X0, D,C), respectively. Since input parameters can be
deterministic or random, in the following they will be distinguish by writing
deterministic variables by lower cases and RVs by upper cases. In this way,
if non-linear coefficient in (3.1) is deterministic, then it will be denoted as d,
whereas D will mean that it is a RV.

The study of this IVP has interest by itself from a mathematical standpoint
since it constitutes the extension of homogeneous Riccati differential equation
to random scenario. In addition, this differential equation arises frequently in
important applications to classical control problems, as decoupling techniques
for both analytic and numerical study of boundary value problems [4, 76],
and also, for instance, in dealing with SI-type epidemiological models [11].
Therefore, its generalization to random framework can be very useful in order
to develop more accurate models that consider uncertainty usually involved in
real phenomena. Notice that, in the stochastic context, [32] deal with random
Riccati differential equations. In that paper, coefficients are assumed to be
analytic SPs and taking advantage of Lp-calculus approximate solutions for
the mean and the variance of solution SP are constructed. However, in that
contribution none information about the 1-PDF of solution SP is provided.

The chapter is organized as follows. Section 3.2 is devoted to solve the pro-
blem, that is, to compute explicit expressions for the 1-PDF of solution SP.
The resolution will be split in several cases depending on the random nature
of inputs parameters. Examples in each one of these cases are included to
illustrate the theoretical results. Conclusions are drawn in Section 3.3.

3.2 Probabilistic solution

In order to determine the 1-PDF of solution SP of IVP (3.1), the results es-
tablished in [16] will be applied, where a comprehensive study to compute the
1-PDF of linear random IVP

Ż(t) = AZ(t) +B, t ≥ t0 ,
Z(t0) = Z0 ,

}
(3.2)
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3.2 Probabilistic solution

is provided. With this aim, notice that making the change of variable

Z(t) =
1

X(t)
, (3.3)

non-linear IVP (3.1) is transformed into linear IVP (3.2), using the following
identification of random inputs

Z0 =
1

X0

, B = −D , A = −C , (3.4)

and taking t0 = 0. In this manner, all the results obtained in [16] are available.

In order to facilitate the comparison regarding the notation as well as the cases
considered in [16] for IVP (3.2) with respect to the one to be used for IVP (3.1),
an identification between both problems is shown in Table 3.1.

It is important to underline that Cases I.1–I.3, corresponding to the situation
where non-linear coefficient D = 0 w.p. 1, i.e., P [{ω ∈ Ω : D(ω) = 0}] = 1, will
be omitted in the subsequent analysis since it was already studied in reference
[16]. Specifically, it corresponds to random homogeneous linear differential
equation given in IVP (3.2) taking B = 0 w.p. 1, i.e., P [{ω ∈ Ω: B(ω)=0}]= 1.

This section will be split in two parts, Subsection 3.2.1 and Subsection 3.2.2,
where the Cases II.1–II-3 and Cases III.1–III.7 will be solved, respectively.

3.2.1 Solving the Cases II.1–II.3

This subsection is addressed to compute the 1-PDF, f1(x, t), of solution SP
of IVP (3.1) in each one of the Cases II.1-II.3 collected in Table 3.1. Thus,
throughout this subsection the deterministic parameter c that appears into
problem (3.1) is assumed to be null, c = 0. As it was pointed out to conduct
the analysis the results obtained in Cases II.1-II.3 studied in [16] (see IVP (3.2)
in Table 3.1) will be applied.
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Chapter 3. Random homogeneous Riccati differential equation

IVP (3.2)

P [{ω ∈ Ω : B(ω) = 0}] = 1

Case Random Deterministic

I.1 Z0 a
I.2 A z0

I.3 (Z0, A) —

P [{ω ∈ Ω : A(ω) = 0}] = 1
II.1 Z0 b
II.2 B z0

II.3 (Z0, B) —

P
[{
ω ∈ Ω :

A(ω) 6= 0,
B(ω) 6= 0

}]
= 1

III.1 Z0 (b, a)
III.2 B (z0, a)
III.3 A (z0, b)
III.4 (Z0, B) a
III.5 (Z0, A) b
III.6 (B,A) z0

III.7 (Z0, B,A) —

IVP (3.1)

P [{ω ∈ Ω : D(ω) = 0}] = 1

Case Random Deterministic

I.1 X0 c
I.2 C x0

I.3 (X0, C) —

P [{ω ∈ Ω : C(ω) = 0}] = 1
II.1 X0 d
II.2 D x0

II.3 (X0, D) —

P
[{
ω ∈ Ω :

D(ω) 6= 0,
C(ω) 6= 0

}]
= 1

III.1 X0 (d, c)
III.2 D (x0, c)
III.3 C (x0, d)
III.4 (X0, D) c
III.5 (X0, C) d
III.6 (D,C) x0

III.7 (X0, D,C) —

Table 3.1: List of different cases in which IVP (3.1) is split to conduct the study and
identification for the notation used regarding the involved deterministic/random inputs in
IVPs (3.2) and (3.1).
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3.2 Probabilistic solution

Case II.1: X0 is a random variable

Notice that regarding the main problem (3.1), it is implicitly assumed that
d ∈ R− {0} and X0 is a RV with PDF fX0

(x0). In accordance with Table 3.1
and identification (3.4), this situation corresponds to the following particular
case of linear IVP (3.2)

Ż(t) = b ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, b = −d. (3.5)

Now, fix t ≥ 0 and apply [16, Equation (59)] in order to compute the PDF of
solution SP of IVP (3.5) evaluated at that t, since the randomness character
of X0 is transferred to Z0

fZ(z) = fZ0
(z − b t) . (3.6)

Note that for the sake of clarity, the notation fZ(z) instead of f1(z, t) has been
used, since the time variable t has been fixed, so Z = Z(t) is a RV rather than
a SP.

Taking into account (3.5) and applying Proposition 2.2 to U = X0, V = Z0,
formula (3.6) can be expressed in terms of data. This yields

fZ(z) = fZ0
(z + d t) =

1

(z + d t)2
fX0

(
1

z + d t

)
.

Considering (3.3), which establishes the relationship between solutions of IVPs
(3.1) and (3.2), X(t) = 1/Z(t), and applying Proposition 2.2 to U = Z and
V = X, with Z = Z(t) and X = X(t), for each t ≥ 0, one gets

fX(x) =
1

x2
fZ

(
1

x

)
=

1

x2

1(
1
x

+ d t
)2 fX0

(
1

1
x

+ d t

)
.

Since t ≥ 0 is arbitrary, this expression represents the 1-PDF of solution SP
X(t) of IVP (3.1)

f1(x, t) =
1

(1 + d t x)2
fX0

(
x

1 + d t x

)
, t ≥ 0. (3.7)
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Chapter 3. Random homogeneous Riccati differential equation

Although the domains of the 1-PDFs that will be determined throughout this
chapter could be specified in the same way they were done in [16], now they
will be omitted because their specification become cumbersome. For instance,
in the context of the current Case II.1, if D(X0) denotes the domain of RV X0,
then the domain of the 1-PDF (3.7) can be determined by imposing that

x

1 + d t x
∈ D(X0) . (3.8)

This issue will be illustrated in the following example, where the domain of
the 1-PDF is completely determined.

Example 3.1 Let us assume that d = −1 and X0 has an Exponential distri-
bution of parameter λ = 1, i.e., X0 ∼ Exp(1). Then, in accordance with (3.7)
the 1-PDF to solution SP X(t) ≡ X(t, ω), ω ∈ Ω, of IVP (3.1) is given by

f1(x, t) =
1

(1− tx)2
e−

x
1−tx , t > 0, 0 < x <

1

t
. (3.9)

For the full specification of the domain, observe that as X0 ∼ Exp(1) and t > 0
then, in accordance with (3.8)

x

1− tx
> 0⇐⇒ x <

1

t
.

It is easy to check that
∫ 1/t

0
f1(t, x)dx = 1. In Figure 3.1, f1(x, t) is represented

for different values of t. Important statistical information associated to solution
SP X(t) can be determined from its 1-PDF, such as, the mean, E[X(t)], and
the variance, V[X(t)]. Taking into account (3.9), the expectation is given by

E[X(t)] =

∫ ∞
−∞

xf1(x, t)dx =

∫ 1/t

0

x

(1− tx)2
e−

x
1−tx dx =

t− e
1
t

∫∞
1/t

e−ξ /ξ dξ

t2
.

In order to determine V[X(t)], first it is needed to compute

E
[
(X(t))

2
]

=

∫ 1/t

0

x2f1(x, t)dx =
t(1 + t)− e

1
t (1 + 2t)

∫∞
1/t

e−ξ /ξ dξ

t4
.
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Therefore

V [X(t)] = E
[
(X(t))

2
]
− (E [X(t)])

2

=
− e2/t

(∫∞
1/t

e−ξ /ξ dξ
)2

− e1/t
∫∞

1/t
e−ξ /ξ dξ + t

t4
.

Plots for the mean and the variance are shown in Figure 3.2. Notice that these
plots are in agreement with the plot of the 1-PDF f1(x, t). Indeed, as the mean
tends to stabilize as t increases, hence the variance goes to zero and the shape
of f1(x, t) becomes leptokurtic.

In order to invoke the intuition that connects random results with their de-
terministic counterpart, it is interesting to notice that if that averaged IVP
associated with this example is considered,

d

dt
(E [X(t)]) = − (E [X(t)])

2
,

E [X(0)] = 1,


its solution is E [X(t)] = 1/(1 + t), which converges to 0 as t tends to +∞.
This is in accordance with the behaviour of the 1-PDF shown in Figure 3.1
where one observes that the mass of probability concentrates about x = 0 as t
increases.

Case II.2: D is a random variable

Let us assume that non-linear coefficient D is a RV with PDF fD(d) and
initial condition is a deterministic constant x0. In agreement with Table 3.1
and identification (3.4), it corresponds to IVP (3.2)

Ż(t) = B ,
Z(0) = z0 ,

}
z0 =

1

x0

, B = −D . (3.10)

For t > 0 fixed, according to [16, Equation (64)] the PDF of solution SP of
IVP (3.10) evaluated at that t is given by
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Figure 3.1: Plot of the 1-PDF f1(x, t) given by (3.9) in Example 3.1 at different values of
t ∈ {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding to the solid lines) with X0 ∼ Exp (λ = 1) and
d = −1.

fZ(z) =
1

t
fB

(
z − z0

t

)
.

Next, the above expression is represented in terms of the PDF of RV D taking
into account (3.10) and Proposition 2.6 to U = D, V = B, a = −1 and b = 0

fZ(z) =
1

t
fB

(
z − 1/x0

t

)
=

1

t
fD

(
1− zx0

x0t

)
. (3.11)

Finally, as X(t) = 1/Z(t), applying (3.11) and Proposition 2.2 to U = Z and
V = X, with Z = Z(t) and X = X(t), for each t > 0,

fX(x) =
1

x2
fZ

(
1

x

)
=

1

x2

1

t
fD

(
1− 1

x
x0

x0t

)
=

1

x2 t
fD

(
x− x0

xx0t

)
.

Therefore, in this case the 1-PDF of solution SP X(t) of IVP (3.1) is given by

f1(x, t) =
1

x2 t
fD

(
x− x0

xx0t

)
, t > 0 . (3.12)
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Figure 3.2: Plot of the expectation (left) and the variance (right) of solution SP in Example
3.1 with 0 ≤ t ≤ 5.

If t = 0, X(0) = x0 and then

f1(x, 0) = δ(x− x0), −∞ < x <∞,

where δ(·) denotes the Dirac delta function.

Example 3.2 Let us take x0 = 1 and D a standard Gaussian RV, D ∼ N(0; 1).
According to (3.12) the 1-PDF to solution SP X(t) of IVP (3.1) is given by

f1(x, t) =
e−

(x−1)2

2t2x2

√
2πtx2

. (3.13)

In Figure 3.3 a plot of f1(x, t) is shown. One observes that the variability of
the solution decreases as t goes on and the 1-PDF concentrates about x = 0.

Case II.3: (X0,D) is a random vector

In this context, it is assumed that both, initial condition X0, and non-linear
coefficient D, are RVs with joint PDF fX0,D(x0, d). As it is listed in Table
3.1 and considering identification (3.4), this case corresponds to the following
specialization of IVP (3.2)

Ż(t) = B ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, B = −D. (3.14)
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Chapter 3. Random homogeneous Riccati differential equation

Figure 3.3: Plot of the 1-PDF f1(x, t) given by (3.13) in Example 3.2 at different values of
t ∈ {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding to the solid lines) with x0 = 1 and D ∼ N(0; 1).

Let us fix t > 0, according to [16, Equation (74)] the PDF of solution SP of
IVP (3.14) evaluated at that t is given by

fZ(z) =
1

t

∫
D(Z0)

fZ0,B

(
ξ,
z − ξ
t

)
dξ , (3.15)

where D(Z0) denotes the domain of RV Z0. Now, applying Proposition 2.3 to
U1 = X0, U2 = D, V1 = Z0 and V2 = B, (3.15) can be expressed in terms of
the joint PDF fX0,D(x0, d)

fZ(z) =
1

t

∫
D(1/X0)

1

ξ2
fX0,D

(
1

ξ
,
ξ − z
t

)
dξ .

For each t > 0, by (3.3) X = 1/Z and, applying Proposition 2.2 one gets

fX(x) =
1

x2
fZ

(
1

x

)
=

1

x2 t

∫
D(1/X0)

1

ξ2
fX0,D

(
1

ξ
,
x ξ − 1

tx

)
dξ.

Therefore, in this case the 1-PDF of solution SP X(t) of IVP (3.1) is given by

f1(x, t) =
1

x2 t

∫
D(1/X0)

1

ξ2
fX0,D

(
1

ξ
,
x ξ − 1

tx

)
dξ , t > 0 .
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3.2 Probabilistic solution

In accordance with (2.18), the domain D (1/X0) can be easily computed from
D (X0), which is assumed to be known.

If t = 0, as X(0) = X0 the 1-PDF is just the marginal PDF of the joint PDF
fX0,D(x0, d), hence

f1(x, 0) =

∫
D(D)

fX0,D(x0, d) dd.

Example 3.3 Let us assume that the joint PDF of random vector (X0, D) is
given by

fX0,D(x0, d) =


1

4
+

1

4
(x0)3d− 1

4
x0d

3 if −1 ≤ x0, d ≤ 1,

0 otherwise.
(3.16)

A plot of f1(x, t) is depicted in Figure 3.4. From it, one sees that for each t the
probability of solution SP X(t) distributes symmetrically about x = 0 becoming
leptokurtic as t increases.

Figure 3.4: Plot of the 1-PDF f1(x, t) in Example 3.3 at different values of t ∈ {0, 0.25, 0.5,
0.75, . . . , 2} (corresponding to the solid lines) in the case that (X0, D) has the joint PDF
given by (3.16).
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Chapter 3. Random homogeneous Riccati differential equation

3.2.2 Solving the Cases III.1-III.7

This subsection is devoted to provide explicit formulas for the 1-PDF, f1(x, t),
of solution SP of IVP (3.1) in each one of the Cases III.1–III.7 listed in Table
3.1. Notice that in contrast to what was assumed when analysing Cases II.1–
II.3, throughout this subsection linear coefficient C can be either deterministic
and different from zero, or a RV. As it was indicated previously, in the first
case it will be denoted by c and in the latter as C.

Case III.1: X0 is a random variable

Let fX0
(x0) be the PDF of RV X0, c ∈ R−{0} and d ∈ R. According to Table

3.1 and (3.4), it corresponds to the following particular case of IVP (3.2)

Ż(t) = aZ(t) + b ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, b = −d, a = −c . (3.17)

Let us fix t ≥ 0, then by [16, Equation (84)] the PDF of solution SP of IVP
(3.17) evaluated at that t is given by

fZ(z) = e−at fZ0

(
e−at

(
z +

b

a

)
− b

a

)
.

Now, taking into account (3.17) and Proposition 2.2 to U = X0, V = Z0, fZ(z)
can be expressed as follows

fZ(z) =
ect(

ect
(
z + d

c

)
− d

c

)2 fX0

(
1

ect
(
z + d

c

)
− d

c

)

=
c2 ect

(ect(zc+ d)− d)2
fX0

(
c

ect(zc+ d)− d

)
.

Following the same argument exhibited in the previous cases, for each t ≥ 0,
this PDF can be expressed as a function of RV X = 1/Z by applying Propo-
sition 2.2, this yields

fX(x) =
1

x2
fZ

(
1

x

)
=

c2 ect

(ect(c+ dx)− dx)2
fX0

(
cx

ect(c+ dx)− dx

)
.
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3.2 Probabilistic solution

Taking t ≥ 0 arbitrary, the 1-PDF of solution SP X(t) of IVP (3.1) is given by

f1(x, t) =
c2 ect

(ect(c+ dx)− dx)2
fX0

(
cx

ect(c+ dx)− dx

)
, t ≥ 0 . (3.18)

Example 3.4 Let c = 1/2, d = −1 and X0 a standard Gaussian RV, X0 ∼
N(0; 1) be the input parameters of IVP (3.1). According to (3.18), the 1-PDF
to solution SP X(t) to this IVP is given by

f1(x, t) =
e

t
2−

x2

8(et/2( 1
2
−x)+x)

2

4
√

2π
(
et/2

(
1
2
− x

)
+ x

)2 . (3.19)

Figure 3.5 shows the plot of f1(x, t). From this representation, one observes
that the variability of the 1-PDF reduces as t increases.

Figure 3.5: Plot of the 1-PDF f1(x, t) given by (3.19) in Example 3.4 at different values
of t ∈ {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding to the solid lines) with c = 1/2, d = −1 and
X0 ∼ N(0; 1).

Case III.2: D is a random variable

Let fD(d) be the PDF of RV D and let us assume that both initial condition x0

and linear coefficient c are deterministic constants. Taking into account Table
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Chapter 3. Random homogeneous Riccati differential equation

3.1 and (3.4), this case corresponds to the following particularization of IVP
(3.2)

Ż(t) = aZ(t) +B ,
Z(0) = z0 ,

}
z0 =

1

x0

, B = −D, a = −c . (3.20)

For each t > 0 fixed, by applying [16, Equation (92)] the following expression
for the PDF of solution SP of IVP (3.20) evaluated at that t is obtained

fZ(z) =
a

eat−1
fB

(
a(z − z0 eat)

eat−1

)
.

This PDF can be expressed in terms of data x0, D and c by considering (3.20),
and applying Proposition 2.6 to U = D, V = B, a = −1 and b = 0 this yields

fZ(z) =
c

1− e−ct
fD

(
−c(1− zx0 ect)

x0(1− ect)

)
.

Finally, taking into account that X = 1/Z and applying Proposition 2.2, the
1-PDF of solution SP X(t) of IVP (3.1) is obtained as follows

f1(x, t) =
c

x2(1− e−ct)
fD

(
−c(x− x0 ect)

xx0(1− ect)

)
, t > 0 . (3.21)

For t = 0, as X(0) = x0 one gets

f1(x, 0) = δ(x− x0), −∞ < x <∞.

Example 3.5 Let us consider IVP (3.1) with x0 = 1, c = −1 and X0 a
Gamma RV of parameters α = 4 and β = 2, X0 ∼ Ga(4; 2). In Figure 3.5,
the 1-PDF of solution SP given by (3.21) is plotted. One observes that the
probability density concentrates about x = 0 as t increases.
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3.2 Probabilistic solution

Figure 3.6: Plot of the 1-PDF f1(x, t) given by (3.21) in Example 3.5 at different values
of t ∈ {0, 0.25, 0.5, 0.75, . . . , 2} (corresponding to the solid lines) with x0 = 1, c = −1 and
D ∼ Ga(4; 2).

Case III.3: C is a random variable

So far the computation of the 1-PDF of solution SP of non-linear IVP (3.1)
has relied on the application of the results previously established for linear IVP
(3.2) in [16]. In fact, notice that explicit expressions of the 1-PDF of solution
of IVP (3.2) in each one of the Cases II.1-II.3 and Cases III.1-III.2 have been
used to obtain a closed expression of the 1-PDF in the corresponding cases to
IVP (3.1). Unfortunately, this strategy is not feasible when the single random
input in (3.1) is the coefficient C since the complexity of the approximate
expression to the 1-PDF of the underlying linear IVP (3.2) (see Case III.3 of
[16]). To overcome this drawback, the same strategy used in the Case III.3 of
[16] will be applied, but directly on the closed expression of solution SP of the
non-linear IVP (3.1), which in the current case is given by

X(t) =
Cx0 eCt

C + dx0 − dx0 eCt
. (3.22)

In order to apply RVT technique, for each t ≥ 0, first from (3.22) the mapping
r(c) = (cx0 ect)/(c + dx0 − dx0 ect) is defined. As it is not possible to isolate
c to determine the inverse mapping, say s of r, s is approximated using the
Lagrange-Bürmann theorem which permits to calculate the inverse mapping
of an analytic function. This approximation comes from the truncation of
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Chapter 3. Random homogeneous Riccati differential equation

an infinite series (see [16, Theorem 19]). As can be checked in detail in the
analysis of the Case III.1 studied in [16], the 1-PDF of solution SP (3.22) can
be represented as follows

f1(x, t) =
k∑
j=1

fC
(
sj,Nj

) ∣∣∣∣dsj,Nj (x)

dx

∣∣∣∣ , (3.23)

where fC(c) represents the PDF of RV C, k denotes the number of subintervals
in which the domain of RV C must be split to guarantee that the mapping r
is monotone and sj,Nj is the approximation of the inverse mapping s on the
subinterval j, using truncation of order Nj, 1 ≤ j ≤ k.

Example 3.6 Let us assume that x0 = 1, d = 1 and C ∼ Be(α = 2;β = 3). In
Figure 3.7, the 1-PDF of solution SP of IVP (3.1), using Lagrange-Bürmann
theorem and (3.23) for different values of t, has been plotted. To carry out
these computations the domain of RV C has been split into k = 1 piece. One
observes that the variance of solution SP X(t) increases as t goes on.

2.0 2.5
x

5

10

15

f1(x,t)

t=0.4

t=0.3

t=0.2

t=0.1

Figure 3.7: Plot of the 1-PDF f1(x, t) in Example 3.6 at different values of t ∈ {0.1, 0.2,
0.3, 0.4} with x0 = 1, d = 1 and C ∼ Be(α = 2;β = 3).
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3.2 Probabilistic solution

Case III.4: (X0,D) is a random vector

Now, initial condition X0 and non-linear coefficient D are assumed to be RVs
whose joint PDF is denoted by fX0,D(x0, d), while parameter c is deterministic.
In agreement to Table 3.1 and (3.4), this corresponds to the following particular
case of IVP (3.2)

Ż(t) = aZ(t) +B ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, B = −D, a = −c . (3.24)

Let t > 0 be fixed, then applying [16, Equation (110)], the PDF of solution SP
of IVP (3.24) evaluated at that t is obtained

fZ(z) =

∫
D(Z1)

fZ0,B

(
ξ e−at,

a(z − ξ)
eat−1

)
a e−at

eat−1
dξ

=

∫
D(Z1)

fZ0,B

(
ξ ect,

−c(z − ξ)
e−ct−1

)
c ect

1− e−ct
dξ ,

where Z1 = eat Z0. The PDF fZ(z) can be represented in terms of (X0, D),
taking into account (3.24) and applying Proposition 2.3 to U1 = X0, U2 = D,
V1 = Z0 and V2 = B

fZ(z) =
c

ect−1

∫
D(Z1)

fX0,D

(
1

ξ ect
,
c(z − ξ)
e−ct−1

)
1

ξ2
dξ .

By (3.3), X(t) = 1/Z(t) for each t > 0, then denoting X = X(t) and Z = Z(t)
the application of Proposition 2.2 yields

fX(x) =
1

x2
fZ

(
1

x

)
=

1

x2

c

ect−1

∫
D(Z1)

fX0,D

(
1

ξ ect
,
c(1− ξx)

x(e−ct−1)

)
1

ξ2
dξ .

Finally, taking into account that Z1 = eat Z0 = 1/(ectX0), the 1-PDF of
solution SP X(t) of IVP (3.1) is given by

f1(x, t) =
c

x2(ect−1)

∫
D
(

1
ect X0

) fX0,D

(
1

ξ ect
,
c(1− ξx)

x(e−ct−1)

)
1

ξ2
dξ, t > 0.
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If t = 0, as X(0) = X0, the 1-PDF of X(t) is the D-marginal PDF of
fX0,D(x0, d)

f1(x, 0) =

∫
D(D)

fX0,D(x0, d) dd.

Example 3.7 Let us assume that c = −1 and the joint PDF of random vector
(X0, D) is a bivariate Gaussian distribution with mean vector µ and variance-
covariance matrix Σ given by

µ = (µX0
, µD) = (1, 0), Σ =

(
σ2
X0

ρX0,DσX0
σD

ρX0,DσX0
σD σ2

D

)
,

σX0
= σD = 1/10, ρX0,D = 1/2.

(3.25)

Figure 3.8 shows a piece of surface which defines the 1-PDF As in previous
cases, f1(x, t) has less variability as t increases.

Figure 3.8: Plot of the 1-PDF f1(x, t) in Example 3.7 at different values of t ∈ {0, 0.25, 0.5,
0.75, . . . , 2} (corresponding to the solid lines) in the case that c = −1 and X0 and D are cor-
related RVs according to a bivariate Gaussian distribution with mean vector µ and variance-
covariance matrix Σ given by (3.25).
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3.2 Probabilistic solution

Case III.5: (X0,C) is a random vector

Let us denote by fX0,C(x0, c) the joint PDF of random vector (X0, C) and
let us assume that parameter d is a deterministic constant. In this context
according to Table 3.1 and (3.4), IVP (3.2) is written as

Ż(t) = AZ(t) + b ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, b = −d, A = −C. (3.26)

Let us fix t ≥ 0, then applying [16, Equation (126)] the PDF of solution SP of
IVP (3.26) evaluated at that t can be written as

fZ(z) =

∫
D(Z2)

|b|
ξ2

e
b
ξ t fZ0,A

(
z e

b
ξ t +ξ

(
1− e

b
ξ t
)
,
−b
ξ

)
dξ

=

∫
D(Z2)

|d|
ξ2

e−
d
ξ t fZ0,A

(
z e−

d
ξ t +ξ

(
1− e−

d
ξ t
)
,
d

ξ

)
dξ,

where Z2 = −b/A. fZ(z) can be represented in terms of (X0, C) by applying
Proposition 2.3 to U1 = X0, U2 = C, V1 = Z0 and V2 = A as follows

fZ(z) =

∫
D(Z2)

|d|
ξ2

e−
d
ξ t fX0,C

 1

z e−
d
ξ t +ξ

(
1− e−

d
ξ t
) ,−d

ξ


× 1(

z e−
d
ξ t +ξ

(
1− e−

d
ξ t
))2 dξ.

Taking into account that X(t) = 1/Z(t) for each t ≥ 0, fZ(z) can be repre-
sented in terms of X applying Proposition 2.2
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fX(x) =
1

x2
fZ

(
1

x

)

=

∫
D(Z2)

|d|
ξ2

e−
d
ξ t fX0,C

 x

e−
d
ξ t +ξx

(
1− e−

d
ξ t
) ,−d

ξ


× 1(

e−
d
ξ t +ξx

(
1− e−

d
ξ t
))2 dξ.

As Z2 = −b/A = −d/C, the domain of the above integral can be expressed in
terms of data. Hence, the 1-PDF of solution SP X(t) of IVP (3.1) is given by

f1(x, t) =

∫
D(−d/C)

|d|
ξ2

e−
d
ξ t fX0,C

 x

e−
d
ξ t +ξx

(
1− e−

d
ξ t
) ,−d

ξ


× 1(

e−
d
ξ t +ξx

(
1− e−

d
ξ t
))2 dξ.

(3.27)

Example 3.8 Let us take d = 1 and (X0, C) ∼ N(µ; Σ), where µ and Σ
are defined by (3.25). In Figure 3.9 a plot of the 1-PDF f1(x, t) given by
(3.27) is shown. From it, one observes that the variance of solution SP of the
corresponding IVP (3.1) increases as t does.

Case III.6: (D,C) is a random vector

Throughout this part, fD,C(d, c) will denote the PDF of random vector (D,C)
and initial condition will be assumed to be a deterministic constant x0. Notice
that, in accordance with Table 3.1 and (3.4), this case corresponds with the
following specialization of IVP (3.2)

Ż(t) = AZ(t) +B ,
Z(0) = z0 ,

}
z0 =

1

x0

, B = −D, A = −C . (3.28)

Let t > 0 be fixed, applying [16, Equation (140)] the PDF of solution SP of
IVP (3.28) evaluated at that t is given by
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3.2 Probabilistic solution

Figure 3.9: Plot of the 1-PDF f1(x, t) in Example 3.8 at different values of t ∈ {0, 0.25, 0.5,
0.75, . . . , 2} (corresponding to the solid lines) in the case that d = 1 and X0 and C are corre-
lated RVs according to a bivariate Gaussian distribution with mean vector µ and variance-
covariance matrix Σ given by (3.25).

fZ(z) =
z0

t2

∫
D(Z2)

fB,A

(
z0(z − ξ)

t

Log(ξ)− Log(z0)

ξ − z0

,
Log(ξ)− Log(z0)

t

)

×1

ξ

∣∣∣∣Log(ξ)− Log(z0)

ξ − z0

∣∣∣∣ dξ
=

1

x0t2

∫
D(Z2)

fB,A

(
z − ξ
t

Log(ξ) + Log(x0)

ξx0 − 1
,
Log(ξ) + Log(x0)

t

)

×|x0|
ξ

∣∣∣∣Log(ξ) + Log(x0)

ξx0 − 1

∣∣∣∣ dξ,
where Z2 = z0 eAt. The PDF fZ(t) can be expressed in terms of random vector
(D,C) applying Proposition 2.4 to U1 = D, U2 = C, V1 = B and V2 = A,

fZ(z) =
1

x0t2

∫
D(Z2)

fD,C

(
z − ξ
t

Log(ξ) + Log(x0)

1− ξx0

,−Log(ξ) + Log(x0)

t

)

×|x0|
ξ

∣∣∣∣Log(ξ) + Log(x0)

ξx0 − 1

∣∣∣∣ dξ.
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Now, applying Proposition 2.2 to X = 1/Z, fZ(z) is represented in terms of X

fX(x) =
1

x2
fZ

(
1

x

)

=
1

x2

1

x0t2

∫
D(Z2)

fD,C

(
1− ξx
xt

Log(ξ) + Log(x0)

1− ξx0

,−Log(ξ) + Log(x0)

t

)

×|x0|
ξ

∣∣∣∣Log(ξ) + Log(x0)

ξx0 − 1

∣∣∣∣ dξ.
As Z2 = z0 eAt = 1/(x0 eCt), the 1-PDF of solution SP X(t) to IVP (3.1) is
given by

f1(x, t)

=
1

x2x0t2

∫
D(1/(x0 eCt))

fD,C

(
1− ξx
xt

Log(ξ) + Log(x0)

1− ξx0

,−Log(ξ) + Log(x0)

t

)

×|x0|
ξ

∣∣∣∣Log(ξ) + Log(x0)

ξx0 − 1

∣∣∣∣ dξ.
(3.29)

If t = 0, as X(0) = x0 one gets

f1(x, 0) = δ(x− x0), −∞ < x <∞ .

Example 3.9 Let us assume that x0 = 1 and the joint PDF of random vector
(D,C) is given by

fD,C(d, c) =


2

3
(2− d− c+ 2dc) if 0 ≤ d ≤ 1, 0 ≤ c ≤ 1,

0 otherwise.
(3.30)

For the sake of clarity in the presentation, in Figure 3.10 the 1-PDF f1(x, t)
given by (3.29) is shown for different values of t. From it, one infers that the
variability of solution SP of IVP (3.1) tends to increases as time t goes on.
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Figure 3.10: Plot of the 1-PDF f1(x, t) in Example 3.9 at different values of t ∈ {0.2, 0.5,
0.9, 1} in the case that x0 = 1 and (D,C) has the joint PDF given by (3.30).

Case III.7: (X0,D,C) is a random vector

In this last case, in IVP (3.2) it is assumed that all the inputs (X0, D,C) are
RVs whose joint PDF is fX0,D,C(x0, d, c). Taking into account Table 3.1 and
(3.4), this corresponds to

Ż(t) = AZ(t) +B ,
Z(0) = Z0 ,

}
Z0 =

1

X0

, B = −D, A = −C . (3.31)

Let t > 0 be fixed, then applying [16, Equation (157)] the PDF of solution SP
of IVP (3.31) evaluated at that t is given by

fZ(z) =

∫∫
D(Z3,Z2)

fZ0,B,A

(
−(z − ξ − η)η

ξ
,−η

t
Log

(
−ξ
η

)
,
1

t
Log

(
−ξ
η

))

×|η|
ξ2

1

t2

∣∣∣∣Log(− ξη
)∣∣∣∣ dξ dη ,
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where Z2 = eAtB/A and Z3 = −B/A. Now, the PDF fZ(z) will be expressed
as a function of (X0, D,C) by applying Proposition 2.5 to U1 = X0, U2 = D,
U3 = C, V1 = Z0, V2 = B and V3 = A,

fZ(z) =

∫∫
D(Z3,Z2)

fX0,D,C

(
− ξ

(z − ξ − η)η
,
η

t
Log

(
− ξ
η

)
,−1

t
Log

(
− ξ
η

))

×|η|
η2

1

(z − ξ − η)2t2

∣∣∣∣Log(− ξη
)∣∣∣∣ dξ dη .

(3.32)

In order to represent (3.32) as a function ofX, Proposition 2.2 is applied taking
into account that X = 1/Z

fX(x) =
1

x2
fZ

(
1

x

)

=

∫∫
D(Z3,Z2)

fX0,D,C

(
− xξ

(1− xξ − xη)η
,
η

t
Log

(
− ξ
η

)
,−1

t
Log

(
− ξ
η

))

×|η|
η2

1

(1− xξ − xη)2t2

∣∣∣∣Log(− ξη
)∣∣∣∣ dξ dη .

As Z2 = eAtB/A = D/(C eCt) and Z3 = −B/A = −D/C, the 1-PDF of
solution SP X(t) to IVP (3.1) is given by

f1(x, t) =

∫∫
D(−DC , D

C eCt
)
fX0,D,C

(
−xξ

(1− xξ − xη)η
,
η

t
Log

(
−ξ
η

)
,
−1

t
Log

(
−ξ
η

))

×|η|
η2

1

(1− xξ − xη)2t2

∣∣∣∣Log(− ξη
)∣∣∣∣ dξ dη .

(3.33)

If t = 0, as X(0) = X0, the 1-PDF of X(t) is the (D,C)-marginal PDF of
fX0,D,C(x0, d, c)

f1(x, 0) =

∫∫
D(C,D)

fX0,D,C(x0, d, c) dddc .
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Example 3.10 Let us assume that random vector (X0, D,C) has a multivari-
ate Gaussian distribution with mean vector µ and variance-covariance matrix
Σ defined as follows

µ = (µX0
, µD, µC) = (1, 1, 1), Σ =

1

10

 4 4 4
1 4 1
1 1 2

 . (3.34)

Figure 3.11 shows the 1-PDF f1(x, t) given by (3.33) at different values of t.
From it, one observes that the variability of solution SP of IVP (3.1) reduces
as t increases.
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Figure 3.11: Plot of the 1-PDF f1(x, t) in Example 3.10 at different values of t ∈ {0, 0.5, 1,
1.5} in the case that (X0, D,C) has a multivariate Gaussian distribution with mean vector
µ and variance-covariance matrix Σ given by (3.34).
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3.3 Conclusions

In this chapter it has been shown that the Random Variable Transforma-
tion method together with linearization techniques can be used successfully to
obtain explicit formulas for the first probability density function of solution
stochastic process of non-linear random differential equations. The study has
been conducted through homogeneous Riccati differential equation, although
it opens the possibility to be extended to other significant types of non-linear
continuous models. The usefulness of applying both techniques to deal with
these class of problems has been shown through a number of illustrative exam-
ples.
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Random SIS-type
epidemiological models

This chapter provides a complete probabilistic description of
SIS-type epidemiological models where all input parameters (con-
tagion rate, recovery rate and initial conditions) are assumed to
be random variables. Applying the Random Variable Transforma-
tion technique, the first probability density function, the mean and
the variance functions, as well as confidence intervals associated to
solution of SIS-type epidemiological models, are determined. It is
done under the general hypothesis that model random inputs have a
joint probability density function. The distributions to describe the
time until a given proportion of population remains susceptible and
infected are also determined. A probabilistic description of the so-
called basic reproductive number is also included. The theoretical
results are applied to an illustrative example showing good fitting.
In this example a probabilistic study of the spread smoking is Spain
by applying real data is performed.
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4.1 Introduction

This chapter is a continuation of contribution [18]. In [18], a comprehensive
probabilistic description of solution to random SI-type epidemiological models
is provided. SI-type epidemiological models are appropriate to describe the
dynamics from susceptible (S) to Infected (I) for some stages of epidemics. For
example, SI model has been used to describe the early stages of the AIDS di-
sease and epidemics with a long incubation period. For these kind of diseases,
births and deaths or other transitions have no significant effect on the epidemics
[54]. They are also useful to model the spread of new technologies, where po-
tential customers are identified with the susceptible subpopulation and, the
remainder of the individuals who have already adopted the new technology,
corresponds to the infected subpopulation [18, 77, 96]. However, SI-models
are not appropriate for most epidemics which involve transitions from infected
to susceptible. As it shall be justified below, this has motivated the consid-
eration of the so-called SIS-type epidemiological models [46]. The aim of this
chapter is to extend the results obtained in [18] for SIS-type epidemiological
models. This extension entails, among other aspects, the generalization to
the random framework of the so-called reproductive number, which does not
appear in dealing with SI-type epidemiological models. The approach is based
on RVT technique, and its consideration is justified because a full probabilis-
tic description of solution SP for random SIS-type epidemiological models can
be obtained under very general assumptions. Indeed, as it shall be seen later
in the theoretical development, statistical dependence of all input parameters
involved into SIS-model via any plausible joint PDF will be considered. As it
was pointed out in the introduction, this is a significant advantage that other
available approaches, such as SIS-type epidemiological models based on Itô
stochastic differential equations, do not possess.

SIS-type epidemiological models constitute mathematical representations to
describe the spread by individual-to-individual contact of infectious diseases
[11, 47]. SIS models are useful for modelling diseases whose infection does not
confer immunity, that is, any susceptible (S) who has been infected (I) can
recover from the disease and then becoming susceptible (S) again. This is usu-
ally represented as S → I → S (Susceptible-Infected-Susceptible). Examples
of diseases that have been modelled by SIS models include gonorrhea, menin-
gitis, streptococcal sore throat, etc. [21, 46, 48]. SIS epidemiological models
have also been used to model the dynamics of unhealthy lifestyle habits such
as the excess of weight [30]. In spite of their mathematical simplicity, SIS mo-
dels constitute the basis of more refined and sophisticated models where, for

54



4.1 Introduction

instance, mode of transmission, resistance, environmental and cultural factors,
and further diseases characteristics can be considered.

SIS models are formulated as IVPs based on non-linear systems of differential
equations of the form{

Ṡ(t) = −βS(t)I(t) + γI(t) ,

İ(t) = βS(t)I(t)− γI(t) ,
t > 0, (4.1)

with initial conditions

S(0) = S0, I(0) = I0, (4.2)

where, S(t) and I(t) denote the proportion, or equivalently, the percentage of
susceptibles and infected at the time instant t, respectively. At the initial time
instant, t = 0, these values correspond to S0 and I0, respectively. It is assumed
that

S(t) + I(t) = 1, ∀t ≥ 0, (4.3)

which means that all the individuals of population are classified as either sus-
ceptible or infected. Parameters β > 0 and γ > 0 denote the rate of decline in
the percentage of susceptibles and the rate of infected that recover from the
disease, respectively. In Figure 4.1, a flow diagram of SIS model is depicted.

The consideration of births and deaths, usually referred to as vital dynamics,
could be included in model (4.1)–(4.3). However, the behaviour of solutions
of the new corresponding model is similar when vital dynamics are omitted in
deterministic models [46]. This motivates the analysis of the simpler model
(4.1)–(4.3) as a first step. The inclusion of vital dynamics using RVs to model
births and deaths is a very interesting problem that requires its own subsequent
development, although it would probably benefit from the ideas presented here.

S

β
,,
I

γ
ll

Figure 4.1: Flow diagram representation of SIS model (4.1)–(4.2).
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From a practical point of view, it is more realistic to regard that input param-
eters S0, γ and β are RVs rather than deterministic values due to the inherent
complexity and uncertainty that involve their determination and interpreta-
tion. Throughout this chapter all random variables/vectors are assumed to be
absolutely continuous in order to guarantee the existence of their associated
PDFs. Initial condition S0 represents the percentage of susceptibles at the
beginning. In practice, this value is usually set after sampling the target pop-
ulation, hence it has got variability. Since S0 represents a percentage, it lies
between 0 and 1, and it could be better modelled by a RV like a Uniform RV on
the interval (0, 1), or a Beta RV, which is more flexible and generalizes (0, 1)-
Uniform RV. Positive parameters γ and β embed complex factors related to
the recovery rate from the disease and the contagion rate, respectively. Notice
that, in practice, they are both not known with certainty. This motivates that
positive probability distributions, such as Exponential, Gamma, or even Gaus-
sian truncated on positive domain, might be adequate candidates for modelling
input parameters γ and β. As will be seen later, these type of probability dis-
tributions will be assumed in the illustrative example shown in this chapter.
The consideration of randomness in SIS-type epidemiological models has been
undertaken mainly using Itô-type stochastic differential equations [24, 25].

The chapter is organized as follows. Section 4.2 is devoted to provide a com-
plete probabilistic description of random SIS-type epidemiological model (4.1)–
(4.2) under general hypotheses regarding the probability distribution of random
inputs. For the sake of clarity, this section is divided into several pieces. Sub-
section 4.2.1 deals with the computation of the first probability distributions
of the percentages of susceptibles and infected. The determination of mean
and variance functions as well as confidence intervals for the percentages of
susceptibles is established in Subsection 4.2.2. Subsection 4.2.3 is addressed
to compute the distributions of time until a given proportion of population
remains susceptible and infected, respectively. Subsection 4.2.4 ends by pro-
viding a probabilistic description of the basic reproductive number, which plays
a key role in dealing with the behaviour of a disease in the long run. In Section
4.3, all the theoretical results obtained in Section 4.2 are applied to study, u-
sing available real data, the evolution of Spanish non-smokers men older than
16 years old under SIS model approach. Conclusions are drawn in Section 4.4.
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4.2 Probabilistic solution

This section is devoted to determine the probabilistic solution of random SIS
model (4.1)–(4.3). This means the computation of the 1-PDF of each compo-
nent, S(t) and I(t), of its solution, (S(t), I(t)), as well as its main statistical
properties, such as the mean and variance functions and confidence intervals.
To complete useful information in practical situations, the PDFs of time until a
given proportion of population remains susceptible/infected and the so-called
reproductive number will be also investigated.

To achieve these goals, first, taking into account (4.3), it is convenient to
rewrite (4.1)–(4.2) as the following random non-linear IVP{

Ṡ(t) = β(S(t))2 − (γ + β)S(t) + γ , t > 0,
S(0) = S0 .

(4.4)

As it has been motivated in the introduction of the chapter, throughout the
exposition it will be assumed that input parameters S0, γ and β are RVs, and

D(S0) = { s0 = S0(ω), ω ∈ Ω : 0 ≤ s0,1 ≤ s0 ≤ s0,2 ≤ 1} ,
D(γ) = { γ = γ(ω), ω ∈ Ω : 0 ≤ γ1 ≤ γ ≤ γ2} ,
D(β) = { β = β(ω), ω ∈ Ω : 0 ≤ β1 ≤ β ≤ β2} ,

(4.5)

will denote their respective domains. Hereinafter, fS0,γ,β(s0, γ, β) will indicate
the joint PDF of input random vector (S0, γ, β). At this point, it is important
to underline that in order to provide more generality at the results that will be
obtained later, the joint PDF fS0,γ,β(s0, γ, β) will be considered, although in the
example input parameters S0, γ and β will be assumed pairwise independent
RVs. For the sake of clarity in the presentation, it is assumed that the domain
of random vector (S0, γ, β) is the product of intervals given by (4.5) rather
than any arbitrary subset of R3.

From a theoretical point of view is important to guarantee the uniqueness of
solution to system of random differential equations (4.1)–(4.3), or equivalently,
the uniqueness of solution S(t) to IVP (4.4) on a finite interval, t ∈ [0, a], a > 0.
To achieve this goal, [85, Theorem 5.1.2., p.118] will be applied, which is a
natural generalization of classical Picard theorem based upon convergence of
successive approximations. This result is stated in terms of a strong stochastic
convergence, namely, m.s. convergence. As it was explained in the preliminari-
es, this type of stochastic convergence is defined on the Hilbert space (L2, ‖·‖)
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of the 2-RVs, where the norm is defined in terms of the expectation operator:
‖X‖2 = (E [X2])

1/2.

Following the standard notation introduced in [85, Theorem 5.1.2., p.118],
let us consider the right-hand side of random differential equation (4.4), i.e.,
f(S, t) = βS2 − (γ + β)S + γ, and the pair defining random initial condition
(t0, X0) = (0, S0). In accordance with (4.5), let us assume that β and γ have
bounded realizations, hence they are 2-RVs. Moreover, observe that S is also
a 2-RV because 0 ≤ S(ω) ≤ 1 for each ω ∈ Ω. First, it is needed to check the
following m.s. Lipschitz condition

‖f(S1, t)− f(S2, t)‖2 ≤ k(t) ‖S1 − S2‖2 , where
∫ a

0

k(t)dt <∞. (4.6)

For convenience, let us denote by δ = max{β2, γ2}, being β2 and γ2 the upper
bounds defined in (4.5). Since S1 and S2 are functions of the random inputs
S0, β and γ, and by (4.3), 0 ≤ S1(ω) + S2(ω) ≤ 2 for all ω ∈ Ω, one gets

(‖f(S1, t)− f(S2, t)‖2)
2

= (‖β((S1)2 − (S2)2)− (γ + β)(S1 − S2)‖2)
2

= (‖(β(S1 + S2)− (γ + β)) (S1 − S2)‖2)
2

= E
[
(β(S1 + S2)− (γ + β))

2
(S1 − S2)2

]
=

∫
D(S0)

∫
D(γ)

∫
D(β)

(β(S1 + S2)− (γ + β))
2

×(S1 − S2)2fS0,γ,β(s0, γ, β) dβ dγ ds0

≤
∫
D(S0)

∫
D(γ)

∫
D(β)

(2β − (γ + β))2

×(S1 − S2)2fS0,γ,β(s0, γ, β) dβ dγ ds0

=

∫
D(S0)

∫
D(γ)

∫
D(β)

(β − γ)2

×(S1 − S2)2fS0,γ,β(s0, γ, β) dβ dγ ds0
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≤ δ2

∫
D(S0)

∫
D(γ)

∫
D(β)

(S1 − S2)2fS0,γ,β(s0, γ, β) dβ dγ ds0

= δ2E [(S1 − S2)2]

= δ2 (‖S1 − S2‖2)
2
.

Therefore, Lipschitz condition (4.6) holds true taking k(t) = δ. Notice that∫ a

0

k(t)dt =

∫ a

0

δ dt = δa <∞.

The second condition to be checked is that the function f(S, t) transforms 2-
RVs into 2-RVs. This is a direct consequence of the previous development, the
triangular inequality and the fact that γ and S are also 2-RVs

‖f(S, t)‖2 = ‖βS2 − (β + γ)S + γ‖2

≤ ‖βS2 − (β + γ)S‖2 + ‖γ‖2 ≤ δ ‖S‖2 + ‖γ‖2 <∞.

4.2.1 First probability density function

The aim of this subsection is to obtain the 1-PDF, f1(s, t), of solution SP, S(t),
of random IVP (4.4). This function provides a full probabilistic description of
the percentage of susceptibles at every time instant t. Once this goal has been
achieved, using (4.3), the 1-PDF of the percentage of infected I(t) will also be
provided.

First, notice that solution SP S(t) of random IVP (4.4) is given by

S(t) =
γ(1− S0) + (S0β − γ) e(γ−β)t

β(1− S0) + (S0β − γ) e(γ−β)t
, t ≥ 0. (4.7)

Now, fix t ≥ 0 and apply RVT method, Theorem 2.1, with the following choice

X = (S0, γ, β), Y = (Y1, Y2, Y3), Y = r(X) ,

being
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Y1 =
γ(1− S0) + (S0β − γ) e(γ−β)t

β(1− S0) + (S0β − γ) e(γ−β)t
, Y2 = γ , Y3 = β .

Isolating S0, β and γ, one gets the inverse mapping of r

S0 =
Y2 + e(Y2−Y3)t(−1 + Y1)Y2 − Y1Y3

Y2 + e(Y2−Y3)t(−1 + Y1)Y3 − Y1Y3

, γ = Y2, β = Y3. (4.8)

Thus, in accordance with (2.16)–(2.17), the joint PDF of random vector (Y1, Y2,
Y3) is given by

fY1,Y2,Y3
(y1, y2, y3) = fS0,γ,β

(
y2 + e(y2−y3)t(−1 + y1)y2 − y1y3

y2 + e(y2−y3)t(−1 + y1)y3 − y1y3

, y2, y3

)

× e(y2−y3)t(y2 − y3)2

(y2 + e(y2−y3)t(−1 + y1)y3 − y1y3)2
,

(4.9)

where J3 =
(
e(y2−y3)t(y2 − y3)2

)
/
(
y2 + e(y2−y3)t(−1 + y1)y3 − y1y3

)2
> 0 is the

Jacobian obtained from the inverse mapping of r defined according to (4.8).
Notice that J3 6= 0 since γ(ω) 6= β(ω) a.s.

Therefore, the PDF of RV S = S(t) with t fixed, is the (γ, β)-marginal PDF
of the joint PDF (4.9), i.e.,

fS(s) =

∫
D(γ)

∫
D(β)

fS0,γ,β

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

, ξ, η

)

× e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2
dη dξ .

(4.10)
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As the previous development is valid for every t ≥ 0, the 1-PDF of solution SP
S(t) of IVP (4.4) is given by

f1(s, t) =

∫
D(γ)

∫
D(β)

fS0,γ,β

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

, ξ, η

)

× e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2
dη dξ .

(4.11)

Now, denoting S = S(t) and I = I(t) with t fixed, using relationship (4.3)
and Proposition 2.6 with the identification U = S, V = I, a = −1 6= 0 and
b = 1, from (4.10) one obtains the PDF of RV I and, hence straightforwardly
the 1-PDF of the percentage of infected

I(t) =
(β − γ)(1− S0) e(β−γ)t

β(1− S0) e(β−γ)t +S0β − γ
, t ≥ 0 , (4.12)

which is given by

f1(i, t) =

∫
D(γ)

∫
D(β)

fS0,γ,β

(
ξ − η − e(ξ−η)t iξ + iη

ξ − η − e(ξ−η)t iη + iη
, ξ, η

)

× e(ξ−η)t(ξ − η)2

(ξ − η − e(ξ−η)t iη + iη)2
dη dξ .

(4.13)

4.2.2 Mean and variance functions. Confidence intervals

In the context of the applications, the usefulness of the 1-PDF is manifested in
dealing with the computation of the main statistical information associated to
solution (S(t), I(t)). Specifically, the mean and the variance functions of S(t)
are defined by

µS(t) = E[S(t)] =

∫ ∞
−∞

sf1(s, t) ds,

(σS(t))2 = V[S(t)] =

∫ ∞
−∞

s2f1(s, t) ds− (µS(t))
2
,

(4.14)
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where f1(s, t) is given by (4.11). The same can be stated to regard the compu-
tation of µI(t) and σI(t) changing f1(s, t) by f1(i, t), which has been determined
in (4.13). Apart from computing the mean statistical behaviour of solution SP
of SIS model and its variability, for t̂ ≥ 0 fixed, it can be interesting to deter-
mine the probability that the percentage of susceptibles lies within a specific
interval, say, [s1(t̂), s2(t̂)] = [ŝ1, ŝ2]. It can be easily determined, once f1(s, t)
has been computed, by the following integral

P
[{
ω ∈ Ω : S(t̂;ω) ∈ [ŝ1, ŝ2]

}]
=

∫ ŝ2

ŝ1

f1(s, t̂) ds . (4.15)

Regarding model validation and predictions, the 1-PDF is also very useful to
construct probabilistic intervals for any (1 − α) × 100% confidence level. For
instance, fixed α ∈ (0, 1), for each t̂ ≥ 0 fixed, one can determine s1(t̂) and
s2(t̂) such that

∫ s1(t̂)

0

f1(s, t̂) ds =
α

2
=

∫ 1

s2(t̂)

f1(s, t̂) ds , (4.16)

where

1− α = P
[{
ω ∈ Ω : S(t̂;ω) ∈

[
s1(t̂), s2(t̂)

]}]
=

∫ s2(t̂)

s1(t̂)

f1(s, t̂) ds . (4.17)

Commonly α = 0.05, which means that 95% confidence intervals are built.

Notice that analogous expressions to (4.15)–(4.17) can be given for the per-
centage of infected simply interchanging f1(s, t̂) by f1(i, t̂), where the latter
function is defined by (4.13).

4.2.3 Distribution of time until a given proportion of population
remains susceptible

So far the distribution for the percentage of susceptibles (and infected) at
every time instant t has been determined. From an applied standpoint, it
is very helpful to compute when the percentage of susceptibles in population
will attain a specific level. With this end, let us denote by TS the time until a
given proportion of population, ρS, remains susceptible, i.e., ρS = S(T ). Then,
isolating TS from the exact solution (4.7) of IVP (4.4) one gets
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TS =
1

γ − β
Log

(
(1− S0)(β ρS − γ)

(1− ρS)(βS0 − γ)

)
.

Now, applying Theorem 2.1 to

X = (S0, γ, β), Y = (Y1, Y2, Y3), Y = r(X) ,

being

Y1 =
1

γ − β
Log

(
(1− S0)(β ρS − γ)

(1− ρS)(βS0 − γ)

)
, Y2 = γ , Y3 = β .

Isolating S0, γ and β, one gets the inverse mapping of r

S0 =
Y2(1 + eY1(Y2−Y3)(−1 + ρS))− Y3ρS
Y2 + Y3(eY1(Y2−Y3)(−1 + ρS)− ρS)

, γ = Y2, β = Y3. (4.18)

Then, applying expressions (2.16)–(2.17) and considering that ρS ∈ (0, 1), the
joint PDF of random vector (Y1, Y2, Y3) is given by

fY1,Y2,Y3
(y1, y2, y3) = fS0,γ,β

(
y2(1 + ey1(y2−y3)(−1 + ρS))− y3ρS
y2 + y3(ey1(y2−y3)(−1 + ρS)− ρS)

, y2, y3

)

×ey1(y2−y3)(y2 − y3)2(1− ρS) |y2 − y3ρS|
(y2 + y3(ey1(y2−y3)(−1 + ρS)− ρS))2

,

(4.19)

where

J3 =

(
ey1(y2−y3)(y2 − y3)2(−1 + ρS)(y2 − y3ρS)

)
(y2 + y3(ey1(y2−y3)(−1 + ρS)− ρS))

2

is the Jacobian obtained from the inverse mapping of r defined according to
(4.18). J3 6= 0 since γ(ω) 6= β(ω), γ(ω) 6= β(ω)ρS w.p. 1 and ρS 6= 1.
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Therefore, taking into account that (Y1, Y2, Y3) = (TS, γ, β), the PDF of RV
TS is the (γ, β)-marginal PDF of the joint PDF (4.19)

f1(t, ρS) =

∫
D(γ)

∫
D(β)

fS0,γ,β

(
ξ(1 + et(ξ−η)(−1 + ρS))− ηρS
ξ + η(et(ξ−η)(−1 + ρS)− ρS)

, ξ, η

)

×et(ξ−η)(ξ − η)2(1− ρS) |ξ − ηρS|
(ξ + η(et(ξ−η)(−1 + ρS)− ρS))2

dη dξ .

(4.20)

Following an analogous development, one can demonstrate that the distribu-
tion of time until a given proportion of population remains infected, ρI , reads

f1(t, ρI) =

∫
D(γ)

∫
D(β)

fS0,γ,β

(
ξ + η(−1 + ρI)− et(ξ−η)

ξ − η(1 + (−1 + et(ξ−η))ρI)
, ξ, η

)

×
∣∣∣∣et(ξ−η)(ξ − η)2(ξ + η(−1 + ρI))ρI

(ξ − η(1 + (−1 + et(ξ−η))ρI))2

∣∣∣∣ dη dξ .

4.2.4 Basic reproductive number

In Epidemiology, the basic reproduction number, R0, associated to an infection
is useful to elucidate whether will spread out or not. In the case of SIS model
(4.1)–(4.3), this value and its relationship with the propagation of the epidemic
in the long run is given by

R0 =
β

γ
,

{
if R0 < 1 ≡ β < γ, the disease will die out as t→ +∞ ,
if R0 > 1 ≡ β > γ, the disease will spread out as t→ +∞ .

This classification is easily derived from expression (4.12) of I(t), or equiva-
lently of S(t) (see (4.7)), since

lim
t→+∞

I(t) = lim
t→+∞

(β − γ)(1− S0) e(β−γ)t

β(1− S0) e(β−γ)t +S0β − γ
= 0 if β < γ ,

lim
t→+∞

S(t) = lim
t→+∞

γ(1− S0) + (S0β − γ) e(γ−β)t

β(1− S0) + (S0β − γ) e(γ−β)t
= 1 if β < γ .
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Notice that this result is in agreement of its intuitive interpretation, the epi-
demic will die out when the rate of decline in the percentage of susceptibles
be less than the rate of infected that recover from the diseases, in other words,
when condition β < γ holds.

In our context, both β and γ are assumed to be RVs, so that the require-
ment for epidemic extinction in the deterministic framework β < γ means the
computation of the following probability in the stochastic scenario

P[S], S = {ω ∈ Ω : β(ω) < γ(ω)} = {ω ∈ Ω : R0(ω) < 1} . (4.21)

This key probability can be computed by taking advantage of Proposition 2.7.
In fact, using the following identification between the notation for SIS model
and the one used in Proposition 2.7

U = (U1, U2) = (γ, β) , V =
U2

U1

=
β

γ
= R0 ,

one gets

fR0
(r0) =

∫
D(γ)

fγ,β(ξ, r0ξ) |ξ|dξ ,

where fγ,β(·, ·) denotes the S0–marginal distribution of the joint PDF of ran-
dom inputs S0, γ and β. As a consequence, taking into account that R0(ω) > 0
for all ω ∈ Ω, the target probability (4.21) can be computed as follows

P[S] =

∫ 1

0

∫
D(γ)

fγ,β(ξ, r0ξ) |ξ| dξ dr0 . (4.22)

4.3 An illustrative example

In this section it has be shown how to take advantage of the theoretical proba-
bilistic results previously obtained for random SIS model (4.1)–(4.3) (or equiv-
alently, (4.4)), in order to study the spread of smoking in Spain.

Example 4.1 SIS-type epidemiological models are useful to describe the spread
of diseases whose infection does not confer immunity among the individuals of
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a population which is divided into two groups, susceptible and infected. Many
social habits can also be treated by SIS model like smoking. Notice that once a
person gives up smoking, he/she could become a smoker again in the future. In
this example, SIS model (4.1)–(4.3) is applied to study the evolution of smoking
among the Spanish men aged over 16 years old. In this context this population
has been divided into two groups, non-smokers (susceptible) and smokers (in-
fected). Table 4.1 collects the percentage of non-smokers, denoted by Sj, for
the available data during the period 1987–2006, that correspond to time values
tj, j ∈ J = {0, 6, 8, 10, 14, 16, 19}, respectively. In order to apply model (4.4),
it must be chosen specific probability distributions for random input parameters
S0, β and γ, which hereinafter will be assumed to be independent RVs. As the
initial condition S0 represents a percentage, it is assumed that S0 has a Beta
distribution of parameters a > 0, b > 0, i.e., S0 ∼ Be(a; b). This is supported
by the domain of a Beta RV, which is the interval (0, 1). In addition, Beta dis-
tribution is more flexible than other candidates like (0, 1)-Uniform distribution
since it is a two-parametric distribution. It permits to adapt it better to model
complex situations. For the rate of decline β, an Exponential distribution of
parameter λβ > 0, truncated on the interval (0, 1000) will be taken, because
this rate must be modelled by a positive RV. Finally, for the rate of recovery,
γ, a truncated Gaussian distribution of parameters µγ > 0 and σγ > 0 on
the interval (0, 1) has been chosen. This choice has been made because the po-
sitiveness of RV γ and the great flexibility of Gaussian distribution. At this
point, it is important to emphasize that the generality of the results provided in
the previous section permits to choice other probability distributions for input
parameters different to the aforementioned ones, whenever they match their
epidemiological interpretation (positiveness, boundedness, etc). Moreover, no-
tice that truncation for RVs β and γ allows to guarantee that hypotheses related
to uniqueness are fulfilled.

year 1987 1993 1995 1997 2001 2003 2006
(tj) (j = 0) (j = 6) (j = 8) (j = 10) (j = 14) (j = 16) (j = 19)

Sj 0.4488 0.5144 0.5278 0.5514 0.5783 0.6244 0.6467

Table 4.1: Percentage of non-smokers Spanish men aged over 16 years old during the period
1987–2006. Source [68].

In order to determine positive parameters a, b, λβ, µγ and σγ associated to the
probability distributions of model parameters, the mean square error, E(a, b,
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λβ, µγ , σγ), between data Sj and the expectation of S(t) = S(t; a, b, λβ, µγ , σγ)
evaluated at the time instants tj, j ∈ J , will be minimized. It leads to the
following optimization programme

min
a,b,λβ ,µγ ,σγ>0

E(a, b, λβ, µγ , σγ) =
∑
j∈J

(Sj − E[S(tj; a, b, λβ, µγ , σγ)])
2
, (4.23)

where, according to (4.14) and, taking into account that S(t) = S(t; a, b, λβ, µγ ,
σγ) ∈ (0, 1), the above expectation can be computed as

E[S(tj; a, b, λβ, µγ , σγ)] =

∫ 1

0

sf1(s, tj) ds , j ∈ J .

Now, the form of the 1-PDF f1(s, t), that appears in the above integral and
is defined by (4.11), will be explicitly, taking into account all the hypotheses
that have been assumed up to now. For that, first notice that S0 ∼ Be(a; b),
β ∼ Exp(λβ) truncated on the interval (0, 1000) and γ ∼ N(µγ ;σγ) truncated
on the interval (0, 1), hence according to (4.5), their domains D(S0), D(β) and
D(γ) are defined by s0,1 = 0, s0,2 = 1; β1 = 0, β2 = 1000, and γ1 = 0, γ2 = 1,
respectively. Therefore,

f1(s, t) =

∫ 1

0

∫ 1000

0

fS0

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)
fγ(ξ)fβ(η)

× e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2
dη dξ ,

(4.24)

where

fS0

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)
=

Γ(a+ b)

Γ(a)Γ(b)

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)a−1

×
(

e(ξ−η)t(−1 + s)(η − ξ)
ξ + e(ξ−η)t(−1 + s)η − sη

)b−1

,

fβ (η) =
λβe

−λβη∫ 1000

0
λβe−λβη dη

, (4.25)
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and

fγ (ξ) =


e
− (ξ−µγ )2

2(σγ )2
1

√
2πσγ

(
1
2
erfc

(
µγ−1√

2σγ

)
− 1

2
erfc

(
µγ√
2σγ

)) , if 0 < ξ ≤ 1 ,

0, otherwise ,
(4.26)

being erfc(z) = 1− 2√
π

∫ z
0

e−t
2

dt the complementary error function.

In order to compute the minimum of the error function, E(a, b, λβ, µγ , σγ),
given by (4.23)–(4.26), Nelder-Mead algorithm [69] carrying out computations
by Mathematicar [65] has been used. The obtained results are

a∗ = 708.755, b∗ = 893.394, λ∗β = 1362.230,

µ∗γ = 0.0231162, σ∗γ = 0.0000526 .
(4.27)

Figure 4.2 shows the 1-PDF (4.24)–(4.26) for the optimal values a∗, b∗, λ∗β, µ∗γ
and σ∗γ given by (4.27). One observes that the center of the mass of probability
of RV percentage of susceptibles at time t, S(t), rises while its dispersion re-
duces as time increases. This behaviour is better observed in Figure 4.3 where
the mean, µS(t), and the standard deviation, σS(t), of S(t) have been depicted.
The obtained results agree with the historical data from which one observes that
the percentage of Spanish non-smokers men increases as time goes on.

In order to validate the model, confidence intervals have been built. As the PDF
of S(t) for every t is known exactly, these intervals can be determined using
(4.16)–(4.17). In this case, notice that their approximation using Gaussian
confidence intervals of the form µS(t) ± 2σS(t) provides very similar numeri-
cal results for every year of period 1987–2006. In Figure 4.4 these intervals
together with the real data are plotted.

In Table 4.2, confidence levels (CLs) for the approximate intervals µS(t) ±
2σS(t) have been presented using the exact PDF (4.11) for the years where
data is available, although figures for the rest of the period are similar. Notice
that these figures are very close to 95.45%, that corresponds to the case that
the PDF is Gaussian. From Figure 4.4, one observes that all data lies within
the confidence intervals, hence the model is capable of capturing the variability
of the real data, and, as a consequence, the model can be validated at 95% CL.
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1987
1989

1991
1993

1995
1997

1999
2001

2003
2005

t 0.4

0.5

0.6

0.7

s

0

20

40

f1(s,t)

Figure 4.2: Plot of f1(s, t) in Example 4.1 during the period 1987–2006 (corresponding to
the solid lines).

year 1987 1993 1995 1997 2001 2003 2006
(tj) (j = 0) (j = 6) (j = 8) (j = 10) (j = 14) (j = 16) (j = 19)

CL 0.9550 0.9544 0.9545 0.9546 0.9549 0.9550 0.9552

Table 4.2: Probabilities associated to the confidence intervals built according to SIS model.

Figure 4.5 shows the 1-PDF of time TS until a proportion ρS of population re-
mains non-smokers (susceptible) for different values of ρS ∈ {0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75}. The plot has been performed using the following expres-
sion

f1(t, ρS) =

∫ 1

0

∫ 1000

0

fS0

(
ξ(1 + et(ξ−η)(−1 + ρS))− ηρS
ξ + η(et(ξ−η)(−1 + ρS)− ρS)

)
fγ(ξ)fβ(η)

×et(ξ−η)(ξ − η)2(1− ρS) |ξ − ηρS|
(ξ + η(et(ξ−η)(−1 + ρS)− ρS))2

dη dξ ,

derived from (4.20), taking into account that S0, β and γ are independent RVs
and, that
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1990 2000 2010 2020
t

0.45

0.50

0.55

0.60

0.65

0.70

0.75

μS(t)

1990 2000 2010 2020
t

0.007

0.008

0.009

0.010

0.011

0.012

σS(t)

Figure 4.3: Plot of expectation function (left) and standard deviation function (right) in
Example 4.1.

1990 1995 2000 2005
t

0.45

0.50

0.55

0.60

0.65

S(t)

real data

μS(t)

μS(t)±2σS(t)

Figure 4.4: Expectation (solid line) and confidence intervals (dotted lines) in Example 4.1.

fS0

(
ξ(1 + et(ξ−η)(−1 + ρS))− ηρS
ξ + η(et(ξ−η)(−1 + ρS)− ρS)

)
=

Γ(a+ b)

Γ(a)Γ(b)

(
ξ(1 + et(ξ−η)(−1 + ρS))− ηρS
ξ + η(et(ξ−η)(−1 + ρS)− ρS)

)a−1

×
(

(η − ξ)et(ξ−η)(−1 + ρS)

ξ + η(et(ξ−η)(−1 + ρS)− ρS)

)b−1

,

and fβ(η) and fγ(ξ) are given by (4.25) and (4.26), respectively. For instance,
according to the 1-PDF of TS, one gets

E[TS] =

∫ ∞
0

tfTS(t; 0.75) dt = 35.4013 .
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This means that the middle of the year 2023 approximately represents the a-
verage time until 75% of the Spanish men aged over 16 years old population
will be non-smokers. This can be graphically seen in Figure 4.5. In Table 4.3,
E[TS] has been computed for different values of ρS. This information is crucial
for health authorities in order to know the evolution of smoking and, hence
adopting preventive and treatment campaigns.

ρS 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

E[TS] 0.59 4.78 9.42 14.61 20.51 27.32 35.40 45.30 58.10

Table 4.3: Expectation of time TS until a proportion, ρS , of population remains non-smoker
for different values ρS .

Finally, using (4.22) probability of the event S introduced in (4.21) can be
computed as

P[S] =

∫ 1

0

∫ 1

0

fγ(ξ)fβ(r0ξ) |ξ| dξ dr0 = 0.999453 ,

where fβ(η) and fγ(ξ) are defined by (4.25) and (4.26), respectively. Notice
that this result agrees with the interpretation of the basic reproductive number
R0 and, it informs that very likely the percentage of Spanish smoker men older
than 16 years old will disappear as t tends to +∞.

4.4 Conclusions

In this chapter a full probabilistic description of random SIS model has been
provided. The obtained results are very general in the sense that all involved
input parameters have been assumed to be random variables having any proba-
bility density function. Therefore, the study includes the possibility that they
are statistically either dependent or independent. In this context, significant
probabilistic information has been determined. In a first step, the first proba-
bility density function of solution stochastic process of the governing non-linear
differential equation has been obtained. From this crucial function, solution is
completely characterized in each time instant since every statistical moment
of solution can be computed. In particular, mean and variance functions are
easily determined. A key point regarding the explicit determination of the first
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0.45
0.5
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0.7
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ρS
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0.0
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0.4

f1(t,ρS)

Figure 4.5: Plot of the 1-PDF of time TS until a proportion ρS ∈ {0.45, 0.50, 0.55, 0.60, 0.65,
0.70, 0.75} (corresponding to the solid lines) of population remains susceptible in Example
4.1.

probability density function is the computation of confidence intervals, whose
confidence level is set accurately. This prevents inadvertent use of asymptotic
approximations based on the Central Limit Theorem which often are difficult
to justify. All the above information permits to provide a probabilistic descrip-
tion of SIS model that generalizes its deterministic counterpart. An important
contribution of the chapter is the determination of the first probability density
function of the time until a given proportion of population remains susceptible
or infected. This is very useful from a practical standpoint since it permits
forecasting the earliest time instant at which the susceptible subpopulation
will reach a given threshold. The theoretical study has been completed by
providing a stochastic interpretation of a very important parameter in Epi-
demiology, namely, the basic reproductive number. To put forward all the
theoretical results in practice, an illustrative example using real data has been
shown. The obtained results seem to be quite reliable, although it must be
noticed that the choice of the probability distributions associated to random
inputs is a delicate issue that constitutes itself a challenge in dealing with
real problems. To improve both the theoretical study and its applications, it
would be very interesting to consider a demographic model into SIS model
where births and deaths rates should be included. The analysis of this more
detailed model may benefit of the results developed in this chapter. Analogous
comments could be applied to the extensions SIR, SEIR, etc., of SIS model.
Finally it must be pointed out that alternative/complementary approaches to
study these latter models can be found in [2, 27].
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Chapter 5

Random Bernoulli differential
equation

Random Variable Transformation technique is a powerful
method to determine the probabilistic solution for random differen-
tial equations represented by the first probability density function of
solution stochastic process. In this chapter, that technique is applied
to construct a closed form expression of solution for Bernoulli ran-
dom differential equation. In order to account for the general sce-
nario, all input parameters (coefficients and initial condition) are
assumed to be absolutely continuous random variables with an ar-
bitrary joint probability density function. The analysis is split into
two cases for which an illustrative example is provided. Finally, a
fish weight growth model is considered to illustrate the usefulness
of the theoretical results previously established using real data.
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5.1 Introduction

The aim of this chapter is to continue extending the previous analysis to an-
other important classical differential equation where probabilistic dependence
among input RVs will be assumed. In the following, it will be considered the
Bernoulli random IVP

Ẋ(t) = CX(t) +D(X(t))A, t ≥ t0 ,
X(t0) = X0 ,

}
(5.1)

where t0 denotes the initial time and all input parameters, X0, D, C and A,
are assumed to be absolutely continuous RVs defined in a common probabi-
lity space (Ω,A,P). Hereinafter, D(X0), D(D), D(C) and D(A) will denote
their respectively domains. In order to provide as much generality as possible
throughout our analysis, hereinafter X0, C, D and A will be assumed statis-
tically dependent. In the following, fX0,D,C,A(x0, d, c, a) will denote their joint
PDF.

The chapter is organized as follows. Section 5.2 is addressed to determine
the 1-PDF of solution SP to the Bernoulli random IVP (5.1) in the general
scenario where all input parameters (X0, D,C,A) are assumed to be RVs. As
it will be shown later, this approach requires splitting the analysis in two cases.
For every case, an illustrative example is also provided. In Section 5.3, ideas
exhibited in Section 5.2 will be used to illustrate the usefulness of computing
the 1-PDF to deal with a fish weight growth model. Conclusions are drawn in
the last section.

5.2 Probabilistic solution

In this section, the 1-PDF, f1(x, t), of solution SP X(t) to Bernoulli random
IVP (5.1) will be determined. First, it is important to point out that the
following cases have been treated in earlier contributions or in other chapters
of this thesis:

• The case where coefficient D is zero w.p. 1, i.e., P[{ω ∈ Ω : D(ω) = 0}] =
1, or A is one w.p. 1, i.e., P[{ω ∈ Ω : A(ω) = 1}] = 1, which correspond
to random first-order homogeneous linear differential equation, has been
studied in [16].
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• The case where coefficient A is zero w.p. 1, i.e., P[{ω ∈ Ω : A(ω) =
0}] = 1, which corresponds to random first-order non-homogeneous linear
differential equation, has been studied in [16].

• The case where coefficient A is two w.p. 1, i.e., P[{ω ∈ Ω : A(ω) =
2}] = 1, which corresponds to the Riccati random homogeneous differen-
tial equation, has been studied in Chapter 3 and [19].

Notice that a comprehensive analysis, similar to one exhibited in [16] and in
Chapter 3, of all possible cases depending on deterministic and random nature
of the four input parameters, X0, D, C and A, will involve 15 cases (obviously,
excluding the full deterministic case where all inputs are constants). This
chapter is focussed on the case where all inputs parameters are RVs with a
joint PDF fX0,D,C,A(x0, d, c, a). In order to conduct the analysis of Bernoulli
random IVP (5.1), it is convenient to distinguish Cases I–II listed in Table 5.1.
The distinction between these two cases helps to apply RVT technique as it
will apparent later (see Equation (5.4)). Hereinafter, it is assumed that

P[{ω ∈ Ω : A(ω) 6= 1}] = 1, P[{ω ∈ Ω : X0(ω) 6= 0}] = 1. (5.2)

Case I P[{ω ∈ Ω : C(ω) 6= 0}] = 1

Case II P[{ω ∈ Ω : C(ω) = 0}] = 1

Table 5.1: List of the two cases considered to compute the 1-PDF of solution SP to Bernoulli
random IVP (5.1) under assumptions (5.2).

Notice that in case X0 = 0 w.p. 1, X(t) ≡ 0 is clearly the unique solution of
IVP (5.1).

Before presenting the study, it is important to emphasize that RVT method
constitutes the unifying technique to conduct this analysis in the two cases
listed in Table 5.1. With the aim of facilitating the exposition, in the subse-
quent subsections the results are presented following a common structure.

In each one of Cases I–II, a numerical example to illustrate the theoretical re-
sults established will be presented. In these examples statistical independence
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among inputs will be assumed to facilitate computations. In Section 5.3 a full
example involving statistical dependence will be exhibited.

5.2.1 Solving the Case I

Let us assume that linear coefficient C is different from zero w.p. 1. In
the following, fX0,D,C,A(x0, d, c, a) will denote the joint PDF of random vector
(X0, D,C,A).

In order to determine the 1-PDF of solution SP, X(t), of IVP (5.1), it is
convenient to consider the following change of variable

X(t) = (Z(t))
1

1−A . (5.3)

This permits the transformation of (5.1) into the following linear IVP

Ż(t) = (1−A)CZ(t) + (1−A)D, t ≥ t0 ,
Z(t0) = (X0)1−A ,

}

whose exact closed form solution SP is given by

Z(t) = (X0)1−A e(1−A)C(t−t0) +
D

C
e(1−A)C(t−t0)−D

C
. (5.4)

Let us fix t ≥ t0 and denote Z = Z(t). Let us consider the mapping r : R4 −→
R4 such that

z1 = r1(x0, d, c, a) = (x0)1−a e(1−a)c(t−t0) +
d

c
e(1−a)c(t−t0)− dc ,

z2 = r2(x0, d, c, a) = d,
z3 = r3(x0, d, c, a) = c,
z4 = r4(x0, d, c, a) = a.

It is straightforward to check that the inverse mapping of r is defined by
s : R4 −→ R4, where
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x0 = s1(z1, z2, z3, z4) =

(
−z2 + e−z3(t−t0)(1−z4)(z1z3 + z2)

z3

) 1
1−z4

,

d = s2(z1, z2, z3, z4) = z2,
c = s3(z1, z2, z3, z4) = z3,
a = s4(z1, z2, z3, z4) = z4.

Moreover, the Jacobian of mapping s is given by

J4 =
e−z3(t−t0)(1−z4)

1− z4

(
−z2 + e−z3(t−t0)(1−z4)(z1z3 + z2)

z3

) z4
1−z4

6= 0. (5.5)

Therefore, by Theorem 2.1, the joint PDF of random vector Z = (Z1, Z2, Z3, Z4)
can be written as

fZ(z1, z2, z3, z4) = fX0,D,C,A

((
−z2 + e−z3(t−t0)(1−z4)(z1z3 + z2)

z3

) 1
1−z4

, z2, z3, z4

)

×
∣∣∣∣∣e−z3(t−t0)(1−z4)

1− z4

(
−z2 + e−z3(t−t0)(1−z4)(z1z3 + z2)

z3

) z4
1−z4

∣∣∣∣∣ .
Taking into account (5.3), Z = Z1, A = Z4, hence the PDF of random vector
(Z,A) is obtained as the marginal PDF of fZ1,Z2,Z3,Z4

(z1, z2, z3, z4) with respect
to Z2 = D and Z3 = C, that is,

fZ,A(z, a) =

∫∫
D(D,C)

fX0,D,C,A

((
−d+ e−c (t−t0)(1−a)(zc+ d)

c

) 1
1−a

, d, c, a

)

×
∣∣∣∣∣e−c(t−t0)(1−a)

1− a

(
−d+ e−c(t−t0)(1−a)(zc+ d)

c

) a
1−a
∣∣∣∣∣ dc dd.
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Now, using the change of variable (5.3), applying Proposition 2.8 with the
following identification: U1 = Z, U2 = A and W = X, and considering t ≥ t0
arbitrary, the 1-PDF of solution SP X(t) = (Z(t))

1
1−A is given by

f1(x, t) =

∫∫∫
D(A,D,C)

fX0,D,C,A

((
−d+ e−c (t−t0)(1−a)(x1−a c+ d)

c

) 1
1−a

, d, c, a

)

×
∣∣∣∣∣e−c(t−t0)(1−a)

xa

(
−d+ e−c(t−t0)(1−a)(x1−ac+ d)

c

) a
1−a
∣∣∣∣∣ dc ddda .

(5.6)

Example 5.1 Let us consider random IVP (5.1) with t0 = 0 and assume the
following probability distributions for its inputs parameters: nonlinear coeffi-
cient, D, is a Beta RV with parameters (2, 3), D ∼ Be(2; 3); linear coeffi-
cient, C, is an Exponential RV of mean 1/35, C ∼ Exp(35); exponent A is an
Uniform RV on the interval [0, 1], A ∼ U([0, 1]), and initial condition is an
Exponential RV with mean 2.5, X0 ∼ Exp(1/2.5).

In Figure 5.1, the 1-PDF f1(x, t) of solution SP to random IVP (5.1) has
been plotted. Computations to perform this graphical representation have been
carried out using expression (5.6) on time interval [0, 5]. Notice that the joint
PDF of input data (X0, D,C,A) is given by

fX0,D,C,A(x0, d, c, a) = fX0
(x0)fD(d)fC(c)fA(a)

=

(
1

2.5
e−

1
2.5x0

)
× (1)×

(
35 e−35c

)
×
(
12d(1− d)2

)
= 168 e−(0.4x0+35c) d(1− d)2,

if (x0, d, c, a) ∈ D(X0)×D(D)×D(C)×D(A), being D(X0) = D(C) =]0,+∞[,
D(D) = D(A) =]0, 1[, and fX0,D,C,A(x0, d, c, a) = 0 otherwise. Notice that
hypothesis of pairwise independence of RVs X0, A, C and D has been used in
the above expression for fX0,D,C,A(x0, d, c, a). From a computational point of
view it is worth pointing out that graphical representation shown in Figure 5.1
has been built fixing a value of time t = t̂ ∈ {0, 0.5, 1, 1.5, 2, . . . , 5} and then,
first checking that

∫∞
−∞ f1(x, t̂) dx ≈ 1, and secondly, using the Mathematica R©

software, [65] to calculate the three-dimensional integral given by (5.6).
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5.2 Probabilistic solution

From this graph one observes that the variability of solution X = X(t) increases
rapidly over the time.
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Figure 5.1: Plot of the 1-PDF f1(x, t) given by (5.6) in Example 5.1 at values of t ∈ {0, 0.5,
1, 1.5, . . . , 5} (corresponding to the solid lines).

5.2.2 Solving the Case II

Now, the case where C is 0 w.p. 1 will be considered. This corresponds to the
following particular case of IVP (5.1)

Ẋ(t) = D(X(t))A, t ≥ t0 ,
X(t0) = X0 ,

}
(5.7)

whose solution is given by

X(t) =
(
D(t− t0)(1−A) + (X0)

1−A
) 1

1−A
.

Let us fix t ≥ t0. Unlike Case I, now transformation (5.3), involving RV Z, is
not needed to compute solution of IVP (5.7). Hence, the 1-PDF of X(t) will
be computed directly without computing previously the PDF of RV Z. With
this end, let us define the mapping r : R3 −→ R3 such that

79



Chapter 5. Random Bernoulli differential equation

x1 = r1(x0, d, a) =
(
d(t− t0)(1− a) + (x0)

1−a
) 1

1−a
,

x2 = r2(x0, d, a) = d,
x3 = r3(x0, d, a) = a.

The inverse mapping s of r is given by

x0 = s1(x1, x2, x3) =
(

(x1)
1−x3 − x2(t− t0) + x2x3(t− t0)

) 1
1−x3

,

d = s2(x1, x2, x3) = x2,
a = s3(x1, x2, x3) = x3.

In accordance with RVT method, Theorem 2.1, the joint PDF of random vector
X = (X1, X2, X3) is given by

fX(x1, x2, x3) = fX0,D,A

((
(x1)

1−x3 − x2(t− t0) + x2x3(t− t0)
) 1

1−x3
, x2, x3

)

×
∣∣∣ (x1)

−x3 ((x1)
1−x3 − x2(t− t0) + x2x3(t− t0))

x3
1−x3

∣∣∣ ,
(5.8)

where the factor in absolute value corresponds to the Jacobian of mapping s.

Finally, considering t ≥ t0 arbitrary, the 1-PDF of solution SPX(t) to IVP (5.7)
is obtained as the (X2, X3)-marginal of the PDF (5.8)

f1(x, t) =

∫∫
D(D,A)

fX0,D,A

((
x1−a − d(t− t0) + ad(t− t0)

) 1
1−a , d, a

)
×
∣∣x−a(x1−a − d(t− t0) + ad(t− t0))

a
1−a
∣∣ dadd.

(5.9)

Remark 5.1 Notice that expression (5.9) is not a particular case of expres-
sion (5.6) since in the context of the Case II it is assumed that C = 0 w.p.
1. Revising carefully the application of Theorem 2.16 within our discussion of
Case I, the hypothesis C = 0 w.p. 1 is required to guarantee J3 6= 0 (see ex-
pression (5.5) where z3 = c). Moreover, expression (5.9) cannot be obtained as
a limit of expression (5.6) as c→ 0. These facts have motivated the distinction
of the two cases listed in Table 5.1.
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5.3 An application of Bernoulli random differential equation to modelling

Example 5.2 In order to illustrate the theoretical results previously establi-
shed, let us consider random IVP (5.7) being initial condition X0 an Expo-
nential RV with mean 1, X0 ∼ Exp(1); non-linear coefficient D a Beta RV
D ∼ Be(2; 3) and exponent A a standard Gaussian RV, A ∼ N(0; 1), truncated
at domain ]−∞, 1]. Figure 5.2 shows the 1-PDF of solution SP to IVP (5.7)
on the time interval [0, 6]. It has been computed according to expression (5.9)
and taking into account that

fX0,D,A(x0, d, a) = fX0
(x0)fD(d)fA(a)

=
(
e−x0

)
×
(
12d(1− d)2

)
× e−

a2

2∫ 1

−∞ e−
z2

2 dz

=

√
2

π

12

1 + erfc
(√

2
2

) e
−
(
x0+ a2

2

)
d(1− d)2,

if (x0, d, a) ∈ D(X0) × D(D) × D(A), being D(X0) =]0,+∞[, D(D) =]0, 1[,
D(A) =]−∞, 1[, and fX0,D,A(x0, d, a) = 0 otherwise. Here, expression erfc(t) =

2√
π

∫ t
0

e−z
2

dz stands for the error function. Similar comments to the ones ex-
hibited in Example 5.1 regarding computations carried out using Mathematica R©

software to plot the 1-PDF f1(x, t) can be made. From this representation, one
observes that the variance increases as time goes on.

5.3 An application of Bernoulli random differential equation
to modelling

On the one hand, so far closed expressions for the 1-PDF of solution SP to
Bernoulli random IVP (5.1) have been provided for the two cases listed in
Table 5.1. On the other hand, as it has been highlighted in the Introduction
(Chapter 1), random differential equations are very useful in modelling. Next,
this claim will be illustrated by considering a deterministic model, formulated
by a Bernoulli differential equation, that describes the fish weight growth over
the time. In a first step, to assume that input parameters (coefficients and
initial condition) are RVs rather than deterministic constants. Secondly, using
real data to assign a reliable probabilistic distribution to random inputs using
an inverse frequentist technique. Then, to take advantage of RVT technique to
determine the 1-PDF of solution SP to the model. Finally, from this important

81



Chapter 5. Random Bernoulli differential equation

0.
0.5

1.
1.5

2.
2.5

3.
3.5

4.
4.5

5.
5.5

6.

t

2

4

6

8

x

0.0

0.5

1.0

f1 (x,t)

Figure 5.2: Plot of the 1-PDF f1(x, t) given by (5.9) in Example 5.2 at the values of
t ∈ {0, 0.5.1, 1.5, . . . , 6} (corresponding to the solid lines).

deterministic function, both punctual and probabilistic predictions based on
confidence intervals will be constructed.

The following IVP, usually referred to as Bertalanffy model [8, 9], has been
applied extensively to describe the fish weight growth, W (t), at time instant
t, (see for example, [10, 67])

Ẇ (t) = −λW (t) + η(W (t))2/3, t ≥ t0 ,
W (t0) = W0 .

}
(5.10)

It is worth to point out that, recently, it have been considered stochastic ver-
sions of this model based on Itô-type stochastic differential equations, [75, 81].

Under the approach of the chapter, let us assume that initial condition, W0,
and coefficients, η and λ of IVP (5.10) are absolutely continuous RVs defined on
a common probability space (Ω,A,P), being fW0,η,λ(w0, η, λ) their joint PDF.
Moreover, let us suppose that

P [{ω ∈ Ω : W0(ω) 6= 0}] = 1, P [{ω ∈ Ω : λ(ω) 6= 0}] = 1.

Considering identification X(t) = W (t), C = −λ, D = η, A = 2/3 and
X0 = W0, IVP (5.10) can be treated as a particular case of (5.1). Hence, one
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5.3 An application of Bernoulli random differential equation to modelling

can obtain the 1-PDF f1(w, t) of solution SP W (t) of (5.10) introducing Dirac
delta function, δ(a − 2/3), in expression (5.6). An alternative way to do that
is to treat problem (5.10) directly depending on the three RVs W0, η, λ, in a
similar way as in the Case I. With this aim, consider the change of variable

W (t) = (Z(t))3. (5.11)

This permits the transformation of (5.10) into the following random linear IVP

Ż(t) = −(1/3)λZ(t) + (1/3)η, t ≥ t0 ,
Z(t0) = (W0)1/3 ,

}

whose solution SP is given by

Z(t) = (W0)1/3 e−(1/3)λ(t−t0)−η
λ

e−(1/3)λ(t−t0) +
η

λ
. (5.12)

Following an analogous reasoning exhibited in the Case I, based on to apply
RVT technique, the PDF of RV Z = Z(t) is obtained with t ≥ t0 fixed,

fZ(z) = 3

∫∫
D(η,λ)

fW0,η,λ

((
e(1/3)λ(t−t0) λz + η − e(1/3)λ(t−t0) η

λ

)3

, η, λ

)

×
(

e(1/3)λ(t−t0) λz + η − e(1/3)λ(t−t0) η

λ

)2

e(1/3)λ(t−t0) dλ dη.

Now, using the change of variable (5.11), for every t ≥ t0, the 1-PDF of solution
SP W = W (t) that represents the fish weight growth is obtained applying
Proposition 2.9

f1(w, t) =
1

3
fZ
(
w1/3

)
|w|−2/3

=

∫∫
D(η,λ)

fW0,η,λ

((
e(1/3)λ(t−t0) λw1/3 + η − e(1/3)λ(t−t0) η

λ

)3

, η, λ

)

×
(

e(1/3)λ(t−t0) λw1/3 + η − e(1/3)λ(t−t0) η

λ

)2

e(1/3)λ(t−t0) |w|−2/3dλ dη.

(5.13)
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Table 5.2 shows data about fish weights in lbs for walleye species over the
period 1–33 in years [94]. Notice that the sample size is N = 33.

ti (years) 1 2 3 4 5 6 7 8 9 10 11

wi (lbs) 0.2 0.4 0.6 0.9 1 1.3 1.6 1.8 2.3 2.6 2.9

ti (years) 12 13 14 15 16 17 18 19 20 21 22

wi (lbs) 3.1 3.4 3.7 4.5 5.2 5.7 6.2 6.5 6.7 6.8 7.2

ti (years) 23 24 25 26 27 28 29 30 31 32 33

wi (lbs) 8.2 9 9.5 10 10.5 11 11.5 12 12.5 13 14

Table 5.2: Fish weights wi for walleye species in lbs every year ti, 1 ≤ i ≤ 33 = N , [94].

Next, random Bertalanffy model (5.10) with t0 = 1 will be applied to des-
cribe the evolution of fish weight over the time. For that purpose, first it
shall be assigned a reliable probabilistic distribution to input random vector
Q = (W0, η, λ). To this end, several methods and techniques are available such
as frequentist and bayessian techniques [5, 83, 87]. Moreover, the analysis can
be complemented using parameter identifications techniques that may improve
results ([83, Chapter 6],[56]). In this chapter, this will be done applying an
inverse frequentist technique for parameter estimation, which is a particular
Inverse Uncertainty Quantification technique. As the results established in
Section 5.2 are valid for dependent RVs, and accounting for statistical depen-
dence among input parameters (W0, η, λ) is an important issue, an inverse
frequentist approach has been chosen because it allows to consider statistical
dependence in a very flexible manner. Under inverse frequentist technique,
it is assumed that the measured quantity of interest, i.e., fish weights wi of
observations (ti, wi), 1 ≤ i ≤ N = 33 are corrupted by measurement errors εi,
i.e.,

wi = W (ti; q) = W (ti;w0, η, λ) + εi, 1 ≤ i ≤ 33 = N. (5.14)

As usual, notice that lower-case letters is used to emphasize that the model is
being evaluated at specific numerical values (ti, wi).
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5.3 An application of Bernoulli random differential equation to modelling

The mathematical inverse problem associated with parameter estimation can
then be stated as follows: to quantify uncertainty associated with q = (w0, η, λ)
from the measurement errors εi, and then assigning a probabilistic distribution
to random vector Q = (W0, η, λ). A basic tenet of inverse frequentist approach,
that will be checked later, is that errors are i.i.d. and εi ∼ N(0;σ2), being
σ > 0 fixed but unknown. As a consequence of this assignment of uncertainty,
to model parameters through measurement errors according to the formula-
tion (5.14), the probabilistic distribution for random vector Q = (W0, η, λ) is
assumed to be a multivariate Gaussian distribution

Q = (W0, η, λ) ∼ N3(µQ; ΣQ),

where the mean vector µQ = (ŵ0, η̂, λ̂) is defined from appropriate estimates
of (w0, η, λ) and ΣQ represents the variance-covariance matrix that will be
determined below.

In order to achieve this goal, first notice that from (5.11) and (5.12), it is clear
that dependence of weight W (t; q) when q is nonlinear. A least squares fit to
data yields the following parameter estimates

µQ = (ŵ0, η̂, λ̂), ŵ0 = 0.365934, η̂ = 0.305461, λ̂ = 0.0880184. (5.15)

The residuals of the fitting are,

εi = W (ti; ŵ0, η̂, λ̂)− wi, 1 ≤ i ≤ 33 = N, (5.16)

where, W (ti; ŵ0, η̂, λ̂) is solution of IVP (5.10) with t0 = 1 evaluated at every
year ti = i ∈ {1, 2, . . . , 33} with model parameters given by (5.15) and, wi
the fish weight data collected in Table 5.2. Notice that W (t; ŵ0, η̂, λ̂) = W (t)
is obtained from (5.11) and (5.12). Model fitting and residuals are shown in
Figure 5.3 (left) and Figure 5.3 (right), respectively. From this latter graphical
representation, one observes that residuals do not exhibit discernible pattern,
thus motivating the assumption that errors are i.i.d. To check that errors are
normally distributed (null hypothesis), a Shapiro-Walk test has been applied.
Fixed a confidence level, say α, null hypothesis is rejected when the p-value
is smaller than α; otherwise the normality of the residuals is accepted (i.e.,
cannot be rejected) [82]. Here, Shapiro-Walk test has been applied taking
α = 0.05, showing the normality of residuals (see Table 5.3). This conclusion
has been reinforced by means a Q-Q plot (see Figure 5.4).
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Figure 5.3: Left: Model fitting to fish weights using least mean squares method. Right:
Residuals at the N = 33 fish weights data.

Normality Test Statistic p-value

Shapiro-Walk Test 0.958995 0.242077

Table 5.3: Shapiro-Walk test to check normality of residuals.

From the least mean square fitting, the error standard deviation estimate is
given by

σ =

√√√√ 1

N − p

N∑
i=1

(εi)2 = 0.214435, with N = 33, p = 3, (5.17)

where the residuals εi, are defined by (5.16).
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Figure 5.4: Q-Q plot for the least mean squares residuals.

According to frequentist parameter estimation method described in [83], to
account for variability of the p = 3 model parameters, Q = (W0, η, λ), the
N × p = 33× 3 sensitivity matrix

χ(Q) =



∂W (t1; Q)

∂W0

· · · ∂W (t33; Q)

∂W0

∂W (t1; Q)

∂η
· · · ∂W (t33; Q)

∂η

∂W (t1; Q)

∂λ
· · · ∂W (t33; Q)

∂λ



>

∣∣∣
Q = (ŵ0, η̂, λ̂)

(5.18)

has been computed. A graphical representation of entries of this matrix by
columns has been plotted in Figure 5.5. From these representations, and taking
into account their vertical scales, one deduces that the critical model input
parameter with respect to the sensitivity analysis is λ.

87



Chapter 5. Random Bernoulli differential equation

5 10 15 20 25 30
t

1

2

3

4

∂W

∂W0
( t i ; Q )

5 10 15 20 25 30
t

20

40

60

80

100

120

∂W

∂η
( t i ; Q )

5 10 15 20 25 30
t

-200

-150

-100

-50

∂W

∂λ
( t i ; Q )

Figure 5.5: Analytic sensibility values of matrix (5.18). Left: ∂W
∂W0

(ti; Q). Right:
∂W
∂η

(ti; Q). Center: ∂W
∂λ

(ti; Q). ti = i, 1 ≤ i ≤ 33 = N .

Then, from (5.17) and (5.18), one obtains the covariance matrix of model
parameters

ΣQ = σ2
(
(χ(Q))>χ(Q)

)−1

=


0.0029288 −0.0008123 −0.0004003

−0.0008123 0.0002681 0.0001369

−0.0004003 0.0001369 0.0000705

 .
(5.19)

It is worth nothing that λ parameter has the smallest variability (0.0000705).
This is in agreement with the fact that it is the most critical parameter re-
garding the sensibility of the model.
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Summarizing, based on inverse frequentist technique for parameter estimation
approach the following probabilistic distribution has been assigned to model
parameters

Q = (W0, η, λ) ∼ N3(µQ; ΣQ) (5.20)

where µQ and ΣQ are given by (5.15) and (5.19), respectively.

At this point, the theoretical results previously established about the 1-PDF
of solution SP to random Bertalanffy model will be considered. In Figure 5.6
(left), the 1-PDF is plotted for every time of the whole sample. As the 1-PDF
is leptokurtic and it has little variance, it has been plotted only for values of
w where it is greater than 10−12. In Figure 5.6 (right), a more detailed plot
for times values t ∈ {1.1, 1.2, . . . , 2} is shown.
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Figure 5.6: Left: 1-PDF of solution SP to random Bertalanffy model (5.10) given by (5.13)
for all time of sample, t ∈ {2, . . . , 33}. Model parameters are assumed to have multivariate
Gaussian distribution defined by (5.20), (5.15) and (5.19). Right: Detailed representation of
the 1-PDF for times t ∈ {1.1, 1.2, . . . , 2}.

The mean and the variance functions of fish weight over the time can be de-
termined as follows

µW (t) = E[W (t)] =

∫ ∞
−∞

wf1(w, t) dw,

(σW (t))2 = V[W (t)] =

∫ ∞
−∞

w2f1(w, t) dw − (µW (t))
2
,
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where f1(w, t) is defined by (5.13). In order to construct confidence intervals,
first let us fix a time value t̂ ≥ 1 and α ∈ (0, 1), and secondly determine
ŵ1 = w1(t̂) and ŵ2 = w2(t̂) such that

∫ ŵ1

0

f1(w, t̂) dw =
α

2
=

∫ 1

ŵ2

f1(w, t̂) dw .

Then, (1− α)× 100%-confidence interval is specified by

1− α = P
[{
ω ∈ Ω : W (t̂;ω) ∈ [ŵ1, ŵ2)]

}]
=

∫ ŵ2

ŵ1

f1(w, t̂) dw .

In Figure 5.7, mean function (solid line), 99%–confidence intervals (dashed
lines) and real data (points) are shown. From this graphical representation one
observes that the proposed random Bertalanffy model captures satisfactorily
data uncertainty.
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Figure 5.7: Expectation (solid line) and 99%–confidence intervals (dotted lines). Points
represent fish weigh.
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5.4 Conclusions

In this chapter Random Variable Transformation method has been successfully
used to have a full probabilistic description of Bernoulli random differential
equation. This description has been made through the computation of the
first probability density function of solution stochastic process of that impor-
tant equation. The study has been conducted in the general case that all input
parameters of the equation as well as initial condition are absolutely contin-
uous random variables. Two important features are that neither probabilistic
independence among random variables nor specific probabilistic distributions
have been assumed throughout the analysis. These facts provide a generality to
the study. Therefore, any joint probability density function can be considered
for model input parameters. Furthermore, it has been shown the usefulness of
theoretical results obtained to model satisfactorily a real problem. Finally, no-
tice that the proposed technique can be applied to compute the first probability
density function of solution stochastic process for other random (ordinary or
partial) differential equations.
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Chapter 6

Random first-order linear
systems of ordinary differential

and difference equations

In this chapter, the first probability density functions of solu-
tion stochastic processes to random autonomous first-order linear
systems of ordinary differential and difference equations are deter-
mined. It is done under the general hypothesis that all coefficients
and initial conditions are absolutely continuous random variables
with an arbitrary joint probability density function. To differential
equation theoretical results are illustrated for planar systems and
a probabilistic interpretation of phase portrait is given. With res-
pect to difference equation the finding of the first probability density
function is applied to extend classical stability classification of zero-
equilibrium point, based on the phase portrait, to random scenario.
An example illustrates the potentiality of theoretical results estab-
lished and their connection with their deterministic counterpart.
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6.1 Introduction

The chapter is organized as follows. In Section 6.2 a probabilistic solution of
random autonomous first-order linear systems of ordinary differential equations
will be provided. Subsection 6.2.2 construct an interpret the phase portrait of
a planar autonomous first-order linear system of ordinary differential equation.
The outline of Section 6.3 is the following. In Subsection 6.3.1 the 1-PDF of
general random autonomous first-order linear homogeneous systems of diffe-
rence equations is determined explicitly. In Subsection 6.3.2 a comprehensive
probabilistic classification of equilibrium point for planar systems is given. In
Subsection 6.3.3 an example illustrating the main theoretical results established
in Section 6.3.2 is exhibited. Conclusions of both sections are drawn in Section
6.4.

6.2 Random autonomous first-order linear systems of
ordinary differential equations

In this section, RVT method, Theorem 2.1, will be used to determine, under
very general hypotheses, the 1-PDF of solution of random autonomous first-
order linear systems of ordinary differential equations of the form

Ẋ(t) = AX(t), t > t0,
X(t0) = X0,

}
X0 = (X10, . . . , Xn0) ,

A =

 A11 · · · A1n

...
. . .

...
An1 · · · Ann

 ,

(6.1)

where the n+n2 elements of X0 and A are assumed to be RVs with joint PDF

f0(x10, . . . , xn0, a11, . . . , a1n, . . . , an1, . . . , ann),

which, for convenience, in advance will be denoted by f0(x0,a).

Notice that solution of random IVP (6.1) is given by exp(A(t− t0))X0.
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6.2 Random autonomous first-order linear systems of ordinary differential equations

6.2.1 Probabilistic solution

In the following, it will be applied an extended version of Theorem 2.1 where
component mappings ri (and hence si), 1 ≤ i ≤ m, are vector transformations.
With this aim, let us fix t ≥ t0 and denote by ei = (0, . . . , 0, 1, 0, . . . , 0)

>

the i-th canonical vector of size n, 1 ≤ i ≤ n. Besides, let us define h =
n + n2 = n(n + 1) and the mapping r : Rh −→ Rh whose components
(r1(x0,a), . . . , rn+1(x0,a)) are defined as follows

y1 = r1(x0,a) = exp(a(t− t0))x0,
y2 = r2(x0,a) = ae1 = a1,
...

...
...

...
...

...
...

yn = rn(x0,a) = aen−1 = an−1,
yn+1 = rn+1(x0,a) = aen = an.

(6.2)

Notice that r1, . . . , rn+1 mappings are written in bold letters since they are
vector transformations. In (6.2), ai represents the i-th column of matrix a =
A(ω), 1 ≤ i ≤ n, with ω ∈ Ω arbitrary. Therefore, the inverse mapping, s, of
r, is given by

x0 = s1(y1, . . . ,yn+1) = exp(−a(t− t0))y1,
a1 = s2(y1, . . . ,yn+1) = y2,
...

...
...

...
...

an−1 = sn(y1, . . . ,yn+1) = yn,
an = sn+1(y1, . . . ,yn+1) = yn+1,

where, in the first equation, matrix a really depends on y1, . . . ,yn+1 since it can
be equivalently represented by columns as a = (a1, . . . ,an) = (y2, . . . ,yn+1).
Now, the Jacobian of mapping s is computed
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Chapter 6. Random first-order linear systems of ordinary differential and difference equations

Jh = det


∂s1(y1, . . . ,yn+1)

∂y1

· · · ∂sn+1(y1, . . . ,yn+1)

∂y1
...

. . .
...

∂s1(y1, . . . ,yn+1)

∂yn+1

· · · ∂sn+1(y1, . . . ,yn+1)

∂yn+1


h×h

= det



exp(−a(t− t0)) 0n · · · · · · 0n

0n In
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0n

0n · · · · · · 0n In


h×h

= exp(−tr(a)(t− t0)) > 0,

where tr(a) denotes the trace of matrix a and, as usually, 0n and In stand for
null and identity matrices of size n, respectively. Therefore, applying Theorem
2.1, the PDF of n + 1 random vectors Y1, . . . ,Yn+1 defined by (6.2) is given
by

fY1,...,Yn+1
(y1, . . . ,yn+1) = f0 (exp(− (y2, . . . ,yn+1) (t− t0))y1,y2, . . . ,yn+1)

× exp(−tr ((y2, . . . ,yn+1)) (t− t0)).
(6.3)

Since solution SP of random IVP (6.1) is given by the first component y1 of
mapping r defined by (6.2), its 1-PDF f1(x, t) is obtained by marginalizing the
expression (6.3) with respect to Y2, . . . ,Yn+1. Therefore, taking into account
that t ≥ t0 is arbitrary, the following result has been established.

Theorem 6.1 Let us consider random IVP (6.1) and let f0(x0,a) be the joint
probability density function of X0 and A, which are on a complete probability
space (Ω,A,P). Then, the first probability density function of solution stochas-
tic process of IVP (6.1) is given by

f1(x, t) =

∫
Rn2

f0 (exp(−a(t− t0))x,a1, . . . ,an)

× exp(−tr(a)(t− t0)) da11 · · · dan1 · · · da1n · · · dann,
(6.4)

96



6.2 Random autonomous first-order linear systems of ordinary differential equations

where a1 = (a11, . . . , an1)
>,. . ., an = (a1n, . . . , ann)

> denote the columns of
matrix a = A(ω), ω ∈ Ω.

Remark 6.1 Notice that this formula generalizes expression [16, Equation
(47)] to matrix framework.

6.2.2 An illustrative example

As it has been pointed out in the Introduction (Chapter 1), the determination
of the 1-PDF of a SP is advantageous. From it, many important statistical
functions associated to the corresponding SP can be easily computed. For
instance, mean, standard deviation functions as well as confidence intervals
and the probability of certain sets of interest where SP lies can be obtained by
the 1-PDF. In [16–18] one can found detailed examples where these quantities
of interest are computed. However, in dealing with deterministic autonomous
first-order linear systems of ordinary differential equations a distinctive feature
is the study of their phase portrait. In the following, it will be shown how to
take advantage of the theoretical result established in Theorem 6.1 to construct
and interpret the phase portrait to random IVP (6.1). In order to show better
results graphically, it will be done on case n = 2, usually referred to as planar
autonomous first-order linear systems of ordinary differential equations.

Example 6.1 Let us consider random IVP (6.1) with t0 = 0, n = 2 and

X(t) = (X1(t), X2(t)) , X0 = (X10, X20) , A =

(
A11 A12

A21 A22

)
, (6.5)

where RVs X10, X20, A11, A21, A12, A22 are assumed to be jointly Gaussian
distributed with mean (µ) and variance-covariance matrix (Σ) given by

µ =


1
2
−1
−6
1

1/2

 , Σ =
1

500


55 5 20 1 1 4
5 20 5 10 2 4
20 5 10 7 1 4
1 10 7 30 2 4
1 2 1 2 25 5
4 4 4 4 5 10

 . (6.6)

In Figure 6.1, the probabilistic phase portrait of IVP (6.1) with input data
(6.5)–(6.6) is shown. Spiral line represents the expectation of solution, i.e.,
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Chapter 6. Random first-order linear systems of ordinary differential and difference equations

E[X(t)] = (E[X1(t)],E[X2(t)]). For each t = t̂ > 0 arbitrary but fixed, these
expectations have been computed by

E[X1(t̂)] =

∫
R2

x1f1(x1, x2, t̂) dx1dx2, E[X2(t̂)] =

∫
R2

x2f1(x1, x2, t̂) dx2dx1,

where f1(x1, x2, t̂) is given by expression (6.4) and f0(x0,a) is the multivariate
PDF of random vector Z with mean µ and variance-covariance matrix Σ defined
in (6.6), i.e.,

fZ (z) =
1√

(2π)6det(Σ)
exp

(
−1

2
(z− µ)

T
Σ−1 (z− µ)

)
,

z = (x10, x20, a11, a21, a12, a22) .

(6.7)

Notice that trajectory shown in the phase portrait starts at point (µ1, µ2) =
(E[X10],E[X20]) = (1, 2). In Figure 6.1, 50% and 90% confidence regions at
several fixed time instants, t̂ ∈ {0, 0.5, 1}, have been also plotted. The greater
the region, the higher the confidence level. For t = t̂ > 0 and α ∈ (0, 1) fixed,
each one of these (1 − α) × 100% confidence regions, DX(t̂)(1 − α) ⊂ R2, has
been determined as the (x1, x2)-curve such that

1− α =

∫∫
DX(t̂)(1−α)

f1(x1, x2; t̂) dx1dx2,

DX(t̂)(1− α) = {(x1, x2) : f1(x1, x2; t̂) = k}.

Observe that 50% (blue curve) and 90% confidence (red curve) regions plotted
in Figure 6.1 correspond to α = 0.5 and α = 0.1, respectively. Null random
vector (0, 0) is a stable spiral point. This fact can be connected with the well-
known classical theory of dynamic systems. To this end, let us consider the
deterministic IVP

ḣ(t) = Mh(t), t > 0,
h(0) = h0,

}
h0 =

(
E[X10]
E[X20]

)
=

(
1
2

)
,

M =

(
E[A11] E[A12]
E[A21] E[A22]

)
=

(
−1 1
−6 1/2

)
,
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6.2 Random autonomous first-order linear systems of ordinary differential equations

t=0

t=0.5

t=1

-2 -1 0 1 2

-4

-2

0

2

x1

x
2

Figure 6.1: Top: Phase portrait. Continuous (black) spiral line represents the expectation
of solution. 50% (blue curve) and 90% (red curve) confidence regions are plotted at time
instants t̂ ∈ {0, 0.5, 1}. Bottom left: PDF of solution at time instant t̂ = 0.5. Bottom right:
PDF of solution at time instant t̂ = 1. On the PDFs plots 50% and 90% confidence regions
have been highlighted. All these graphical representations correspond to Example 6.1.
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whose coefficients and initial conditions are the expectation of the corresponding
RVs defining random IVP (6.1) and (6.5)–(6.6). Thus, these mean values are
defined by the vector µ defined in (6.6). Since eigenvalues of the deterministic
matrix M are −1/4 ± i

√
87/4, hence having negative real part, equilibrium

point (0, 0) is expected to be a stable spiral node in random scenario. However,
it really occurs with certain probability, say p, that needs to be determined. As
a nice application of determining the 1-PDF of solution SP to random IVP
(6.1) and (6.5)–(6.6), in the following the value of probability p is computed.

Since Aij, 1 ≤ i, j ≤ 2 are continuous RVs, det(A)(ω) = A11(ω)A22(ω) −
A12(ω)A21(ω) 6= 0 for all ω ∈ Ω w.p. 1. Hence, null vector (0, 0) is the only
equilibrium point to IVP (6.5) w.p. 1. Notice that random characteristic roots
to this random IVP are given by

λ2 − tr(A)λ+ det(A) = 0, λ =
tr(A)±

√
(tr(A))

2 − 4det(A)

2
.

Thus, the probability p that random point (0, 0) be stable spiral point is given
by

p = P [{ω ∈ Ω : (V1(ω))2 − 4V2(ω) < 0, V1(ω) < 0}]

=

∫ 0

−∞

∫ +∞

(v1)2/4

fV1,V2
(v1, v2) dv2dv1,

{
V1(ω) = tr(A(ω)),
V2(ω) = det(A(ω)).

(6.8)

In order to compute this probability, the joint PDF of RVs V1 and V2 defined in
(6.8) needs to be previously computed. To that end, let us define the following
transformation r : R4 −→ R4,

V1 = r1(A11, A21, A12, A22) = A11 +A22,
V2 = r2(A11, A21, A12, A22) = A11A22 −A12A21,
V3 = r3(A11, A21, A12, A22) = A12,
V4 = r4(A11, A21, A12, A22) = A22,

being the inverse transformation s : R4 −→ R4 of mapping r
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6.3 Random autonomous first-order linear systems of difference equations

A11 = s1(V1, V2, V3, V4) = V1 − V4,

A21 = s2(V1, V2, V3, V4) = −V2−(V1−V4)V4

V3
,

A12 = s3(V1, V2, V3, V4) = V3,
A22 = s4(V1, V2, V3, V4) = V4.

The Jacobian of s is given by

J4 = det


1 1

v3
0 0

0 − 1
v3

0 0

0 v2−(v1−v4)v4
(v3)2

1 0

−1 − 2v4
v3

0 1

 = − 1

v3

6= 0 .

Therefore, the joint PDF of random vector (V1, V2) = (tr(A),det(A)) is given
by

fV1,V2
(v1, v2) =∫

R2

fA11,A21,A12,A22

(
v1 − a22,−

v2 − (v1 − a22)a22

a12

, a12, a22

)
1

a12

da12da22,

where

fA11,A21,A12,A22
(a11, a12, a21, a22) =

∫
R2

fZ (x10, x20, a11, a21, a12, a22) dx10dx20,

(6.9)

being fZ (x10, x20, a11, a21, a12, a22) = fZ (z) defined by (6.7). After carrying
out computations, the value of p defined in (6.8) is 0.983. It accounts for the
probability that equilibrium point (0, 0) be a stable spiral point.

6.3 Random autonomous first-order linear systems of
difference equations

The aim of this section is twofold. Firstly, to determine the 1-PDF of solution
SP of random autonomous first-order linear systems of difference equations
of arbitrary size, say m. Secondly, to extend the main deterministic results
on stability for planar systems (m = 2) to random scenario. This section is
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heavily inspired in the previous contribution in this chapter, but having two
main differences. Firstly, it is considered random difference equations instead
of random differential equations. Secondly, it will be provided a comprehensive
probabilistic stability classification of zero-equilibrium point of random planar
homogeneous systems rather than just to illustrate the classification with one
example. The interest of this analysis is expected to reach a large audience
for two main reasons. On the one hand, the study provides a generalization
to random framework of deterministic autonomous difference equations, which
have mathematical interest by themselves. Indeed, for instance, these class of
equations become after discretizating autonomous differential equations. On
the other hand, it is well-known that autonomous difference equations are ad-
equate choice when modelling many real phenomena. Therefore, it is expected
that consideration of randomness into autonomous difference equations will
provide more realistic models in applications.

6.3.1 Probabilistic solution

The goal of this subsection is to compute an explicit formula for the 1-PDF
of random autonomous first-order homogeneous linear systems of difference
equations

Xn+1 = AXn, n ≥ 0, A = (Aij), 1 ≤ i, j ≤ m, (6.10)

where Aij, 1 ≤ i, j ≤ m, and Xi0, 1 ≤ i ≤ m, that define the starting seed
X0 = (X10, . . . , Xm0), are h = m+m2 absolutely continuous RVs defined in a
complete probabilistic space (Ω,A,P). It is assumed that these RVs have the
following joint PDF

f0(x0,a) = f0(x10, . . . , xm0, a11, . . . , am1, . . . , a1m, . . . , amm).

Hereinafter, it will be assumed that random matrix A is invertible in the
probabilistic sense, i.e., P [{ω ∈ Ω : det (A(ω)) 6= 0}] = 1. Notice that this
hypothesis is not restrictive since Aij are assumed to be absolutely continuous
RVs.

Let us observe that solution of (6.10) is given by Xn = AnX0. Now, it will
be applied RVT technique as stated in Theorem 2.1. With this aim, let us
fix n > 0 and denote by ei = (0, . . . , 0, 1, 0, . . . , 0)> the i-th canonical vector
of size m, 1 ≤ i ≤ m. Additionally, let us also define the transformation
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6.3 Random autonomous first-order linear systems of difference equations

r : Rh → Rh, and the inverse mapping of r, s = r−1, whose components are
given by

y1 = r1(x0,a) = anx0,
y2 = r2(x0,a) = ae1 = a1,
...

...
...

...
...

...
...

ym = rm(x0,a) = aem−1 = am−1,
ym+1 = rm+1(x0,a) = aem = am.

x0 = s1(y1, . . . ,ym+1) = (y2, . . . ,ym+1)
−n

y1,
a1 = s2(y1, . . . ,ym+1) = y2,
...

...
...

...
...

am−1 = sm(y1, . . . ,ym+1) = ym,
am = sm+1(y1, . . . ,ym+1) = ym+1.

(6.11)

Notice that in (6.11) ai represents the i-th column of matrix a = A(ω), ω ∈ Ω.
Now, the Jacobian, which is defined by the following determinant, is computed

Jh = det



(y2, . . . ,ym+1)
−n

0m · · · · · · 0m

0m Im
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0m

0m · · · · · · 0m Im


h×h

= det
(

(y2, . . . ,ym+1)
−n
)

= (det ((y2, . . . ,ym+1)))−n = (det(a))−n 6= 0,

where 0m and Im are the null and the identity matrix of size m, respectively.
Notice that det(a) 6= 0 a.s. Therefore, applying Therorem 2.1, the joint PDF
of random vector (Y1, . . . ,Ym+1) is obtained

fY1,...,Ym+1
(y1, . . . ,ym+1) = f0

(
(y2, . . . ,ym+1)

−n
y1,y2, . . . ,ym+1

)
× |det ((y2, . . . ,ym+1))|−n .

(6.12)

As solution of IVP (6.10) is given by the first component of random vector
(Y1, . . . ,Ym+1), in order to compute the PDF of solution, Xn, first expression
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(6.12) must be marginalized with respect to Y2, . . . ,Ym+1, and secondly to
express the result in terms of data. This yields

f1(x, n) =

∫
Rm2

f0

(
a−nx,a1, . . . ,am

)
|det (a)|−n da11 · · · dam1 · · · da1m · · · damm.

(6.13)

6.3.2 Random planar autonomous first-order linear systems: A
probabilistic classification of equilibrium point

This subsection is devoted to classify, from a probabilistic standpoint, equi-
librium point of random system of difference equations (6.10), when m = 2.
Observe that the analysis is restricted to the homogeneous case where the
only equilibrium point is random null vector, Xe = 0. Nevertheless, non-
homogeneous case, Xn+1 = AXn+B, can be reduced to homogeneous one, just
taking into account Equation (6.10) can be centered about Xe = (Im−A)−1B.
Indeed, this can be done because the probability that RV λ = 1 be an eigen-
value of A is zero. The case wherem = 2 in random matrix difference equation
(6.10) corresponds to random planar systems. In the deterministic context, it
is well-known that important results related to stability of zero-equilibrium
point have been established for planar systems. This subsection is addressed
to extend classical stability classification of zero-equilibrium Xe = (0, 0) to ran-
dom scenario. As it shall see later, this approach leads to a nice generalization,
in a probabilistic sense, that retains the well-known deterministic results when
probabilistic events associated to that classification happens w.p. 1. Naturally,
as it also occurs in the deterministic case, classification depends on characteris-
tic roots, λ1 and λ2, associated to random matrix equation (6.10) with m = 2.
These roots can be expressed in terms of trace and the determinant of random
matrix A, as in previous section

λ2 − tr(A)λ+ det(A) = 0, λi =
tr(A)±

√
(tr(A))

2 − 4det(A)

2
, i = 1, 2.

Denoting by V1(ω) = tr(A(ω)) and V2(ω) = det(A(ω)), for each ω ∈ Ω, the
classification can be represented by means of Figure 6.2. Then taking advan-
tage of the 1-PDF of solution SP of (6.10), given by (6.13), one can compute
the probability that zero-equilibrium or critical point belongs to one of the
following states: stable (node or sink/spiral), unstable (node or source/spiral)
or saddle point. The case that zero-equilibrium point be a center, an improper
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stable node or an improper unstable node have been neglected because they
are associated to events A1, A2 and A3 defined by

A1 = {ω ∈ Ω : det(A(ω)) = 1, |tr(A(ω))| ≤ 2},
A2 = {ω ∈ Ω : (tr(A(ω)))2 = 4 det(A(ω)), |tr(A(ω))| < 2},
A3 = {ω ∈ Ω : (tr(A(ω)))2 = 4 det(A(ω)), |tr(A(ω))| > 2},

respectively, which can happens with probability zero since Aij, 1 ≤ i, j ≤ 2,
are assumed to be absolutely continuous RVs. Below, these probabilities are
completely specified. It is important to point out that, in contrasts to what
happens in the deterministic scenario, where equilibrium point can only belong
to one state of the previous list, in random context the situation is different
since zero-equilibrium point can have different states but each one with diffe-
rent probabilities.

I

IIII

II

III

IV

V V
1+V2+V1=01+V2-V1=0

V1
2-4V2=0

-4 -2 2 4
V1

-3

-2

-1

1

2

3

V2

Figure 6.2: Graphical representation of the stability classification of zero-equilibrium point
to random matrix difference equation (6.10) with m = 2 (random planar system). Each
relevant region has a label corresponding to: I (unstable spiral); II (unstable node or source);
III (stable spiral); IV (stable node or sink) and V (saddle point). Magenta point has been
obtained from matrix a of averaged system (6.16) associated to random system (6.10) with
m = 2 and random inputs given by (6.14)–(6.15). Blue-red confidence regions have been
determined from (6.9).

• Stable node:

Psn =

∫ 0

−2

∫ v21
4

−1−v1
fV1,V2

(v1, v2) dv2 dv1 +

∫ 2

0

∫ v21
4

−1+v1

fV1,V2
(v1, v2) dv2 dv1.
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• Stable spiral:

Pss =

∫ 2

−2

∫ 1

v2
1
4

fV1,V2
(v1, v2) dv2 dv1.

• Unstable node:

Pun =

∫ −2

−∞

∫ v21
4

−1−v1
fV1,V2

(v1, v2) dv2 dv1 +

∫ ∞
2

∫ v21
4

−1+v1

fV1,V2
(v1, v2) dv2 dv1

+

∫ −1

−∞

∫ −1−v2

1+v2

fV1,V2
(v1, v2) dv1 dv2.

• Unstable spiral:

Pus =

∫ ∞
1

∫ 2
√
v2

−2
√
v2

fV1,V2
(v1, v2) dv1 dv2.

• Saddle point:

Ps =

∫ 0

−∞

∫ −1−v1

−1+v1

fV1,V2
(v1, v2) dv2 dv1 +

∫ ∞
0

∫ −1+v1

−1−v1
fV1,V2

(v1, v2) dv2 dv1.

All these probabilities depend on the PDF, fV1,V2
(v1, v2), of random vector

(V1, V2) = (tr(A), det(A)). Applying Theorem 2.1, that is to say, RVT method,
one can determine fV1,V2

(v1, v2). To this end, let us define the following ma-
pping, r : R4 −→ R4, whose inverse mapping s : R4 −→ R4 is given by

v1 = r1(a11, a21, a12, a22) = a11 + a22,
v2 = r2(a11, a21, a12, a22) = a11a22 − a12a21,
v3 = r3(a11, a21, a12, a22) = a12,
v4 = r4(a11, a21, a12, a22) = a22,
a11 = s1(v1, v2, v3, v4) = v1 − v4,

a21 = s2(v1, v2, v3, v4) = −v2 − (v1 − v4)v4

v3

,

a12 = s3(v1, v2, v3, v4) = v3,
a22 = s4(v1, v2, v3, v4) = v4.

106



6.3 Random autonomous first-order linear systems of difference equations

It is easy to check that the Jacobian of s is J4 = −1/v3 6= 0. Therefore, the
joint PDF of random vector (V1, V2) = (tr(A),det(A)) is given by

fV1,V2
(v1, v2)

=

∫
R2

fA11,A21,A12,A22

(
v1 − a22,−

v2 − (v1 − a22)a22

a12

, a12, a22

)
1

|a12|
da12 da22,

being

fA11,A21,A12,A22
(a11, a21, a12, a22) =

∫
R2

f0 (x10, x20, a11, a21, a12, a22) dx10dx20.

6.3.3 An illustrative example

The aim of this subsection is to illustrate the theoretical results previously
established by means an example. This includes the interpretation of the
phase portrait in the context of random planar systems of the form (6.10) with
m = 2 and the previous probabilistic stability classification of zero-equilibrium
point. It will be considered that

Z = (X10, X20, A11, A21, A12, A22), Z ∼ N(µ,Σ) (6.14)

where the mean, µ, and the variance-covariance matrix, Σ, are,

µ =


2
2

−0.125
−0.962
0.692
0.925

 , Σ = 1
4000


55 5 20 1 1 4
5 20 5 10 2 4
20 5 10 7 1 4
1 10 7 30 2 4
1 2 1 2 25 5
4 4 4 4 5 10

 . (6.15)

In Figure 6.3 it is shown the phase portrait for different fixed time instants,
n ∈ {0, 1, 2, 3}, together with the PDF of solution SP in two of these time
instants (n ∈ {2, 3}). In the planar phase portrait, mean E[Xin], i = 1, 2,
and confidence regions DXn

(1−α) ⊂ R2 at different fixed levels of confidence,
α ∈ {0.50, 0.90} ∈ (0, 1), for n = {2, 3}, have been plotted. These statistical
quantities have been computed by means of the following expressions
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E[X1n] =

∫
R2

x1f1(x1, x2, n) dx1dx2,

E[X2n] =

∫
R2

x2f1(x1, x2, n) dx2dx1,

1− α =

∫∫
DXn (1−α)

f1(x1, x2, n) dx1dx2,

DXn
(1− α) = {(x1, x2) : f1(x1, x2, n) = k},

where, in agreement with (6.13),

f1(x1, x2;n) =

∫
R4

f0

((
a11 a12

a21 a22

)−n (
x1

x2

)
, a11, a21, a12, a22

)

× |a11a22 − a12a21|−n da11da12d21d22.

As it has been indicated previously, zero-equilibrium point can behaves diffe-
rent classification in random context with different probabilities. Based upon
analysis, these probabilities can be quantified. In this example, the probability
that the null random point (0, 0) be either a saddle point, a stable node/sink
or an unstable node is 0. While the probability of being a stable spiral is
0.999995 and the probability of being a unstable spiral is 0.000005. The fact
that equilibrium point is more likely a stable spiral than an unstable spiral is
heavily connected with the deterministic theory. Indeed, let us consider the
averaged problem associated to (6.10)

xn+1 = a xn, n ≥ 0, a =

(
−0.125 0.692
−0.962 0.925

)
, (6.16)

and starting value x0 = (2, 2). Observe that a and x0 correspond to the
expectation or average defined in (6.15). For the deterministic problem (6.16)
one gets

tr(a)2 − 4det(a) = 0.82 − 4 0.55 = −1.56 < 0,

−1 + det(a) = −1 + 0.55 = −0.45 < 0.
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6.4 Conclusions

Therefore, equilibrium point (0, 0) is a stable spiral. In Figure 6.2 it have been
plotted the magenta point (det(a), tr(a)) = (0.55, 0.8) and confidence regions
(blue-red rings) at 50% and 90% confidence levels, respectively. One observes
that this plot is in agreement with the probabilistic results previously shown.

n=0

n=1

n=2

n=3

-4 -3 -2 -1 1 2 3
x1

-3

-2

-1

1

2

3

4
x2

Figure 6.3: Top: Phase portrait of random system of difference equations (6.10) with
m = 2 where random input vector Z has the Gaussian multivariate distribution given in
(6.14)–(6.15). Solid line connects the mean and rings represent confidence regions at 50%
and 90% confidence levels at every value of n ∈ {0, 1, 2, 3}. Bottom left and right: PDFs of
solution SP at n = 2 and n = 3, respectively, together with the corresponding confidence
regions.

6.4 Conclusions

Taking advantage of the so-called Random Variable Transformation technique,
in this chapter it has been determined the first probability density functions of
solution stochastic processes of random autonomous first-order linear systems
of differential and difference equations under very general hypotheses (statisti-
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Chapter 6. Random first-order linear systems of ordinary differential and difference equations

cal dependence among random input data and a wide class of randomness are
allowed).

With respect to systems of random differential equations, obtained results are
useful to approximate the first probability density function of solution of ran-
dom nonlinear systems which have been locally approximated using lineariza-
tion techniques. In the important case of planar systems, that corresponds to
n = 2 in (6.1), it is well-known that there exist several casuistries to classify
the (0, 0) equilibrium point using phase portrait as stable critical point (sink
and spiral sink), unstable critical point (source ans spiral source), saddle point
and center. As a significant difference between deterministic and random cases,
in the latter scenario each one of those cases corresponds to an event which
happens with a specific probability. An important feature of the approach is
the quantification of such probability. Although this has been done through
an illustrative example, where (0, 0) is a stable spiral point, the analysis can
be applied for the rest of cases.

From the key information obtained with respect to random difference equa-
tions, a nice probabilistic generalization of classical results for the important
particular case of planar systems has been provided. This includes the e-
xact quantification of probabilities associated to each possible states to zero-
equilibrium point in the case of difference equations. The study comprises
the important case of random autonomous linear difference equations of order
m as a particular case just taking random coefficient matrix as the so-called
companion matrix.

Besides, the results established in this chapter have a great potential regarding
applications since many physical models can be properly described by random
linear systems of difference equations. In addition, the study of many ran-
dom autonomous nonlinear models require the application of linearisation to
conduct their mathematical analysis.
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Chapter 7

Randomized binary Markov
chains

This chapter is addressed to give a generalization of the clas-
sical Markov methodology allowing the treatment of entries of tran-
sition matrix and initial condition as random variables instead of
deterministic values lying in the interval [0, 1]. This permits the
computation of the first probability density function of solution
stochastic process taking advantage of the so-called Random Vari-
able Transformation technique. It will be also computed the distri-
bution of some important quantities related to randomized Markov
chains (steady state, hitting times, etc.). All the theoretical results
are established under general assumptions and they are illustrated
by modelling the diffusion of a technology using real data.

7.1 Introduction

A SP is a mathematical representation that permits to describe how evolves a
phenomenon over the time in a probabilistic manner. Discrete Markov mod-
els, also referred to as Markov chains, are a fundamental class of SP where
the outcome of an experiment depends only on the outcome of the previous
experiment [7, 80]; this is known as Markov property. This property allows for
a considerable reduction of parameters necessary to represent the evolution of
a system modelled by such a process. Markov chains are very important and
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Chapter 7. Randomized binary Markov chains

widely used to solve problems in a large number of domains such as Opera-
tional Research, Computer Science and Distributed Systems, Communication
Networks, Biology, Physics, Chemistry, Economics, Finance and Social Sci-
ences, and Medical Decision Making, for instance. In Chapter 8 an example
of the applicability of Markov chain in order to model stroke disease will be
shown. They are often chosen as suitable tools for modelling very different
phenomena because Markov chains are fairly general and adaptable to many
contexts [64, 80]. Moreover, excellent numerical techniques exist for computing
statistics associated with them.

This is addressed to give a generalization of classical Markov chains by ran-
domizing entries of transition matrix and initial condition.

Let {xn = (x1
n, x

2
n)>, n = 0, 1, . . .} be a Markov chain, where n, denotes the

cycle or period. Components x1
n and x2

n lie in the interval ]0, 1[ and are usually
interpreted as percentages or probabilities. Moreover, they satisfy x1

n +x2
n = 1

for every n. In a Markov chain, the state xn is determined by the initial
condition {x0 = (x1

0, x
2
0)> and transition matrix while its asymptotic behaviour

only depends on transition matrix. This matrix is a constant matrix whose
entries represent the probabilities to change either from one state to another or
to remain in the same state between consecutive cycles. Although in practice
these entries are usually assumed deterministic, in this contribution this feature
is generalized by considering that entries of transition matrix are RVs instead
of deterministic constants. Obviously, these RVs are assumed to lie in the
interval [0, 1] because they must represent probabilities. In Figure 7.1, flow
diagram with transitions between states is showed.

21 q

1-q

p

1-p

Figure 7.1: Flow diagram to a binary Markov chain.

In the classical context, a Markov binary chain is described as follows

xn+1 = axn, n = 0, 1, 2, . . . , a =

(
p 1− q

1− p q

)
,

where a is the transition matrix and x0 = (x1
0, x

2
0)> = (x1

0, 1−x1
0)> is the initial

condition, i.e., the initial percentage of individuals in each group.
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7.2 Probabilistic solution

As indicated above, entries of transition matrix, p and q, as well as initial
condition, x0, will be considered as RVs. To distinguish RVs from deterministic
variables, hereinafter RVs will be written using capital letters. So, randomized
binary Markov chain is written as

Xn+1 = AXn, n = 0, 1, 2, . . . , A =

(
P 1−Q

1− P Q

)
,

X0 = (X1
0 , 1−X1

0 )>,
(7.1)

where X1
0 , P and Q are assumed to be absolutely continuous RVs defined on

a common complete probability space (Ω,A,P).

The aim of this chapter is to determine the 1-PDF of solution SP to randomized
binary Markov chains under general conditions. It will be also computed the
distribution of some important quantities related to Markov chains that are
very useful in practice. To reach this objective, RVT method will be applied.

The chapter is organized as follows. Section 7.2 is devoted to obtain the 1-
PDF of solution of a binary Markov chain and its stationary state. Some
distributions of interesting quantities of Markov chains will be calculated in
Section 7.3. In the last section, Section 7.5, the findings will be applied to
model the diffusion of a technology using real data by a binary Markov chain.

7.2 Probabilistic solution

This section is divided in two parts. In first subsection the 1-PDF of solution
to randomized binary Markov chain (7.1) will be computed under very general
assumptions. Second subsection is addressed to determine the PDF of its
steady state. These goals will be achieved applying RVT technique.

In order to obtain the PDF of solution to randomized binary Markov chain,
solution of problem (7.1) to n = 0, 1, . . . is needed and it is given by

Xn = AnX0

=


−1 +Q+ (−1 + P +Q)n (1−Q+ (−2 + P +Q)X1

0 )

−2 + P +Q

−1 + P + (−1 + P +Q)n (−1 +Q− (−2 + P +Q)X1
0 )

−2 + P +Q


(7.2)
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As P and Q are absolutely continuous RVs, then

P [{ω ∈ Ω : P (ω) +Q(ω)− 2 = 0}] = 0, ∀ω ∈ Ω.

As a consequence, the denominator of both components of (7.2) is well-defined.

7.2.1 First probability density function of Xn

As previously indicated, in this subsection the 1-PDF of discrete SP, Xn, given
by (7.2), will be obtained using RVT method. Since Xn is an SP and RVT
method applies to RVs, first fixing the cycle n and defining the following map-
ping r

y1 = r1 (x1
0, p, q) =

−1 + q + (−1 + p+ q)n (1− q + (−2 + p+ q)x1
0)

−2 + p+ q
,

y2 = r2 (x1
0, p, q) = p,

y3 = r3 (x1
0, p, q) = q.

The inverse mapping s of r is given by

x1
0 = s1 (y1, y2, y3) =

y1 (−2 + y2 + y3) + (−1 + y3) (−1 + (−1 + y2 + y3)
n
)

(−1 + y2 + y3)
n

(−2 + y2 + y3)
,

p = s2 (y1, y2, y3) = y2,

q = s3 (y1, y2, y3) = y3,

and the absolute value of the Jacobian

|J2| =
∣∣∣∣∂s1

∂y1

∣∣∣∣ =

∣∣∣∣ 1

(−1 + y2 + y3)
n

∣∣∣∣ 6= 0.

Therefore, according to Theorem 2.1 the PDF of random vector (Y1, Y2, Y3) is
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7.2 Probabilistic solution

fy1,y2,y3 (y1, y2, y3)

= fX1
0 ,P,Q

(
y1 (−2 + y2 + y3) + (−1 + y3) (−1 + (−1 + y2 + y3)

n
)

(−1 + y2 + y3)
n

(−2 + y2 + y3)
, y2, y3

)

×
∣∣∣∣ 1

(−1 + y2 + y3)
n

∣∣∣∣ .
Finally, marginalizing this expression with respect to P and Q and letting n
arbitrary, the 1-PDF of X1

n is obtained

fX
1

1 (x;n)

=

∫∫
D(P,Q)

fX1
0 ,P,Q

(
x (−2 + p+ q) + (−1 + q) (−1 + (−1 + p+ q)

n
)

(−1 + p+ q)
n

(−2 + p+ q)
, p, q

)

×
∣∣∣∣ 1

(−1 + p+ q)
n

∣∣∣∣ dq dp,

(7.3)

where D(P,Q) stands for the domain of random vector (P,Q).

Now, taking into account that X2
n = 1−X1

n for every n, and applying Propo-
sition 2.6 with a = −1 and b = 1, the 1-PDF of X2

n is given by

fX
2

1 (x;n) = fX
1

1 (1− x;n)

=

∫∫
D(P,Q)

fx1
0,P,Q

(
(1− x) (−2 + p+ q) + (−1 + q) (−1 + (−1 + p+ q)

n
)

(−1 + p+ q)
n

(−2 + p+ q)
, p, q

)

×
∣∣∣∣ 1

(−1 + p+ q)
n

∣∣∣∣ dq dp.

(7.4)

One of the most useful applications of these explicit expressions obtained to
1-PDFs, fX

i

1 (x;n), i = 1, 2, is the direct computation of all one-dimensional
statistical moments of X i

n,

E
[(
X i
n

)k]
=

∫
R
xkfX

i

1 (x;n) dx, k = 1, 2, . . .
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Observe that if k = 1 one obtains the mean of X i
n while the variance can be

computed using the above moments for k = 1 and k = 2, since

V
[
X i
n

]
= E

[(
X i
n

)2]− (E [X i
n

])2
.

7.2.2 First probability density function of the steady state

An important issue in dealing with Markov chains is to determine the steady
state. From deterministic theory one infers the steady state to randomized
Markov chain (7.1)

X∞ =


1−Q

2− P −Q
1− P

2− P −Q

 . (7.5)

Notice that X∞ is well-defined because P and Q are absolutely continuous
RVs, then P [{ω ∈ Ω : P (ω) +Q(ω)− 2 = 0}] = 0, for all event ω ∈ Ω.

Now, the PDF of X∞ will be obtained. Theorem 2.1 is applied defining the
following mapping, r, based on expression (7.5)

y1 = r1 (p, q) =
1− q

2− p− q
,

y2 = r2 (p, q) = q.

The inverse mapping, s, of r is given by

p = s1 (y1, y2) =
−1− y1 (−2 + y2) + y2

y1

,

q = s2 (y1, y2) = y2,

and the absolute value of the Jacobian of s is

|J2| =
∣∣∣∣∂s1

∂y1

∣∣∣∣ =

∣∣∣∣1− y2

y2
1

∣∣∣∣ 6= 0.
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Then, applying Theorem 2.1, the PDF corresponding to the first component
of the steady state, X1

∞, is

fX1
∞

(x) =

∫
D(Q)

fP,Q

(
−1− x(2 + q) + q

x
, q

) ∣∣∣∣1− qx2

∣∣∣∣ dq. (7.6)

To compute the PDF corresponding to the second component of the steady
state, X2

∞, Proposition 2.6 with a = −1 and b = 1 will be applied, taking into
account that X2

∞ = 1−X1
∞, obtaining

fX2
∞

(x) = fX1
∞

(1− x) =

=

∫
D(Q)

fP,Q

(
−1− (1− x)(2 + q) + q

1− x
, q

) ∣∣∣∣ 1− q
(1− x)2

∣∣∣∣ dq. (7.7)

7.3 Relevant probability distributions associated to
randomized Markov chains

In this section the PDF of some useful quantities dealing with randomized
discrete Markov chains will be obtained. These quantities are the time until
a given proportion of the subpopulation is reached, the probability of first
passage and the mean first passage time. In this analysis these quantities
extent their deterministic counterpart to random scenario.

7.3.1 Distribution of time until a given proportion of a
subpopulation is reached

It is useful to know when the percentage of a group in the population will
attain a certain level. This motivates the computation of the distribution of
the time, Ni, i = 1, 2, until a given proportion, ρi, of population of state i is
reached. Now, it will be computedN1 corresponding to the first subpopulation.
Then, let us consider the following relation obtained from the first component
of equation (7.2)

ρ1 =
−1 + q + (−1 + p+ q)n1(1− q + (−2 + p+ q)x1

0)

−2 + p+ q
. (7.8)
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In order to obtain the 1-PDF, fN1
(n), first n1 is isolated from equation (7.8)

and then capital letter notation is used to random inputs X1
0 , P and Q. This

yields

N1 =
Log

(
1−Q+(−2+P+Q)ρ1
1−Q+(−2+P+Q)X1

0

)
Log(−1 + P +Q)

. (7.9)

This RV represents the time until a percentage ρ1 of the subpopulation 1 has
been reached, so N1 must be positive. As

P [{ω ∈ Ω : 0 < P (ω) +Q(ω)− 1 < 1}] = 1,

then

P
[{
ω ∈ Ω : 0 <

1−Q+ (−2 + P +Q)ρ1

1−Q+ (−2 + P +Q)X1
0

< 1

}]
= 1

must hold in order to guarantee positiveness of N1. From this condition one
can deduce the conditions under which N1 can be calculated as

P
[{
ω ∈ Ω : X1

0 (ω) < ρ1 <
1−Q(ω)

2− P (ω)−Q(ω)

}]
= 1, (7.10)

or

P
[{
ω ∈ Ω :

1−Q(ω)

2− P (ω)−Q(ω)
< ρ1 < X1

0 (ω)

}]
= 1. (7.11)

These conditions are very intuitive. Indeed, it is easy to check that X1
n given

by (7.2) is monotone respect to n. If it is a monotonically increasing (respect.
decreasing) sequence, then condition (7.10) (respect. (7.11)) applies because
the proportion ρ1 will vary in the interval [X1

0 (ω), X1
∞] (respect. [X1

∞, X
1
0 (ω)])

determined by initial condition and the steady state (7.5).

Using RVT technique with an appropriate mapping r inspired in (7.9),
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y1 = r1 (x1
0, p, q) =

Log
(

1−q+(−2+p+q)ρ1
1−q+(−2+p+q)x1

0

)
Log(−1 + p+ q)

,

y2 = r2 (x1
0, p, q) = p,

y3 = r3 (x1
0, p, q) = q,

it can be proved that the 1-PDF of the time until a percentage, ρ1, of the
subpopulation 1 has been reached is given by

fN1
(n)

=

∫∫
R2

fX1
0 ,P,Q

(
(1− q + (−1 + q) (−1 + p+ q)

n
+ ρ1 (−2 + p+ q))

(−1 + p+ q)
n

(−2 + p+ q)
, p, q

)

×
∣∣∣∣(−1 + q − ρ1 (−2 + p+ q))Log (−1 + p+ q)

(−1 + p+ q)
n

(−2 + p+ q)

∣∣∣∣ dpdq.

(7.12)

Observe that, for the sake of simplicity the domain of integral (7.12) has not
been specified but in practice this domain must be determined taking into
account conditions (7.10) or (7.11) depending upon X1

n is an increasing or
decreasing sequence, respectively.

In an analogous way, one can compute the 1-PDF of the time, N2, until a given
proportion, ρ2, of the subpopulation 2 is reached. This 1-PDF is given by

fN2
(n)

=

∫∫
R2

fX1
0 ,P,Q

(
(−1 + p+ (−1 + q) (−1 + p+ q)

n − ρ2 (−2 + p+ q))

(−1 + p+ q)
n

(−2 + p+ q)
, p, q

)

×
∣∣∣∣(1− p+ ρ2 (−2 + p+ q))Log (−1 + p+ q)

(−1 + p+ q)
n

(−2 + p+ q)

∣∣∣∣ dp dq.
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7.3.2 Distribution of probability of first passage

In this subsection the 1-PDF of the probability of first passage, f (n)
i,j , is ob-

tained. f
(n)
i,j is the probability starting from i, that the first visit to state j

occurs at time n, [80]. If i = j, f (n)
i,i is called probability of first return. In

addition, from f
(n)
i,j , fi,j can be calculated, that is, the probability, starting

from i, that the first visit to state j occurs in a finite time. Probabilities f (n)
i,j

and fi,j are defined by [80]

f
(n)
i,j =


Pi,j, if n = 1,∑
l∈S\{j}

Pi,lf
(n−1)
l,j , if n ≥ 2,

(7.13)

and

fi,j = Pi,j +
∑

l∈S\{j}

Pi,lfl,j =
∞∑
n=1

f
(n)
i,j , (7.14)

where S is the state space and Pi,j is the probability of moving from state i to
state j at the next step.

Here, discrete Markov chains with two states are studied, and then expression
(7.13) for each pair (i, j)∈ S × S is given by

f
(n)
1,1 =

{
P, if n = 1,
(1− P )Qn−2(1−Q), if n ≥ 2,

f
(n)
1,2 = P n−1(1− P ), n ≥ 1,

f
(n)
2,2 =

{
Q, if n = 1,
(1−Q)P n−2(1− P ), if n ≥ 2,

f
(n)
2,1 = Qn−1(1−Q), n ≥ 1.

(7.15)

With regard to expression (7.14), for all pair (i, j) ∈ S×S, fi,j = 1. Therefore
all states are recurrent and then Markov chain is also recurrent.

Now, it will be obtained the 1-PDF of each expression in (7.15) to each cycle
n. The PDF of f (n)

1,1 with n = 1 is the PDF of RV P , it is

f
f1,1
1 (x; 1) = fP (p).
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In order to obtain the 1-PDF of f (n)
1,1 , ∀n ≥ 2, RVT technique is applied. Fixed

n ≥ 2, the following transformation, r, is considered

x = r1(p, q) = (1− p)qn−2(1− q),
y = r2(p, q) = q.

Then, its inverse transformation, s, is given by

p = s1(x, y) = 1 +
xy2−n

−1 + y
,

q = s2(x, y) = y,

and the absolute value of the Jacobian is |J2| = | y
2−n

−1+y
| which is nonzero since

Q(ω) 6= 0 w.p. 1. Therefore, applying Theorem 2.1, the PDF of random vector
(X,Y ) is

fX,Y (x, y) = fP,Q

(
1 +

xy2−n

−1 + y
, y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ .
Finally, taking n ≥ 2 arbitrary, the 1-PDF of f (n)

1,1 is given by

f
f1,1
1 (x;n) =

∫
D(Q)

fP,Q

(
1 +

xy2−n

−1 + y
, y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ dy. (7.16)

Following the same argument, it is easy to check that the 1-PDF of f (n)
2,2 is

given by

f
f2,2
1 (x;n) =


fQ(q), if n = 1,∫
D(Q)

fP,Q

(
y, 1 +

xy2−n

−1 + y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ dy, if n ≥ 2.

In the case of the 1-PDF of f (n)
2,1 the inverse mapping, for each n ≥ 1, of

function qn−1(1 − q) can not be obtained. So, the inverse shall be calculated
numerically, using for example the Lagrange-Bürman theorem [1, 16]. The
process to determine the 1- PDF of f (n)

1,2 is analogous.
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7.3.3 Distribution of mean first passage time

For all i, j ∈ S, it can be defined the expected hitting time of state j, starting
from state i, mi,j, using the probability of first passage. That is, as the study
is based in a discrete Markov chain, the expectation of the probabilities f (n)

i,j

is given by

mi,j =
∞∑
n=1

nf
(n)
i,j .

As it is well-known in the literature [80],mi,j can be obtained from the following
linear system of equations

mi,j = 1 +
∑

k∈S\{j}

Pi,kmk,j.

Then, as there are two possibles states, the different expected times are the
following

m1,1 =
2− P −Q

1−Q
, m1,2 =

1

1− P
,

m2,2 =
2− P −Q

1− P
, m2,1 =

1

1−Q
.

(7.17)

RVT technique can be applied, using appropriate mappings, in order to obtain
the PDF of RVs given in (7.17). Below, obtained results are summarized

• PDF of m1,1:

fm1,1
(x) =

∫
D(Q)

fP,Q(2 + x(−1 + q)− q, q)| − 1 + q|dq. (7.18)

• PDF of m1,2:

fm1,2
(x) = fP

(
x− 1

x

)
1

x2
. (7.19)
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• PDF of m2,1:

fm2,1
(x) = fQ

(
x− 1

x

)
1

x2
. (7.20)

• PDF of m2,2:

fm2,2
(x) =

∫
D(P )

fP,Q(p, 2 + p(−1 + x)− x)| − 1 + p|dp. (7.21)

7.4 An application to model the spread of a technology

In this section an application of the previous theoretical results using real data
will be shown. In this example it is considered the number of mobile lines
per type of contract in Spain, it is, postpaid or prepaid. Assuming that this
situation can be modelled by the binary Markov chain (7.1). For this proposal
the data provided by ‘Comisión Nacional de los Mercados y la Competencia’
[26] will be considered. In Table 7.1, the number of mobile lines per type of
contract (postpaid and prepaid) and total number of mobile lines during period
2001–2015 in Spain are collected.

As there are two types of contract, postpaid and prepaid, the state space
is S = {1, 2}, and the value 1 to postpaid lines and 2 to prepaid lines will
be assigned. As it is assumed that 0 < X1

n, X
2
n < 1, the first step is to

transform data given in Table 7.1 in proportions. Data in percentages is given
in Table 7.2. Denoting these quantities by Y k

j , where k ∈ S denotes the
corresponding state space and j ∈ J = {0, 1, . . . , 14}, corresponds to years
2001, 2002, . . . , 2015, respectively.

To obtain solution, first it is needed to know the distributions of inputs, so,
it is necessary to choose specific probability distributions to random model
parameters X1

0 , P and Q. With this aim, in a second step, data collected in
Table 7.2 are used in order to assign a reliable probabilistic distributions to
random inputs, P , Q and X1

0 , which hereinafter will be assumed independent
RVs.

On the one hand, as X1
0 represents initial proportion of people that has a

postpaid mobile line, it will be assumed that X1
0 has a Uniform distribution

with parameters 0 ≤ a, b ≤ 1. On the other hand, P and Q are probabilities
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Year 2001 2002 2003 2004 2005

Postpaid 10 384 261 12 657 346 15 592 659 18 555 948 21 980 367

Prepaid 19 271 468 20 872 651 21 627 180 20 066 634 20 713 465

Total 29 655 729 33 530 997 37 219 839 38 622 582 42 693 832

Year 2006 2007 2008 2009 2010

Postpaid 24 794 696 27 657 855 29 310 320 30 187 230 31 420 525

Prepaid 20 880 959 20 764 615 20 313 019 20 865 463 19 968 892

Total 45 675 855 48 422 470 49 623 339 51 052 693 51 389 417

Year 2011 2012 2013 2014 2015

Postpaid 32 220 636 32 850 295 34 409 470 36 199 911 37 618 054

Prepaid 20 369 871 17 814 804 15 749 219 14 606 340 13 449 515

Total 52 590 507 50 665 099 50 158 689 50 806 251 51 067 569

Table 7.1: Number of mobile lines per type of contract (postpaid and prepaid) and total
of mobile lines during period 2001–2015 in Spain. Source CNMC [26].

and then they lie between 0 and 1. Therefore it is considered that both have
Beta distributions with parameters a1, a2 > 0 and b1, b2 > 0, respectively.

As X2
n = 1 − X1

n, the first component of solution SP, X1
n, will be studied.

In order to determine positive parameters a, b, a1, a2, b1 and b2, it will be
minimized the mean square error between data {Y 1

j }j∈J and the expectation
of solution SP, {X1

j }j∈J , which can be obtained from the 1-PDF given in (7.3).
Introducing the probability distributions to the optimization programme

min
0 < a, b < 1

a1, a2, b1, b2 > 0

∑
j∈J

(Y 1
j − E[X1

j (a, b, a1, a2, b1, b2)])2,

the following adjusted parameters are obtained

a = 0.334388, b = 0.361633,
a1 = 199.218, a2 = 2.01382,
b1 = 444.913, b2 = 34.0011.
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Year 2001 2002 2003 2004 2005

Postpaid 0.350160 0.377482 0.418934 0.480443 0.514837

Prepaid 0.649840 0.622518 0.581066 0.519557 0.485163

Year 2006 2007 2008 2009 2010

Postpaid 0.542843 0.571178 0.590656 0.591296 0.61142

Prepaid 0.457157 0.428822 0.409344 0.408704 0.38858

Year 2011 2012 2013 2014 2015

Postpaid 0.612670 0.648381 0.686012 0.712509 0.736633

Prepaid 0.387330 0.351619 0.313988 0.287491 0.263367

Table 7.2: Number of mobile lines in percentage per type of contract (postpaid and prepaid)
during period 2001–2015 in Spain. Source CNMC [26].

Once random inputs are determined, one can calculate the 1-PDF of solution
of each state and other useful quantities as it has been described in Sections
7.2 and 7.3.

At this point, it is important to highlight that this approach permits to predict
diffusion of mobile lines per type of contract using both punctual predictions
(mean) and probabilistic predictions (confidence intervals). This is a main
difference against classical approach where only punctual predictions are pro-
vided. This distinctive feature is possible because randomization of probabili-
ties of transition matrix and initial conditions. Naturally, this turns out to be
a more realistic prediction since sampled data usually contain uncertainty as
has been pointed out earlier.

In Figure 7.2, proportion of postpaid mobile lines in Spain in period 2001–2015,
{Y 1

j }j∈J , obtained from Table 7.2 is represented in blue points. Expectation
of {X1

j }j∈J is represented in a solid line. One can observe a good fit between
{Y 1

j }j∈J and expected values {E[X1
j ]}j∈J . Also, 75% and 95% confidence in-

tervals are plotted. These confidence intervals have been computed as follows.
Let us fix a cycle value n̂ ≥ 1 and α ∈ (0, 1), and secondly determine z1 = z1(n̂)
and z2 = z2(n̂) such that
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∫ z1

0

fX
1

1 (x; n̂) dx =
α

2
=

∫ 1

z2

fX
1

1 (x; n̂) dx .

Then, (1− α)× 100%-confidence interval is specified by

1− α = P
[{
ω ∈ Ω : X1

n̂(ω) ∈ [z1, z2)]
}]

=

∫ z2

z1

fX
1

1 (x; n̂) dx .

real data

Expectation

75 % Confidence Interval

95 % Confidence Interval

2 4 6 8 10 12 14
n

0.2

0.4

0.6

0.8

X
1

Figure 7.2: Expectation of postpaid mobile lines (solid line) and 75-95% confidence intervals
(dotted lines). Points represent real data.

For each n ∈ N fixed, the 1-PDF of X1
n, fX

1

1 (x;n), is determined by (7.3) using
the distributions of input RVs, say, fX1

0
(x1

0), fP (p) and fQ(q). As X1
0 , P and

Q are assumed independent RVs, then fX1
0 ,P,Q

(x1
0, p, q) = fX1

0
(x1

0)fP (p)fQ(q).
In Figure 7.3-left, the 1-PDF of X1

n is plotted at different fixed cycles: n = 1,
in blue, n = 6 in red, n = 11 in gray, etc. One can observe that these 1-
PDFs, as n → ∞, tend to the PDF of the steady state, fX1

∞
(x), calculated

by expression (7.6) and represented in black colour. Figure 7.3-left shows that
fX

1

1 (x; 70) practically match with fX1
∞

(x). The 1-PDF ofX2
n is calculated using

transformation from fX
1

1 (x;n) given by (7.4). The analogous transformation
(7.7) applied to fX1

∞
(x) is used to determine de PDF for the steady state of

X2
n, fX2

∞
(x). Results related to prepaid lines are shown in Figure 7.3-right. As

it is expected, one can observe the symmetry of results in both subfigures.
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f
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Figure 7.3: Left: Plot of fX
1

1 (x;n) given by (7.3) for several cycles and fX1
∞

(x) given by

(7.6). Right: Plot of fX
2

1 (x;n) given by (7.4) for several cycles and fX2
∞

(x) given by (7.7).

Figure 7.4 shows the distribution of time until a given proportion of population,
ρ1, possesses postpaid line mobile. This PDF is determined by the equation
(7.12) and it is represented for different values of these proportions, ρ1. As is
it expected, when the value of ρ1 increases, the maximum of the corresponding
PDFs moves to the right. In Table 7.3, the mean and the standard deviation
of fN1

(n) at several values of ρ1 are given. For example, from Figure 7.4,
the distribution of time until a 40% of population has a postpaid mobile line
reaches its maximum near 1 and it is narrow. Notice that the expectation
and the standard deviation in Table 7.3 for ρ1 = 0.4 is in agreement with the
representation of the corresponding PDF in Figure 7.4. One can observe, for
each ρ1 fixed, that PDF representations in Figure 7.4 are also in agreement
with corresponding values of Table 7.3.

ρ1 0.4 0.45 0.5 0.55 0.6

E[fN1
] 1.275 2.648 4.207 6.0127 8.149

σ[fN1
] 0.332 0.629 1.044 1.638 2.506

Table 7.3: Expectation and standard deviation of fN1(n) (given by (7.12)) for several values
of ρ1.

The 1-PDF of the probability of first return f (n)
1,1 given by (7.16) at cycle n = 1,

it is, the probability of remaining at state 1, at cycle 1, starting from state 1
is represented in Figure 7.5. From representation of 1-PDF f

f1,1
1 (x; 1), one

can conclude that if you have a postpaid line now, you will probably have a
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ρ1=0.4 ρ1=0.45

ρ1=0.5 ρ1=0.55
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Figure 7.4: Plot of fN1(n) given by (7.12) for several values of ρ1.

postpaid line next year. This is in agreement with the expected value of P ,
E[P ] = 0.98.

0.2 0.4 0.6 0.8 1.0

20

40

60

f1
f1,1 (x;1)

Figure 7.5: 1-PDF of the probability of first return f (n)
1,1 given by (7.16) at n = 1.
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In Figure 7.6-left, the 1-PDF of the probability of first passage f (n)
1,1 at the rest

of cycles, n ≥ 2, is plotted. Results are in agreement with Figure 7.5 because
a little proportion of population change from postpaid line to prepaid line.
In Figure 7.6-right expectation plus/minus standard deviation for n ≥ 2 are
plotted.

[f1,1
(n) ]

[f1,1
(n) ]±σ[f1,1

(n) ]

5 10 15 20
n

0.0005

0.0010

0.0015

0.0020

Figure 7.6: Left: 1-PDF of the probability of first return f
(n)
1,1 given by (7.16) at cycles

n ∈ {2, 4, . . . , 20} (Corresponding to the solid lines). Right: Expectation of f (n)
1,1 plus/minus

standard deviation for n ≥ 2.

As it is indicated in the Subsection 7.3.2, the 1-PDF of first passage f (n)
2,1 is

calculated numerically using Lagrange-Bürman Theorem. Results for the 1-
PDF of the probability of first passage f (n)

2,1 are showed in the upper part of
Figure 7.7 (top). Due to scale in vertical axis, for the sake of clarity in the
presentation, it has been split in two plots. In Figure 7.7 (bottom), expectation
plus/minus standard deviation for n ≥ 2 are plotted.

Finally, in Figure 7.8 the results for the PDF of the mean first passage time
between two states, mi,j, given by (7.18)–(7.21) are shown. In Table 7.8 expec-
tation and standard deviation of each mi,j are provided. In both, figure and
table, one observes that expected mean time passage m2,1 is approximately 14.
The expected mean time passage m1,1 is approximately 1, in accordance with
previous comments.
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[f2,1
(n) ]

[f2,1
(n) ]±σ[f2,1
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n
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Figure 7.7: Top-left: 1-PDF of the probability of first return f (n)
2,1 at cycles n ∈ {2, 3, . . . ,

20}. Top-right: Zoom of 1-PDF of the probability of first return f
(n)
2,1 at cycles n ∈ {2, 3,

. . . , 9}. Bottom: Expectation of f (n)
2,1 plus/minus standard deviation for n ≥ 2.

m1,1 m1,2 m2,1 m2,2

E[·] 1.14493 197.325 14.4818 14.9909

σ[·] 0.105755 447.492 2.47 29.5575

Table 7.4: Expectation and standard deviation of the expected hitting time of state j
starting from state i, mi,j .

7.5 Conclusions

In this chapter it has been provided a full probabilistic description of solution
of a random binary Markov chain under very general assumptions on random
inputs. These random inputs are the probabilities of transition matrix and ini-
tial condition. By means of randomization of these probabilities, the approach
provides a generalization of relevant results to classical binary Markov chains.
The aforementioned full probabilistic description has been made through the
first probability density function of the discrete solution stochastic process and
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Figure 7.8: PDF of the expected hitting time of state j starting from state i, mi,j , given
by (7.18)–(7.21).

the probability density function associated to the steady state. Furthermore,
the probability density function of a key time having specific interpretation
in practice has been determined. Other quantities of great interest in the de-
terministic context of Markov chains, like the probability of first passage time
and the mean first passage time have been randomized using this approach.
Then, a full probabilistic description of these quantities have been established.
A key mathematical tool to conduct the analysis has been the application of
Random Variable Transformation technique. Finally the findings have been
illustrated to model the percentage of mobile lines per contract type (postpaid
and prepaid) in Spain using real data. This data are well-modelled through a
random binary Markov chain.
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Chapter 8

Probabilistic solution of a
Markov chain to model stroke

disease

Classical Markov models are defined through a matrix whose
columns (or rows) are deterministic values representing transition
probabilities. However, in practice these quantities could often not
be known in a deterministic manner, therefore, it is more realis-
tic to consider them as random variables. Following this approach,
this chapter is aimed to give a technical generalization of classi-
cal Markov methodology in order to improve modelling of stroke
disease when dealing with real data. With this goal, entries of
transition matrix of a Markov chain with three states (susceptible,
reliant and deceased) that has been previously proposed to model
stroke disease will be randomized. This permits the computation of
the first probability density function of solution stochastic process
taking advantage of the so-called Random Variable Transformation
technique. Afterwards, punctual and probabilistic predictions are
computed from the first probability density function. In addition,
probability density functions of time instants until a certain pro-
portion of total population remains susceptible, reliant and deceased
are also computed. The study is completed showing the usefulness
of the computational approach to determine, from a probabilistic
point of view, key quantities in medical decision making, such as
cost-effectiveness ratio.
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8.1 Introduction

Discrete Markov SPs or discrete Markov chains are often applied to model
dynamics of medical events over evenly spaced times, n = 0, 1, 2, . . . , usually
referred to as periods or cycles. In particular, these kind of SPs have been
considered for different purposes. For example, to built and simulate models
for chronic illnesses [12, 84], to analyse data of hospital infection [28], to pro-
vide predictions based on random-effects Markov models applied to multiple
sclerosis progression [62], to calculate the prevalence of certain diseases and to
perform budget impact analysis [63], to model human papilloma virus [58], etc.
In these models individuals are classified in several disjoint classes or states.
The evolution of percentage (or number of individuals) in each cycle n is deter-
mined by the initial distribution of individuals and a stochastic matrix, usually
termed transition matrix. An important assumption of standard Markov mo-
dels is that all states make up a closed system. This means that any individuals
can neither leave nor join the system, hence having a constant population size
over time. This hypothesis holds in clinical context where doctors and public
health authorities are often interested in the evolution of patient groups in
controlled studies over time. In the case of discrete homogeneous Markov SPs,
transition matrix is a constant matrix whose entries represent probabilities to
change either from one state to another or to remain in the same state bet-
ween two consecutive cycles. When these probabilities depend upon time, the
SPs are termed non-homogeneous time discrete Markov chains. In both cases,
entries of transition matrix are assumed to be deterministic quantities (num-
bers or functions, respectively). In this chapter, this feature is generalized for
discrete homogeneous Markov chains by considering that entries in transition
matrix could be RVs rather than deterministic constants. Naturally, RVs are
assumed to take values in the interval [0, 1], thus representing probabilities
for every realization of such RVs. In this manner, more flexibility is allowed
when probabilities are assigned. Throughout this chapter, this approach will
be considered to generalize stroke disease model proposed in [64]. It is impor-
tant to point out that the application of this approach is not limited to stroke
disease model presented later but is also valid for modelling any disease via
time discrete homogeneous Markov chains.

According to [64], stroke disease can be modelled via a Markov chain conside-
ring the three following states, Susceptible (S), Reliant (R) and Deceased (D).
In Figure 8.1 influence or flow diagram associated to Markov model is shown.
In this graphical representation, transitions among states have been included.
One observes that, apart from remaining in each state, the possible transitions
between states are S → R, S → D and R → D. Thus, reliant population
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RS

D

Figure 8.1: Flow diagram for Markov model (8.1)–(8.2). S, R and D stand for Susceptible
(S), Reliant (R) and Deceased (D).

cannot recover from the disease. Obviously, state D is an absorbing state. In
this study susceptible individuals make up a population at risk, i.e., they have
certain pathologies (hypertension, cholesterol, etc.) that may conduct to suffer
a stroke. Therefore, as it shall been sawn below, the model involves a relative
risk.

In [64], Markov model is formulated as follows Sn+1

Rn+1

Dn+1

 = T

 Sn
Rn
Dn

 , (S0, R0, D0)> = (s0, r0, d0)>, n = 0, 1, 2, . . . ,

where Sn, Rn and Dn are the proportion of susceptible, reliant and deceased
subpopulations in cycle n, respectively. As a matter of fact in dealing with
markovian models, it will be assumed that Sn +Rn +Dn = 1 for each n. As it
is plausible from a practical standpoint, it is assumed that initially there are
no deaths, hence the initial cohort corresponds with the deterministic vector
(s0, r0, 0)>, s0 + r0 = 1. Otherwise, subsequent analysis follows analogously.
Moreover, according to results given in [64], it shall been assumed that transi-
tion matrix T is given by

T =

 e−t1rr + e−(t2+t3(rr−1))−1 0 0
1− e−t1rr 1− p 0

1− e−(t2+t3(rr−1)) p 1

 ,
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where

• rr is the relative risk of suffering a stroke,

• t1 is the non-mortal stroke rate,

• t2 is the deceased rate due to any cause,

• t3 is the stroke death rate and,

• p is the probability of transition R→ D,

rates t1, t2 and t3 are given for a general population. For the sake of clarity,
the construction of transition matrix, T , in connection with [64, Table 3] and
the meaning of parameters previously introduced is explained. Element (2, 1)
of matrix T , T21, represents the probability of suffering a non-mortal stroke
in cycle n + 1 given that individual was susceptible in cycle n (S → R). The
probability of having a stroke is given by 1 minus the probability of does not
have it, being these kind of probabilities usually modelled by an exponential
decay. In [64, Table 3] this probability is given by 1 − e-(‘non-mortal stroke rate’).
The ‘non-mortal stroke rate’ is given by t1 and taking into account that it is
population under risk, this leads to term t1rr. T31 denotes the probability of
transition S → D. In [64, Table 3], this probability is given by 1−e−(‘death rate’).
Observe that the ‘death rate’ involved in T31 is given by (t2 + t3(rr − 1)) =
t2−t3 +t3 rr, that is, the non-stroke death rate for a general population, t2−t3,
adding the term corresponding to stroke death rate for population under risk
given by t3 rr.

At this point it is important to remark that parameter rr that is termed relative
risk, in the context of medicine is a positive number [66, 97].

Remark 8.1 From a mathematical standpoint parameters t1, t2, t3 and rr
must satisfy condition 0 < T21 + T31 < 1. This guarantees that T11 ∈]0, 1[. As
in practice, the rates t1, t2 and t3 are small, former condition holds.

As it has been pointed out previously, a major difference with respect to con-
tribution [64] is that some model parameters, namely, t2, rr and p, involved in
transition matrix T are assumed to be absolutely continuous RVs rather than
deterministic constants. Hereinafter, as usual in Probability Theory, capital
letters will be used to highlight this difference. Hence, the following identifica-
tions, t2 ⇒ T2, rr ⇒ RR and p⇒ P , will be used (see expression (8.2)). This
decision is motivated inasmuch as, in practice, death rate due to any cause,
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8.1 Introduction

T2, is not known in a deterministic way and relative risk of suffering a stroke,
RR, varies among physical characteristic of individuals being this variation
non-deterministic. Regarding parameter P , which represents a probability, it
can be described by a RV whose domain is contained in interval ]0, 1[, allowing
for more flexibility throughout the study. In the following, triplet (Ω,A,P)
will denote the common complete probability space where RVs T2, RR and P
are defined.

Summarizing, the model under study is Sn+1

Rn+1

Dn+1

 = T

 Sn
Rn
Dn

 , (S0, R0, D0)> = (s0, r0, 0)>, n = 0, 1, 2, . . . ,

(8.1)

where transition matrix is given by

T =

 e−t1RR + e−(T2+t3(RR−1))−1 0 0
1− e−t1RR 1− P 0

1− e−(T2+t3(RR−1)) P 1

 . (8.2)

In connection with Remark 8.1 and, in random context, to guarantee positive-
ness of entry T11(ω) of random matrix (8.2), it must be imposed that RVs RR
and T2 satisfy the following condition

P [0 < T21(ω) + T31(ω) < 1] = 1, ∀ω ∈ Ω, (8.3)

where

T21(ω) + T31(ω) = 2− e−t1RR(ω)− e−(T2(ω)+t3(RR(ω)−1)) .

To conduct the study, the so-called RVT method will be used. This technique
has been successfully applied in previous contributions related to epidemiologi-
cal models, some examples include [15, 18, 34, 35, 54]. RVT method allows to
obtain the 1-PDF of solution SPs, Sn, Rn, Dn, to model (8.1)–(8.2). Additio-
nally, PDFs of times until a given proportion of population remains susceptible,
reliant and deceased, respectively will be computed. Finally, the PDF of cost-
effectiveness ratio will be also computed taking advantage of RVT technique.
This is a key quantity in medical decision making.
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Chapter 8. Probabilistic solution of a Markov chain to model stroke disease

The chapter is organized as follows. Section 8.2 is devoted to provide a proba-
bilistic solution of randomized Markov model (8.1)–(8.2) by means of the first
probability density function for each subpopulation, susceptible, reliant and
deceased. For the sake of clarity this section has been divided into two subsec-
tions. First, in Subsection 8.2.1 the main statistical properties, such as, mean,
variance and confidence intervals, are computed. Secondly, Subsection 8.2.2
is addressed to obtain the probabilistic distribution until a given proportion
of population remains susceptible. In Section 8.3 a cost-effectiveness analy-
sis is performed. In Section 8.4, all theoretical results developed throughout
Sections 8.2 and 8.3 are applied to simulate stroke disease taking particular
distributions for random input data that are in agreement with the extant
literature. In Section 5.4, it will be discussed the main findings.

8.2 Probabilistic solution

As it has been said previously, the goal of this section is to obtain the 1-
PDF of the number of susceptibles, reliants and deceaseds, which are the
components of solution SP of random IVP (8.1)–(8.2). This will be done
in terms of random input data. For the sake of generality as it has been in-
dicated previously, throughout this subsection RR, T2 and P are assumed to
be absolutely continuous dependent RVs, defined on a common probability
space (Ω,A,P), with joint PDF fRR,T2,P (rr, t2, p) defined on a domain, say
D(RR, T2, P ). It generalizes the case where RR, T2 and P are assumed to
be independent RVs with PDFs fRR(rr), fT2

(t2) and fP (p), since in that case
fRR,T2,P (rr, t2, p) = fRR(rr)fT2

(t2)fP (p). Although less general, independence
is a hypothesis usually embraced in probabilistic applications.

As it is well known, the solution of IVP (8.1)–(8.2) is Sn
Rn
Dn

 = T n

 s0

r0

0

 . (8.4)

To conduct the study it is convenient to recast entries of transition matrix T
as follows

T =

 1−K −Q 0 0
K 1− P 0
Q P 1

 ,
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8.2 Probabilistic solution

where K = 1 − e−t1RR and Q = 1 − e−(T2+t3(RR−1)). Then, developing the
right-hand side of (8.4) one gets

Sn = (1−K −Q)ns0

Rn =
(1−K −Q)nKs0 − (1− P )n(r0(−P +Q+K) +Ks0)

P −Q−K

Dn = r0(1− (1− P )n) +
((P −Q)(1− (1−Q−K)n) + (−1 + (1− P )n)K)s0

P −Q−K
(8.5)

Notice that, as P , Q and K are absolutely continuous RVs, the denominator of
second and third components of expression (8.5) are non-zero w.p. 1. Taking
into account Sn+Rn+Dn = 1 for each n, it is enough to determine the 1-PDF
of susceptible and reliant subpopulations, since from them, it is straightforward
to obtain the 1-PDF of deceased subpopulation.

This goal will be achieved by applying RVT method twice. First, the joint
PDF, fSn,Rn,P (s, r, p), of random vector (Sn, Rn, P ) will be computed from joint
PDF, fK,Q,P (k, q, p), of (K,Q,P ), and secondly, the joint PDF, fK,Q,P (k, q, p),
of (K,Q,P ) will be computed from joint PDF, fRR,T2,P (rr, t2, p), of random
input data (RR, T2, P ).

Now, fixing the cycle n, RVT method, Theorem 2.1, is applied with the follo-
wing identification

X = (K,Q,P ), Y = (Y1, Y2, Y3), Y = r(X)

being the mapping r : R3 → R3

y1 = r1(k, q, p) = (1− k − q)ns0,

y2 = r2(k, q, p) =
(1− k − q)nks0 − (1− p)n (r0(−p+ q + k) + ks0)

p− q − k
,

y3 = r3(k, q, p) = p.
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Isolating k, q and p one gets

k =

(
−1 + y3 +

(
y1
s0

) 1
n

)
(r0(1− y3)n − y2)

(1− y3)ns0 − y1

,

q =
y1 − y1

(
y1
s0

) 1
n

+ (−s0 + (r0 + s0)
(
y1
s0

) 1
n

+ r0(−1 + y3))(1− y3)n

y1 − s0(1− y3)n

−
y2

(
−1 +

(
y1
s0

) 1
n

+ y3

)
y1 − s0(1− y3)n

,

p = y3.
(8.6)

For the sake of clarity, hereinafter m1 := k and m2 := q will be considered.

Notice that the Jacobian of the inverse mapping of r is

J3 =

(
y1
s0

)1/n
(
−1 +

(
y1
s0

)1/n

+ y3

)
ny1(y1 − s0(1− y3)n)

6= 0, a.s.

Then, taking into account (2.16)–(2.17), the joint PDF of random vector
(Y1, Y2, Y3) = (Sn, Rn, P ) is given by

fSn,Rn,P (y1, y2, y3) = fK,Q,P (m1,m2, y3)

∣∣∣∣∣∣∣∣
(
y1
s0

)1/n
(
−1 +

(
y1
s0

)1/n

+ y3

)
ny1(y1 − s0(1− y3)n)

∣∣∣∣∣∣∣∣ . (8.7)

Now, Theorem 2.1 is used again with the following identification

X = X̂ = (RR, T2, P ), Y = Ŷ = (Ŷ1, Ŷ2, Ŷ3), Ŷ = r(X̂),

being the mapping r : R3 → R3
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ŷ1 = 1− e−t1rr, ŷ2 = 1− e−(t2+t3(rr−1)), ŷ3 = p,

and isolating rr, t2 and p, one gets

rr =
−Log(1− ŷ1)

t1
, t2 = t3 +

t3Log(1− ŷ1)

t1
− Log(1− ŷ2), p = ŷ3.

Moreover, the Jacobian of the inverse mapping of r is

J3 =
1

t1(1− ŷ1)(1− ŷ2)
6= 0.

Then, taking into account (2.16)–(2.17), the joint PDF of random vector
(Ŷ1, Ŷ2, Ŷ3) = (K,Q,P ) is given by

fK,Q,P (ŷ1, ŷ2, ŷ3)

= fRR,T2,P

(
−Log(1− ŷ1)

t1
, t3 +

t3Log(1− ŷ1)

t1
− Log(1− ŷ2), ŷ3

)

×
∣∣∣∣ 1

t1(1− ŷ1)(1− ŷ2)

∣∣∣∣ .
(8.8)

Compounding both (8.7) and (8.8), the joint PDF of (Sn, Rn, P ) is determined
using the PDF of random vector (RR, T2, P )

fSn,Rn,P (s, r, p)

= fRR,T2,P

(
−Log(1−m1)

t1
, t3 +

t3Log(1−m1)

t1
− Log(1−m2), p

)

×
∣∣∣∣ 1

t1(1−m1)(1−m2)

∣∣∣∣
∣∣∣∣∣∣∣∣
(
s
s0

)1/n
(
−1 +

(
s
s0

)1/n

+ p

)
ns(s− s0(1− p)n)

∣∣∣∣∣∣∣∣ ,
(8.9)
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where m1 = m1(y1, y2, y3) and m2 = m2(y1, y2, y3) are the expressions intro-
duced in (8.6) and below using the identifications y1 ⇒ s, y2 ⇒ r and y3 ⇒ p.

Finally, considering n arbitrary and marginalizing (8.9), the 1-PDFs of the
subpopulation of susceptibles, f1(s, n), and reliants, f1(r, n), are obtained

f1(s, n)

=

∫
D(Rn,P )

fRR,T2,P

(
−Log(1−m1)

t1
, t3 +

t3Log(1−m1)

t1
− Log(1−m2), p

)

×
∣∣∣∣ 1

t1(1−m1)(1−m2)

∣∣∣∣
∣∣∣∣∣∣∣∣
(
s
s0

)1/n
(
−1 +

(
s
s0

)1/n

+ p

)
ns (s− s0 (1− p)n)

∣∣∣∣∣∣∣∣ dp dr,

(8.10)

f1(r, n)

=

∫
D(Sn, P )

fRR,T2,P

(
−Log(1−m1)

t1
, t3 +

t3Log(1−m1)

t1
− Log(1−m2), p

)

×
∣∣∣∣ 1

t1(1−m1)(1−m2)

∣∣∣∣
∣∣∣∣∣∣∣∣
(
s
s0

)1/n
(
−1 +

(
s
s0

)1/n

+ p

)
ns (s− s0 (1− p)n)

∣∣∣∣∣∣∣∣ dp ds.

(8.11)

Now, the 1-PDF of the deceased subpopulation will be provided using that
Dn = 1− Sn −Rn, for each cycle n. To this end, Theorem 2.1 is also applied
considering the following identifications

X = (Sn, Rn), Y = (Y1, Y2), Y = r(X),

being the mapping r : R3 → R3

y1 = 1− s− r, y2 = r.

Isolating s and r one gets
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8.2 Probabilistic solution

s = 1− y1 − y2, r = y2.

Then, taking into account (2.16)–(2.17) and that the Jacobian takes the value
−1, the joint PDF of random vector (Y1, Y2) = (Dn, Rn) is obtained. Fi-
nally, marginalizing this latter joint PDF and considering n arbitrary, it can
be checked that the 1-PDF of deceased subpopulation is given by

f1(d, n)

=

∫
D(Rn,P )

fRR,T2,P

(
−Log(1−m1)

t1
, t3 +

t3Log(1−m1)

t1
− Log(1−m2), p

)

×
∣∣∣∣ 1

t1(1−m1)(1−m2)

∣∣∣∣
∣∣∣∣∣∣∣∣
(

1−d−r
s0

)1/n
(
−1 +

(
1−d−r
s0

)1/n

+ p

)
n(1− d− r) ((1− d− r)− s0 (1− p)n)

∣∣∣∣∣∣∣∣ dp dr.

(8.12)

8.2.1 Mean and variance functions. Confidence intervals

Hereinafter, the study will be focus on susceptible subpopulation, Sn, whose
1-PDF is given by (8.10), although the following development can be extrapo-
lated to reliant and deceased subpopulations, using (8.11) and (8.12), respec-
tively. The expressions for mean and variance functions are

µSn = E [Sn] =

∫
D(Sn)

sf1(s, n) ds,

σ2
Sn

= V [Sn] =

∫
D(Sn)

s2f1(s, n) ds− (µSn)
2
,

respectively.

Furthermore, the 1-PDF is useful to construct confidence intervals. Let α ∈
(0, 1) and n̂ fixed, one can determine s1 = s1(n̂) and s2 = s2(n̂) such that∫ s1

0

f1(s, n̂) ds =
α

2
=

∫ 1

s2

f1(s, n̂) ds.
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Then, (1− α)× 100%-confidence interval is specified by

1− α = P [{ω ∈ Ω : S(n̂;ω) ∈ [s1, s2]}] =

∫ s2

s1

f1(s, n̂) ds.

In addition, it is of interest for doctors to know the probability, for example,
that the proportion of susceptible subpopulation lies between a and b at a
specific time period, say n̂,

P[a ≤ Sn̂ ≤ b] =

∫ b

a

f1(s, n̂) ds. (8.13)

8.2.2 Distribution of time until a given proportion of population
remains susceptible, reliant or deceased

In practice, it is useful to know when the percentage of susceptibles, reliants
and deceaseds in population will attain a certain level. This motivates the
computation, in a first step, of the distribution, NS, of time until a given
proportion of population, ρS, remains susceptible. The same can be said for
reliant and deceased subpopulations.

In order to compute the PDF of NS for a fixed proportion of susceptibles, ρS,
first n = NS is isolated from the first component of the exact solution, given
by (8.5), of IVP (8.1)–(8.2)

NS =
Log

(
ρS
s0

)
Log(e−t1RR + e−(T2+t3(RR−1))−1)

. (8.14)

Notice that the expression (8.14) depends only on RVs RR and T2. Hence,
RVT technique, i.e., Theorem 2.1 is applied to

X = (RR, T2), Y = (Y1, Y2), Y = r(X),

being

y1 = rr, y2 =
Log

(
ρS
s0

)
Log(e−t1rr + e−(t2+t3(rr−1))−1)

.
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Isolating rr and t2, one gets

rr = y1, t2 = t3(1− y1)− Log

[(
ρS
s0

)1/y2

+ 1− e−t1y1

]
.

The Jacobian of the inverse of mapping r is given by

J3 =

(
ρS
s0

)1/y2
Log

(
ρS
s0

)
y2

2

(
1− e−t1y1 +

(
ρS
s0

)1/y2
) .

Then, taking into account (2.16)–(2.17) the joint PDF of random vector (Y1, Y2)
= (RR,Ns) is obtained. Finally, marginalizing with respect to RV RR, the
expression of the PDF of NS, for each ρS fixed, is

f1(n, ρS) =

∫
D(RR)

fRR,T2

(
rr, t3(1− rr)− Log

[(
ρS
s0

)1/n

+ 1− e−t1rr
])

×

∣∣∣∣∣∣∣∣
(
ρS
s0

)1/n

Log
(
ρS
s0

)
n2

(
1− e−t1rr +

(
ρS
s0

)1/n
)
∣∣∣∣∣∣∣∣ drr.

(8.15)

8.3 Probabilistic cost-effectiveness analysis

Cost-effectiveness analysis is useful to perform an economic evaluation of sani-
tary interventions. Incremental cost-effectiveness ratio, CE, can be used in
order to prioritise sanitary interventions and then maximizing benefits taking
into account available budgets [53, 74]. CE is a ratio defined from costs and
effectivenesses of two alternatives. CE is defined as

CE =
C2 − C1

E2 − E1

, (8.16)
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where Ci and Ei, i = 1, 2, are the cost and the effectiveness of alternative i,
respectively. Hereinafter, it will be assumed that Ci and Ei, i = 1, 2 are RVs.
In the following, the 1-PDF of CE will be computed to compare two treatments
for stroke disease, being the second more effective than the first, but the first
cheaper. Then, differences between both are transition matrix T (particularly
the relative risk) and the cost. To obtain the 1-PDF of CE, first it shall been
determined the expression of total effectiveness given by the QALY (Quality
Adjusted Life Year), for each treatment. In the context of medical Markov
models, QALY has already been used, see for instance [45]. QALY is the sum
of effectiveness of susceptibles, reliants and deceaseds. In addition, these three
effectivenesses are the sum of the effectiveness in each cycle until the value n
of total years considered for the study. This effectiveness is the product of
number of susceptibles, reliants or deceaseds in each cycle 1 ≤ j ≤ n, the
utility appropriate for each state and a certain constant, which depends on a
discount rate r. These magnitudes will be detailed later. With this aim, utility
must be know, or the value of life’s quality, where 0 value corresponds to death
and 1 value represents that stroke disease has not been suffered by individuals,
[64, 73, 84]. Then, US = 1 and UD = 0 will be considered the utilities of
susceptibles and deceaseds, respectively. For reliants, the utility, say UR, will
be modeled through a RV. Taking into account the extant literature, r = 0.03
(3%) is considered the discount rate [3, 6, 64]. Then, the QALY is given by

Ei =
n∑
j=1

E[Sj,i]

(1 + r)j−1
+ UR

n∑
j=1

E[Rj,i]

(1 + r)j−1
, i = 1, 2, (8.17)

where E[Sj,i] and E[Rj,i] are the average number of susceptibles and reliants
of alternative i ∈ {1, 2}, for each cycle j, 1 ≤ j ≤ n, respectively. The
second step is to determine the expression of total cost of each treatment. The
same structure that in case of QALY will be followed. On the one hand, it
will be considered that cost of each treatment for susceptible subpopulation is
CSi = aiW , where ai is the cost, in euros, of medicine per kilogram and W is
a RV that represents the weight of the individual to be studied. On the other
hand, dependence cost will be considered a RV, denoted by CR. This RV is
assumed to be the same in both treatments. Then, the cost in each treatment
is

Ci = CSi

n∑
j=1

E[Sj,i]

(1 + r)j−1
+ CR

n∑
j=1

E[Rj,i]

(1 + r)j−1
, i ∈ {1, 2}. (8.18)
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Substituting expressions (8.17)–(8.18) into (8.16), one gets

CE =
W d1 + CRd2

d3 + UR d2

,

where

d1 =
n∑
j=1

a2E [Sj,2]− a1E [Sj,1]

(1 + r)j−1
,

d2 =
n∑
j=1

E [Rj,2]− E [Rj,1]

(1 + r)j−1
,

d3 =
n∑
j=1

E [Sj,2]− E [Sj,1]

(1 + r)j−1
.

Now, applying RVT technique, i.e. Theorem 2.1, the 1-PDF of CE from the
PDF of random vector (W,CR,UR), which is assumed to be known, it obtained

f1(ce, n) =

∫
D(CR,UR)

fW,CR,UR

(
ce(d3 + ur d2)− cr d2

d1

, cr, ur

)∣∣∣∣d3 + ur d2

d1

∣∣∣∣durdcr.
(8.19)

8.4 Simulating stroke disease using real data

In this section, it will be shown the results (simulations) for Markov model
(8.1)–(8.2) in order to study stroke disease. These simulations are built using
the results established in Sections 8.2 and 8.3 and considering medical infor-
mation from [64].

As it is plausible from a practical standpoint, hereinafter it will be assumed
that, at the beginning, the whole population is susceptible, then, initial condi-
tion is (s0, r0, 0) = (1, 0, 0). Based upon [64], the following probability distri-
butions for model inputs parameters are considered:

• Relative risk, RR, is a Lognormal RV with parameters (1.793; 0.143), i.e.,
Log(RR) ∼ N(1.793; 0.143).

• Transition R → D is modelled by RV P , which is assumed to be a Beta
distribution with parameters (80; 120), i.e., P ∼ Be(80; 120).
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• Deceased rate due to any cause, T2, is assumed to be an Uniform distri-
bution on interval ]0.02127, 0.02227[, T2 ∼ U(]0.02127, 0.02227[).

With regard to non-mortal stroke rate, t1, and stroke deceased rate, t3, it is
assumed that t1 = 0.00111 and t3 = 0.00176, respectively. These values have
been taken from reference [64], taking into account that these rates correspond
to a group of individuals with 65 years old. Notice that the previous theoretical
results can be applied because RVs RR and T2, with the distributions specified
above, satisfy condition (8.3).

In Figure 8.2, the 1-PDFs of susceptible, reliant and deceased subpopulations,
given by expressions (8.10)–(8.12), have been plotted. These graphical repre-
sentations have been made in periods {1, 2, . . . , 25}, assuming that RVs RR,
P and T2 are independent. From Figure 8.2, one observes that percentage
of susceptibles decreases as time increases. Besides, percentage of reliant in-
creases at the beginning, specifically from n = 1 to n = 6, and afterwards this
percentage tends to zero.

On the other hand, the deceased subpopulation is an absorbent state, therefore
in the long-term all population will reach this state. This behaviour is in agree-
ment with the results shown in Figure 8.2. From this graphical representation
it can be observed that both percentage of dead and its variability increase
over time. This same behaviour is observed to susceptible subpopulation for
the periods plotted in Figure 8.2, although it will decrease as time goes on.
Finally, the shape of the 1-PDF, f1(r, n), depicted in Figure 8.2 becomes sharp
as standard deviation decreases.

In Figure 8.3, mean plus/minus standard deviation functions of the three sub-
populations are shown. Notice that graphical representations exhibited in Fi-
gure 8.2 and Figure 8.3 are in agreement.

The computation of the 1-PDF is very useful in applications since from it, as
seen previously in Subsection 8.2.1, one can compute exact confidence intervals
in order to construct probabilistic predictions. In addition, it permits the
computation of the probability associated to sets of interest. For instance,
from expression (8.13) applied to reliant subpopulation, one can obtain the
probability that proportion of reliants that lies between a = 0.010 (1%) and
b = 0.015 (1.5%) in the time n̂ = 5 is, approximately 0.7,

P[0.010 ≤ R5 ≤ 0.015] =

∫ 0.015

0.010

f1(r, 5) dr = 0.7006.
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Figure 8.2: Plot of the 1-PDFs, f1(s, n), f1(r, n) and f1(d, n), given by (8.10), (8.11) and
(8.12) respectively, at values n ∈ {1, 2, . . . , 25} (left: top, center and bottom respectively).
For the sake of clarity last times, n = 24 and n = 25, have been magnified (right).
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Figure 8.3: Plot of expectation plus/minus standard deviation functions of susceptible,
reliant and deceased subpopulations (top left, top right and bottom, respectively).

Now, the PDFs of time until a given proportion of population remains sus-
ceptible, reliant or deceased are determined. For susceptible subpopulation
this has been done using expression (8.15). Figure 8.4 shows this PDF for the
following values of ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

From the PDF of NS, one can compute the expectation of RV NS for a fixed
value of ρS, like 0.70,

E [NS] =

∫ ∞
0

nf1(n, 0.70) dn = 9.5190.

This means that, approximately, the middle of 10-th cycle (since the study
starts at n = 0) represents the average time until 70% of the population will be
susceptible. This can also be seen graphically in Figure 8.4. Table 8.1 collects
the expectation, E [NS], for different values of ρS. This is a key information for
doctors when they want to study the evolution of susceptibles of stroke disease
in a group of patients.
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Figure 8.4: Plot of the PDF of time NS until a proportion ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} of population remains susceptible.

ρS 0.2 0.3 0.4 0.5

E[NS] 42.9520 32.1312 24.4538 18.4980

ρS 0.6 0.7 0.8 0.9

E[NS] 13.6327 9.5189 5.9553 2.8118

Table 8.1: Expectation of time NS until a proportion, ρS , of population remains susceptible
for different values ρS .

In order to obtain the PDFs of RVs NR and ND, that denote the time until a
proportion of population, ρR and ρD, remains reliant or deceased, respectively,
numerical methods have been applied. This decision has been made because
n cannot be isolated from the second and third components of solution given
by (8.5). To illustrate the process, below the steps for reliant subpopulation
where ρR is assumed to be fixed are specified:

• Step 1: To sample 500 000 values, say (rr, t2, p), according to the specific
distributions assumed for RVs RR, T2 and P .

• Step 2: For each sampled value (rr, t2, p), to apply Newton method to
calculate the value n of NR solving the nonlinear equation defined by the
second component of (8.5), that corresponds to reliant subpopulation,
substituting RR ⇒ rr, T2 ⇒ t2 and P ⇒ p. This process provides
500 000 values for n of NR.
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• Step 3: To plot the histogram of 500 000 values of n. A normalization of
this histogram is an approximation of the PDF of NR.

Since numerical convergence of Newton method heavily depends on the seed or
starting point, say sp, for example, in the case that ρR = 0.006, two graphical
representations for the PDF of NR are shown in Figure 8.5. Specifically, taking
values sp = 1 and sp = 25, the PDF of the time NR has been obtained for
cycles n = 1 and n = 30, respectively. This is due because proportion of
reliants reaches value ρR = 0.006 in those two cycles. Whereas for the case
ρR = 0.0183, Newton method always converges for cycle n = 5, thus defining
a single PDF for NR. This PDF has been plotted in Figure 8.6 taking as seed
value sp = 2.
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Figure 8.5: Plot of the PDF of the time NR until a proportion ρR = 0.006 of the population
remains reliant, using as seed points sp = 1 (left) and sp = 25 (right).
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Figure 8.6: Plot of the PDF of time NR until a proportion ρR = 0.0183 of population
remains reliant, using as seed point sp = 2.

152



8.4 Simulating stroke disease using real data

Regarding deceased subpopulation, the same steps described previously have
been followed. In Figure 8.7, the PDF of ND has been plotted for the following
values of percentage ρD ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, where sp = 3
has been taken as seed point, for each value of ρD. In this case, to every value
of ρD corresponds a unique value of n.
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Figure 8.7: Plot of the PDF of time ND until a proportion ρD ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} of population remains dead (left). For the sake of clarity last proportions,
ρD = 0.8 and ρD = 0.9, have been magnified (right).

Finally, the 1-PDF of CE given by (8.19) has been computed. From it, mean
and confidence intervals will also be computed. This will be done for different
ages, 30, 65 and 71. This decision has been made because involved rates for
each age are different. Computations have been carried out taking the following
probability distributions for random inputs:

• Relative risk for the first alternative (the less efficient), RR1, is a Lognor-
mal RV with parameters (1.793; 0.143), i.e., Log(RR1) ∼ N(1.793; 0.143).

• Relative risk for the second alternative (the most efficient), RR2 = RR1B,
where B is the benefit.

• B is a Lognormal RV with parameters (−0.964; 0.163), i.e., Log(B) ∼
N(−0.964; 0.163).

• Transition R → D is modelled by RV P , which is assumed to be a Beta
distribution with parameters (80; 120), i.e., P ∼ Be(80; 120).

• Deceased rate due to any cause, T2, is assumed to be a RV with a uniform
distribution on the interval ]t2 − 0.0001, t2 + 0.0001[, i.e., T2 ∼ U(]t2 −
0.0001, t2 + 0.0001[), where t2 is a fixed value, which depends on age, and
that will be specified below.
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• Dependence cost, CR, is a Lognormal RV with parameters (6.936; 0.643),
i.e., Log(CR) ∼ N(6.936; 0.643).

• Weight, W , is a Gaussian RV with parameters (75.900; 12.290), i.e., W ∼
N(75.900; 12.290). The prices of both treatments are a1 = 6.5e/kg and
a2 = 65e/kg, [64].

• Utility, UR, is a Gaussian RV with parameters (0.701; 0.347) i.e., UR ∼
N(0.701; 0.347).

Above, t1, t2 and t3 are rates, which depend on age of population under study.
In Figure 8.8, the expectation of susceptibles, reliants and deceaseds for the
two alternatives in the three ages are shown. For each one of them, it have
been considered the following rates, t1, t2 and t3, which are based on [64], and
end cycles values, nmax,

• For age of 30 years: t1 = 0.0000298, t2 = 0.00169, t3 = 0.00004 and
nmax = 69.

• For age of 65 years: t1 = 0.0011135, t2 = 0.02177, t3 = 0.00176 and
nmax = 34.

• For age of 71 years: t1 = 0.0031780, t2 = 0.03616 and t3 = 0.00373 and
nmax = 28.

Notice that this study is until 99 years, but another age limit can be chosen.
From Figure 8.8, one observes, in all the ages, that mean of susceptibles with
the second treatment is greater than considering the first, and the reverse for
expectation of reliants and deceaseds. This is consistent with the fact that
second alternative is better than the first.

In Figure 8.9 the 1-PDFs of CE, given by (8.19), have been plotted for each age
from cycle 1 to 34. Notice that graphical representations shown in Figure 8.9
are in agreement with Figure 8.10, where the expectation plus/minus standard
deviation functions of CE for each age have been plotted. To facilitate com-
parison between both alternatives, the value 30 000e/QALY (red straight line)
has also been plotted as a threshold. This benchmark value has been chosen
because, according to [78], is a standard value in the literature. From Figu-
re 8.10, one can observe that for people aged 71 years old second alternative
(the most expensive), is more effective than first alternative. Naturally, for
people aged 30 years old, the best alternative is the first one because they have
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Figure 8.8: Plots of expectation of susceptibles, reliants and deceaseds for the two alter-
natives 1 (the cheapest) and 2 (the most expensive) in three ages: 30 years (first row), 65
years (second row) and 71 years (third row).

longer lifetime. For people aged 65 years old, it might be controversy because
their CE is very close to the threshold.

8.5 Conclusions

Although Markov models have been used extensively for modelling the dynamic
of numerous diseases, few attempts have been made regarding stroke disease.
Markovian approach is useful to perform clinical control of patients that suffer
this disease. Indeed, Markov models allow to forecast not only the number of
patients belonging to each subpopulation (susceptibles, reliants and deceaseds)
at every cycle but also to account for significant medical information. In this
regard, time until a given proportion of patients remain susceptible, reliant
or deceased are, for example, important information in medical treatment of
stroke. This is a key information to answer crucial questions like ‘what is
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Figure 8.9: PDFs CE given by (8.19) considering both alternatives in the three ages: 30
years (left), 65 years (center) and 71 years (right).
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Figure 8.10: Plots of expectation plus/minus standard deviation functions of CE for each
age considering both alternatives in the three ages: 30 years (left), 65 years (center) and 71
years (right). Red straight line represents the threshold value 30 000e/QALY usually taking
as reference [78].

the expected time before twenty percent, for instance, of population remains
susceptible?’.

In this chapter, it has been given a technical generalization of classical Markov
methodology that enables the exact determination of crucial medical informa-
tion previously indicated. This generalization is aimed to improve the mode-
lling of stroke disease when dealing with real data, although an important
issue is that this technique can easily be adapted to another diseases using the
markovian paradigm. The approach resorts in the so-called Random Variable
Transformation method. Randomization has been done through some of en-
tries of transition matrix of a classical Markov chain which has been previously
proposed to model stroke disease. This approach allows the computation of
the first probability density function of solution stochastic process, and then
obtaining punctual and probabilistic predictions as well as important proba-
bilistic information that has been underlined previously.

Moreover, a probabilistic cost-effectiveness analysis, based on the application
of Random Variable Transformation technique, has been conducted. The main
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advantage of this computational approach is that results can be obtained in
an exact manner rather than using simulations.
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Chapter 9

Random second-order linear
differential equations

This chapter deals with the approximate computation of the
first probability density function of solution stochastic process to
second-order linear differential equations with random analytic
coefficients about regular points under very general hypotheses.
The approach is based on considering approximations of solution
stochastic process via truncated power series solution obtained from
random Fröbenius method together with the so-called Random Vari-
able Transformation technique. Validity of proposed method is
shown through several illustrative examples.

9.1 Introduction

The aim of this chapter is to provide a full probabilistic description, through
the approximation of the 1-PDF, f1(x, t), of solution SP, X(t), to the second-
order random linear differential equation

Ẍ(t) + p(t;A)Ẋ(t) + q(t;A)X(t) = 0, t > t0 ∈ R, (9.1)
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with initial conditions

X(t0) = Y0, Ẋ(t0) = Y1. (9.2)

In IVP (9.1)–(9.2), A, Y0 and Y1 are assumed to be absolutely continuous real
RVs defined on a common complete probability space (Ω,A,P). For the sake
of clarity, realizations for any RV, say Z : Ω −→ D(Z) ⊂ R, will be denoted
by z(ω) ∈ D(Z), ω ∈ Ω. As usual, from now D(Z) will be referred to as the
range or codomain of Z. To provide more generality in the study, it will be
assumed that these RVs are statistically dependent, being fA,Y0,Y1

(a, y0, y1) the
joint PDF of random vector (A, Y0, Y1). The domain of this function will be
denoted by D(A, Y0, Y1) ⊂ R3. For convenience, the following notation will be
introduced, that will be used later, D(A) ⊂ R, D(Y1) ⊂ R and D(A, Y1) ⊂
R2, that stand for codomains of RVs A and Y1, and random vector (A, Y1),
respectively. Throughout this chapter, it will be assumed that

H1 :
fA,Y0,Y1

(a, y0, y1) is continuous in y0 and uniformly bounded, i.e.,

∃Mf > 0 : |fA,Y0,Y1
(a, y0, y1)| < Mf , ∀(a0, y0, y1) ∈ D(A, Y0, Y1).

(9.3)

It is remarkable that a wide range of probabilistic distributions satisfy hypothe-
sis H1, for example, Gaussian, Uniform, Beta, Gamma, Lognormal, t-Student,
etc. In particular, this condition is met for any multimodal distribution.

Henceforth, coefficients p(t;A) and q(t;A) will be assumed SPs, which depend
on RV A, such that they are analytic about (t0; a0(ω)) for every a0(ω) ∈ D(A),
ω ∈ Ω, i.e.,

H2 :
there exists a neighbourhood Np,q(t0; a0(ω)) ⊂ [t0,+∞[×D(A) where

p(t;A), q(t;A) are analytic ∀a0(ω) ∈ D(A), ω ∈ Ω.
(9.4)

With the standard identification p(t;A) ≡ p(t; a(ω)), a(ω) ∈ D(A), ∀ω ∈ Ω,
the SP p(t;A) is analytic about (t0, a0(ω)), a0(ω) ∈ D(A), ∀ω ∈ Ω, if the
deterministic function p(t; a(ω)) is analytic about (t0, a0(ω)). The same can
be said for the SP q(t;A). To facilitate the subsequent analysis, hereinafter it
will be assumed that p(t;A) and q(t;A) satisfy sufficient conditions in order
to guarantee that IVP (9.1)–(9.2) has a unique solution.
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Notice that in order to simplify notation, p(t;A) and q(t;A) are assumed to be
analytic in a common neighbourhood, Np,q(t0; a0(ω)), which in practice will be
defined by the intersection of corresponding domains of analyticity of p(t;A)
and q(t;A).

Problems as (9.1)–(9.2) are important since many differential equations appe-
aring in Mathematical Physics fall into this class. In this regard, it is worth
pointing out that some recent contributions dealing with particular random
differential equations of the form (9.1)–(9.2) can be found in [13, 31, 43], for
example. In [13, 31] authors give solutions of Hermite and Airy random di-
fferential equations, respectively, using the so-called mean square and mean
fourth calculus [85, 92]. In both contributions, approximations for mean and
variance of solution SP are given. In [43], these two statistical moments are
computed for a wide range of second-order random linear differential equa-
tions taking advantage of homotopy analysis method. Recently, in [55] an
analogous study has been conducted by applying random differential transfor-
mation method developed in [91].

In this chapter, RVT technique will be used to compute approximations of
f1(x, t). The aim of this chapter is computing approximations of the 1-PDF,
f1(x, t), of solution SP to IVP (9.1)–(9.2), when solution is constructed by
power series using the so-called Fröbenius method [88, ch.4].

The chapter is organized as follows. Some auxiliary results that will be re-
quired later will be established in Section 9.2, In Section 9.3, an approxima-
tion of the first probability density function of solution SP to IVP (9.1)–(9.2)
is constructed. This approximation is based on truncated random power se-
ries of solution SP obtained via Fröbenius method and the application of RVT
technique. In Section 9.3 it will also be studied the convergence of the 1-PDF
of the truncated solution to the 1-PDF of the exact solution. Section 9.4 is
addressed to show several illustrative examples where proposed technique is
successfully applied. Finally, in Section 9.5 the main conclusions are drawn.

9.2 Auxiliary results

An important result that will be required later is Poincaré’s expansion theorem.
For the sake of completeness, its statement [90, Theorem 9.2, p. 119], [38,
Theorem 5.5, p.296] is reminded. This result permits to represent the solution
of a differential equation whose formulation depends on a parameter, say λ, by
means of a power series of λ parameter itself.
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Theorem 9.1 Let us consider the initial value problem

Ẇ(t) = f(t,W(t);λ), t > t0,
W(t0) = W0,

}
(9.5)

where f :]t0,+∞[×Rn×R −→ Rn, f = (f1, . . . , fn)
>, W(t) ≡W = (W1, . . . ,Wn)

>

and W0 = (W0,1, . . . ,W0,n)
>. If f(t,W;λ) admits a convergent power series

expansion about (t0,W0;λ0), i.e.,

fi(t,W;λ)

=
∑
j≥0

∑
k1,...,kn≥0

∑
l≥0

cij,k1,...,kn,l(t− t0)j(W1 −W0,1)k1 · · · (Wn −W0,n)kn(λ− λ0)l,

(9.6)

λ0 ∈ R, 1 ≤ i ≤ n. Then, for every (t0,W0), solution of IVP (9.5) can also
be represented as the following convergent power series

W(t) =
∑
l≥0

Ll(t)(λ− λ0)l. (9.7)

Coefficients Ll(t) are solutions of certain coupled unhomogeneous linear system
of linear differential equations.

Remark 9.1 Notice that Theorem 9.1 can be applied to IVP (9.1)–(9.2) by
considering the standard change of variable

W(t) = (W1(t), W2(t))
>

=
(
X(t), Ẋ(t)

)>
, W0 = (Y0 Y1)

>
,

λ = a(ω), ω ∈ Ω and f = (f1(t,W(t);A(ω)), f2(t,W(t); a(ω)))
>, being

f1(t,W(t); a(ω)) = W2(t),

f2(t,W(t); a(ω)) = −p(t; a(ω))W2(t)− q(t; a(ω))W1(t)

 for each ω ∈ Ω.

This section will be finished stating standard notation and some classical re-
sults related to uniform convergence that will be required later. Let E ⊂ Rn
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be a Lebesgue measurable set with finite measure. In the following, the pair
(L1(E), ‖ · ‖1) will denote the normed space of mappings f : E ⊂ Rn −→ R
such that they are absolutely Lebesgue integrable, i.e.,

‖f‖1 =

∫
E

|f | exists and is finite.

Proposition 9.1 Let E ⊂ Rn be a Lebesgue measurable set with finite measure
and let {fN(e) : N ≥ 0} ⊂ L1(E) such that fN(e) converges uniformly in E,
i.e., fN(e)

uniformly E−−−−−−−→
N→+∞

f(e). Then, f(e) ∈ L1(E) and

lim
N→+∞

∫
E

fN(e) de =

∫
E

f(e) de.

Proposition 9.2 Let {gN(z1, z2) : N ≥ 0} and {hN(z1, z2) : N ≥ 0} be two
sequences of functions such that hN(z1, z2) 6= 0, ∀N ≥ 0, ∀(z1, z2) ∈ D ⊂ R2.
Let us assume that both converge uniformly in D, i.e.,

gN(z1, z2)
uniformly D−−−−−−−→
N→+∞

g(z1, z2), hN(z1, z2)
uniformly D−−−−−−−→
N→+∞

h(z1, z2),

being h(z1, z2) 6= 0, ∀(z1, z2) ∈ D, and there exist positive constants Mg, mh

and Mh such that

|gN(z1, z2)| < Mg, 0 < mh < |hN(z1, z2)| < Mh, ∀N ≥ 0,∀(z1, z2) ∈ D.

Then

gN(z1, z2)

hN(z1, z2)

uniformly D−−−−−−−→
N→+∞

g(z1, z2)

h(z1, z2)
.

Proposition 9.3 Let Du,v be a subset of R2 such that

sup{|v| : (u, v) ∈ Du,v, ∀u} < +∞,

and let {lN(u) : N ≥ 0} be a sequence of functions uniformly convergent in
Du = {u : (u, v) ∈ Du,v}, i.e.,
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lN(u)
uniformly Du−−−−−−−−→
N→+∞

l(u).

Then, the sequence of functions bN(u, v) = c + vlN(u), where c is a constant,
converges uniformly in Du,v, i.e.,

bN(u, v)
uniformly Du,v−−−−−−−−−→

N→+∞
b(u, v),

being b(u, v) = c+ vl(u).

Proposition 9.4 Let {γN(z1, z2) : N ≥ 0} be a sequence of functions such
that converges uniformly in D ⊂ R2, i.e.,

γN(z1, z2)
uniformly D−−−−−−−→
N→+∞

γ(z1, z2).

Let φ : Dφ ⊂ R3 −→ R be a mapping such that is continuous with respect to
its second variable. Then, the sequence of functions defined by ψN(z1, z2) =
φ(z1, γN(z1, z2), z2) converges uniformly in D, i.e.,

ψN(z1, z2)
uniformly D−−−−−−−→
N→+∞

ψ(z1, z2),

where ψ(z1, z2) = φ(z1, γ(z1, z2), z2).

9.3 Computing the approximation of the first probability
density function

In agreement with Fröbenius method [88, Chapter 4], it is well-known that
solution of IVP (9.1)–(9.2) can be represented in the form

X(t) = Y0S1(t;A) + Y1S2(t;A), (9.8)

being

S1(t;A) =
∑
n≥0

Cn(A)(t− t0)n, S2(t;A) =
∑
n≥0

Dn(A)(t− t0)n. (9.9)
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Coefficients Cn(A) and Dn(A) are recursively determined from initial con-
ditions Y0 and Y1 and a second-order linear difference equation. It is worth
pointing out that S1(t;A) and S2(t;A) have no common powers (t−t0)n, hence
indexes n ≥ 0 that appear in the two series defining S1(t;A) and S2(t;A) in
(9.9) really lie in disjoint subsets of non-negative integers N = {0, 1, 2, . . .}.
This issue has been omitted in (9.9) just to simplify notation. Also notice
that, from the initial condition X(t0) = Y0 (see (9.2)) and (9.8)–(9.9), one can
assure that C0(A) = 1 and D0(A) = 0.

Remark 9.2 On the one hand, interpreting RV A as a parameter indexed
by ω ∈ Ω, A = {a(ω) : ω ∈ Ω}, and under hypothesis H2 given in (9.4),
Theorem 9.1 guarantees that solution X(t) can also be represented as a power
series of parameter a(ω), ω ∈ Ω. Therefore, S1(t;A) and S2(t;A) do. On
the other hand, taking into account uniqueness of solution of IVP (9.1)–(9.2),
both series expansions (as powers of t − t0 and as powers of a(ω) − a0(ω))
match. Thus, the two series S1(t;A) and S2(t;A), given by (9.9), converge in
certain domains NS1

(t0; a0(ω)) and NS2
(t0; a0(ω)), respectively, for all a0(ω) ∈

D(A), ω ∈ Ω. In addition, uniform convergence takes place in every closed
set contained in NS1

(t0; a0(ω)) and NS2
(t0; a0(ω)). Notice that the domain

of convergence, NX(t0; a0(ω)), of power series solution X(t) given in (9.8),
satisfies Np,q(t0; a0(ω)) ⊆ NX(t0; a0(ω)) = NS1

(t0; a0(ω)) ∩ NS2
(t0; a0(ω)) for

all a0(ω) ∈ D(A), ω ∈ Ω, where Np,q(t0; a0(ω)) is defined in hypothesis H2 (see
(9.4)).

Approximation of the 1-PDF, f1(x, t), to the SP X(t) given by (9.8) will be
computed from truncation, say XN(t), of X(t),

XN(t) = Y0S
N
1 (t;A) + Y1S

N
2 (t;A), (9.10)

where

SN1 (t;A) =
N∑
n=0

Cn(A)(t− t0)n, SN2 (t;A) =
N∑
n=0

Dn(A)(t− t0)n, (9.11)

being N a non-negative integer previously fixed. Truncation is required to keep
burden computation feasible in dealing with approximation of the 1-PDF.
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Remark 9.3 On the one hand, it has been previously shown that C0(A) = 1,
hence from (9.11) one gets

SN1 (t0;A) = C0(A) = 1 6= 0, ∀N ≥ 0. (9.12)

From Remark 9.2, it is know that S1(t;A) can be represented through a power
series in t − t0 and a(ω) − a0(ω) for every a0(ω), ω ∈ Ω. Hence, SN1 (t;A)
is continuous at (t0, a0(ω)) for each a0(ω), ω ∈ Ω, since it is a polynomial
in both variables (t, a(ω)). This guarantees the existence of a neighbourhood,
that without loss of generality can be taken as one introduced in Remark 9.2,
NX(t0; a0(ω)), and a positive constant, mS1

, such that

0 < mS1
< |SN1 (t; a(ω))| ,

∀(t, a(ω)) ∈ NX(t0; a0(ω)), ω ∈ Ω, ∀a0(ω) ∈ D(A), ∀N ≥ 0.
(9.13)

On the other hand, in agreement with Remark 9.2 it is know that Si(t; a),
i = 1, 2, are analytic in a common neighbourhood NX(t0; a0(ω)) and that both
series Si(t; a), i = 1, 2, converge uniformly in every closed set N ∗X(t0; a0(ω))
contained in NX(t0; a0(ω)) for all a0(ω) ∈ D(A), ω ∈ Ω. This guarantees the
existence of a positive constant MS, such that

|SNi (t; a(ω))| < MS,

∀(t, a(ω)) ∈ N ∗X(t0; a0(ω)) ⊂ NX(t0; a0(ω)), ω ∈ Ω,

∀a0(ω) ∈ D(A), ∀N ≥ 0, i = 1, 2.

(9.14)

Summarizing, from (9.13) and (9.14) the following bound for S1(t;A) is ob-
tained

0 < mS1
< |SN1 (t; a(ω))| < MS,

∀(t, a(ω)) ∈ N ∗X(t0; a0(ω)), ω ∈ Ω, ∀a0(ω) ∈ D(A), ∀N ≥ 0.
(9.15)

Let t ≥ t0 be fixed and so that it belongs to the neighbourhood NX(t0; a0(ω))
of t0 defined in Remark 9.3. Notice that this set does not depend on a0(ω) since
(9.13)–(9.15) hold for every a0(ω) ∈ D(A), ω ∈ Ω. In the context of Theorem
2.1 with n = 3 and X = (A, Y0, Y1), let us consider mapping r : R3 −→ R3
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9.3 Computing the approximation of the first probability density function

defined on a subset of D(A, Y0, Y1) such that for t ≥ t0 fixed, (t, a(ω)), ω ∈ Ω,
belongs to the set N ∗X(t0; a0(ω)) introduced in Remark 9.3, whose components
are given by

z1 = r1(a, y0, y1) = a,

z2 = r2(a, y0, y1) = y0S
N
1 (t; a) + y1S

N
2 (t; a),

z3 = r3(a, y0, y1) = y1.

Thus, RV Z2 = XN , i.e., Z2 corresponds to the truncated series solution defined
by (9.10). Notice that for convenience, dependence on variable t has been
omitted in the notation since it has previously been fixed. The inverse of
mapping r, denoted by s : R3 −→ R3, is given by

a = s1(z1, z2, z3) = z1,

y0 = s2(z1, z2, z3) =
z2 − z3S

N
2 (t; z1)

SN1 (t; z1)
,

y1 = s3(z1, z2, z3) = z3.

Taking into account (9.12), the absolute value of the Jacobian of this transfor-

mation, given by |J3| =
1

|SN1 (t; z1)|
=

1

|SN1 (t; a)|
6= 0, is well-defined. There-

fore, applying Theorem 2.1, the joint PDF of random vector (Z1, Z2, Z3) is

fZ1,Z2,Z3
(z1, z2, z3) = fA,Y0,Y1

(
z1,

z2 − z3S
N
2 (t; z1)

SN1 (t; z1)
, z3

) ∣∣∣∣ 1

SN1 (t; z1)

∣∣∣∣ .
Then, marginalizing with respect to Z1 = A and Z3 = Y1, one obtains the
PDF of RV Z2 = XN

fZ2
(z2) =

∫∫
D(A,Y1)

fA,Y0,Y1

(
a,
z2 − y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣ dy1 da.
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As t ≥ t0 is arbitrary, this latter expression really gives the 1-PDF of the
truncated solution SP XN(t) to IVP (9.1)–(9.2)

fN1 (x, t) =

∫∫
D(A,Y1)

fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣ dy1 da. (9.16)

Below, it will be provided conditions under which approximation fN1 (x, t) con-
verges to the exact 1-PDF, f1(x, t), i.e.,

lim
N→+∞

fN1 (x, t) = f1(x, t), for each (x, t) ∈ R× [t0,+∞[ fixed, (9.17)

being

f1(x, t) =

∫∫
D(A,Y1)

fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

) ∣∣∣∣ 1

S1(t; a)

∣∣∣∣ dy1 da,

where S1(t; a) and S2(t; a) are defined in (9.9).

Notice that, one can formally write

lim
N→+∞

fN1 (x, t)

= lim
N→+∞

∫∫
D(A,Y1)

fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣ dy1da

(I)
=

∫∫
D(A,Y1)

lim
N→+∞

(
fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣) dy1da

(II)
=

∫∫
D(A,Y1)

fA,Y0,Y1

(
a, lim

N→+∞

x− y1S
N
2 (t; a)

SN1 (t; a)
, y1

)∣∣∣∣∣∣ 1

lim
N→+∞

SN1 (t; a)

∣∣∣∣∣∣ dy1da

=

∫∫
D(A,Y1)

fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

) ∣∣∣∣ 1

S1(t; a)

∣∣∣∣ dy1da

= f1(x, t).
(9.18)
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9.3 Computing the approximation of the first probability density function

As a result, steps (I) and (II) in (9.18) must be justified (9.17). This will be
done by assuming that conditions shown in Remark 9.3 are fulfilled for t ≥ t0
and x ∈ R. First commutation between the limit as N → +∞ and the joint
PDF fA,Y0,Y1

(step (II) in (9.18)), and secondly, the commutation between the
limit as N → +∞ and the double integral (step (I) in (9.18)).

Firstly, observe that step (II) in (9.18) is legitimated because of continuity of
the joint PDF fA,Y0,Y1

(a, y0, y1) with respect to its second variable (see hypo-
thesis H1 (see (9.3))).

Let us legitimate step (I) in (9.18). With this goal, Proposition 9.1 will be
applied. This leads to assume the following hypothesis hereinafter

H3 :
D(A, Y1) is a Lebesgue measurable set of R2 with finite measure

such that M̂ = sup{|y1(ω)| : (a(ω), y1(ω)) ∈ D(A, Y1), ω ∈ Ω} < +∞.
(9.19)

Let us denote

kN(a, y1) = fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣ , (a, y1) ∈ D(A, Y1),

(9.20)

the integrand of (9.16). Then, taking into account Remark 9.3, and particularly
the lower bound that appears in (9.15), one gets

kN(a, y1) ≤ 1

mS1

fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)
, ∀(a, y1) ∈ D(A, Y1).

Hence, since fA,Y0,Y1
(a, y0, y1) is a PDF, kN(a, y1) defined by (9.20) is Lebesgue

absolutely integrable in D(A, Y1), i.e, kN(a, y1) ∈ L1(D(A, Y1)) (notice that
kN(a, y1) is non-negative all over its domain). Now, it shall been shown that

kN(a, y1)
uniformly D(A,Y1)−−−−−−−−−−−→

N→∞
k(a, y1), (9.21)

being

k(a, y1) = fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

) ∣∣∣∣ 1

S1(t; a)

∣∣∣∣ .
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With this goal, let us consider the following inequality, obtained by adding and
subtracting the term

fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

S1(t; a)

∣∣∣∣ ,
|kN(a, y1)− k(a, y1)|

=

∣∣∣∣fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

) ∣∣∣∣ 1

SN1 (t; a)

∣∣∣∣
−fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

) ∣∣∣∣ 1

S1(t; a)

∣∣∣∣∣∣∣∣
≤ fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)∣∣∣∣∣∣∣∣ 1

|SN1 (t; a)|
− 1

|S1(t; a)|

∣∣∣∣
+

1

|S1(t; a)|

∣∣∣∣fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)

−fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

)∣∣∣∣ .

(9.22)

Let t ≥ t0 and x ∈ R be fixed, N ≥ 0 an arbitrary integer, and consider
(t, a) ≡ (t, a(ω)) ∈ N ∗X(t0; a0(ω)), ω ∈ Ω, for all a0(ω) ∈ D(A). Observe
that set N ∗X(t0; a0(ω)) has been previously introduced in Remark 9.3. Let us
make the following identification in Proposition 9.2: z1 = a, z2 arbitrary, D =
{(a, z2) ∈ R2 : z2 is arbitrary}, gN(a, z2) = g(a, z2) = 1, hN(a, z2) = SN1 (t; a),
h(a, z2) = S1(t; a) (remember that t ≥ t0 is fixed and that by Remark 9.3,
hN(a, z2), h(a, z2) 6= 0 for all (a, z2) ∈ D) ∀N ≥ 0 and ∀(a, z2) ∈ D, Mg = 1,
mh = mS1

,Mh = MS (see (9.15)). Taking into account that gN(a, z2) converges
uniformly to g(a, z2) on D, hN(a, z2) converges uniformly to h(a, z2) on D (see
Remark 9.3) and hypothesis H1 (see (9.3)), then for every ε > 0, there exists
N0, which depends on ε, such that∣∣∣∣fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)∣∣∣∣× ∣∣∣∣ 1

|SN1 (t; a)|
− 1

|S1(t; a)|

∣∣∣∣ ≤Mf

ε

2Mf

=
ε

2
,

(9.23)

∀N ≥ N0, independently of values (a, y1).
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9.3 Computing the approximation of the first probability density function

In order to obtain an analogous result for the second term of the right-hand side
of inequality (9.22), let us first apply Proposition 9.3 considering the following
identification: u = a, v = −y1, c = x (remember that x is fixed), lN(a) =
SN2 (t; a) with t ≥ t0 fixed and such that (t, a) ∈ N ∗X(t0; a0(ω)), ω ∈ Ω, being
this set defined in Remark 9.3, l(a) = S2(t; a), bN(a, y1) = x− y1S

N
2 (t; a) and

b(a, y1) = x − y1S2(t; a). Taking into account that lN(a) converges uniformly
to l(a) on N ∗X(t0; a0(ω)) (see Remark 9.3) and hypothesis H3 (see (9.19)), one
follows

x− y1S
N
2 (t, a)

uniformly D(A,Y1)−−−−−−−−−−−→
N→∞

x− y1S2(t, a), (x, t) ∈ R× [t0,+∞[ fixed,
(9.24)

for all (a, y1) ∈ D(A, Y1) such that (t, a(ω)) ∈ N ∗X(t0; a0(ω)), for every a0(ω) ∈
D(A), ω ∈ Ω. Now, applying Proposition 9.2 with z1 = a, z2 = y1, gN(a, y1) =
x− y1S

N
2 (t, a), g(a, y1) = x− y1S2(t; a) (observe that gN(a, y1) converges uni-

formly to g(a, y1) by (9.24)), hN(a, y1) = SN1 (t; a), h(a, y1) = S1(t; a) (by Re-
mark 9.3 it is known that hN(a, y1) converges uniformly to h(a, y1) and both
are nonull), Mg = |x|+ M̂ ×MS (see hypothesis H3 in (9.19)) and Mh = MS

(see (9.14)), this justifies that

x− y1S
N
2 (t, a)

SN1 (t, a)

uniformly D(A,Y1)−−−−−−−−−−−→
N→∞

x− y1S2(t, a)

S1(t, a)
, (x, t) ∈ R× [t0,+∞[ fixed.

(9.25)

Now, let us apply Proposition 9.4 with the following identification: z1 = a,
z2 = y1, D ⊂ R2 the set of (a, y1) ∈ D(A, Y1) such that (t, a(ω) ∈ N ∗X(t0; a(ω))
for every a0(ω) ∈ D(A), ω ∈ Ω,

γN(a, y1) =
x− y1S

N
2 (t; a)

SN1 (t; a)
, γ(a, y1) =

x− y1S2(t; a)

S1(t; a)
,

φ ≡ fA,Y0,Y1
and

ψN(a, y1) = fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)
,

ψ(a, y1) = fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

)
.
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Notice that, by (9.25), γN(a, y1) converges uniformly to γ(a, y1) in D, and by
hypothesis H1 (see (9.3)), φ is a continuous mapping with respect to y0. Then,
applying Proposition 9.4 one can assure that for every ε > 0, there exists N0,
which depends on ε, such that

1

|S1(t; a)|

∣∣∣∣fA,Y0,Y1

(
a,
x− y1S

N
2 (t; a)

SN1 (t; a)
, y1

)
− fA,Y0,Y1

(
a,
x− y1S2(t; a)

S1(t; a)
, y1

)∣∣∣∣
<

1

mS1

mS1
ε

2
=
ε

2
, ∀N ≥ N0,

(9.26)

independently of values (a, y1). Observe that in (9.26) it has been used that
from (9.15) one gets 0 < mS1

≤ |S1(t; a)| in the set considered. Therefore,
from (9.22), (9.23) and (9.26), one deduces that for every ε > 0 there exists
N0, which depends on ε such that

|kN(a, y1)− k(a, y1)| < ε, ∀N ≥ N0,

independently of values (a, y1). Hence, (9.21) is proved.

Summarizing, the following result is established.

Theorem 9.2 Let us consider IVP (9.1)–(9.2) and assume that

i) The joint probability density function fA,Y0,Y1
(a, y0, y1) of random input

vector (A, Y0, Y1) satisfies hypothesis H1 (see (9.3)).

ii) Coefficients p(t;A) and q(t;A) are stochastic processes satisfying hypoth-
esis H2 (see (9.4)).

iii) Codomain of random vector (A, Y1), D(A, Y1), verifies hypothesis H3 (see
(9.19)).

Let SN1 (t; a) and SN2 (t; a) be truncated random power series solutions of the
form (9.9) to IVP (9.1)–(9.2). Then, fN1 (x, t) defined by (9.16) is the first
probability density function of the approximation (9.10) of solution stochastic
process X(t) given by (9.8) to IVP (9.1)–(9.2). Furthermore, for each (x, t),
fN1 (x, t) converges to the first probability density function f1(x, t) of X(t).
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9.4 Numerical examples

This section is addressed to show two examples where previous theoretical
results are illustrated. In order to show the capability of the approach to
deal with a variety of statistical distributions, in the first example it will be
considered that input parameters have a joint PDF, whereas in the second
example input parameters are assumed to be independent RVs with different
probability distributions.

Example 9.1 Let us consider IVP

Ẍ(t) +AX(t) = 0, t > 0,
X(0) = Y0,

Ẋ(0) = Y1,


where (A, Y0, Y1) is a random vector with a multivariate Gaussian distribu-
tion, (A, Y0, Y1) ∼ NT(µ; Σ), truncated on domain T = [−2.4, 4.4] × [−3, 9] ×
[0.6, 7.4] ⊂ R3, i.e., a(ω) ∈ [−2.4, 4.4], y0(ω) ∈ [−3, 9] and y1(ω) ∈ [0.6, 7.4],
ω ∈ Ω, being µ the mean vector and Σ the variance-covariance matrix given
by

µ = (1, 2, 4)>, Σ =

 1/2 −1/4 1/3
−1/4 2/3 1/5
1/3 1/5 1/2

 .

In Figures 9.1–9.3, the exact 1-PDF, f1(x, t), and the approximations, fN1 (x, t),
of solution SP to IVP (9.1) have been plotted for different values of truncation
order N at time instants t ∈ {1, 1.5, 2}. From these graphical representations,
one observes that fN1 (x, t) tends to f1(x, t) as N increases, for every value of
t. Moreover, excellent approximations are achieved by considering a few terms.
In this regard, for instance, in Figure 9.1 one can observe that fN1 (x, t), N = 2,
approximately coincides with the exact function f1(x, t) at t = 1. The same can
be said for the approximations fN1 (x, 1.5) and fN1 (x, 2), taking N = 3 and N =
4, (see Figures 9.2 and 9.3, respectively). Naturally, the further away from
the origin is t, the higher order N is required to enhance the approximation.
To facilitate the graphical assessment of approximations, function fN1 (x, t), for
the corresponding greatest value of N and the corresponding t, has been plotted
together with the exact 1-PDF, f1(x, t), in the right-hand side of Figures 9.1–
9.3. In all cases one can see that fN1 (x, t) matches the exact 1-PDF f1(x, t).
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Figure 9.1: Left: Comparison of approximations, fN1 (x, t), of the 1-PDF of solution SP
to random IVP (9.1) taking as series order truncation N ∈ {0, 1, 2} and the corresponding
exact 1-PDF f1(x, t) at t = 1. Right: For ease of comparison, function fN1 (x, 1), with N = 2,
has been plotted together with the exact 1-PDF f1(x, 1).
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Figure 9.2: Left: Comparison of approximations, fN1 (x, t), of the 1-PDF of solution SP to
random IVP (9.1) taking as series order truncation N ∈ {0, 1, 2, 3} and the corresponding
exact 1-PDF f1(x, t) at t = 1.5. Right: For ease of comparison, function fN1 (x, 1.5), with
N = 3, has been plotted together with the exact 1-PDF f1(x, 1.5).
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Figure 9.3: Left: Comparison of approximations, fN1 (x, t), of the 1-PDF of solution SP to
random IVP (9.1) taking as series order truncation N ∈ {0, 1, 2, 3, 4} and the corresponding
exact 1-PDF f1(x, t) at t = 2. Right: For ease of comparison, function fN1 (x, 2), with N = 4,
has been plotted together with the exact 1-PDF f1(x, 2).

From Figures 9.1–9.3 it is observed that differences between approximations
fN1 (x, t) and the exact PDF f1(x, t) become smaller as truncation order N
increases. To assess the quality of approximations, in Table 9.1 the figures are
shown, for the following error measure

eN =

∫ +∞

−∞

∣∣fN1 (x, t)− f1(x, t)
∣∣ dx, N ≥ 0, t ≥ 0 fixed, (9.27)

taking as stopping criterion for the tolerance error 10−2.

eN N = 0 N = 1 N = 2 N = 3 N = 4

t = 1.0 0.963814 0.144837 0.008689 − −

t = 1.5 1.42046 0.418365 0.083541 0.005512 −

t = 2.0 1.6199 0.672689 0.539773 0.035664 0.003647

Table 9.1: Error measure eN defined by (9.27) for different time instants, t ∈ {1, 1.5, 2},
and series truncation orders, N ∈ {0, 1, 2, 3, 4} in Example 9.1. For every t, it has been taken
10−2 as stopping criterion for the tolerance error to eN , then values up to the error is for
the first time less than 10−2 have just collected. Otherwise, error is still less than 10−2 and
it has been denoted by means of an hyphen −.
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Example 9.2 Let us consider the Airy IVP

Ẍ(t) +AtX(t) = 0, t > 0,
X(0) = Y0,

Ẋ(0) = Y1,

 (9.28)

where A is an Uniform RV, A ∼ U([1, 2]), Y0 is an Exponential RV of pa-
rameter λ = 1/2, Y0 ∼ Exp(1/2) and Y1 is a Beta RV of parameters α = 2
and β = 3, Y1 ∼ Be(2; 3). Hereinafter, A, Y0 and Y1 are assumed to be in-
dependent RVs. To illustrate the capability of the approach to approximate
the 1-PDF of solution SP to IVP (9.28), approximations, fN1 (x, t), for differ-
ent values of N and time instants t ∈ {0.5, 1.5.2.5}, have been plotted (see
Figures 9.4–9.6). In Figure 9.4, one can see that approximations correspond-
ing to N = 3 and N = 4 match. To facilitate the graphical assessment of
approximations, functions fN1 (x, 1.5), with N ∈ {2, 3, 4} and fN1 (x, 2.5), with
N ∈ {4, 5, 6} have been magnified on the right-hand side of Figures 9.5 and 9.6,
respectively. From both graphical representations, one can see that the approxi-
mations {f3

1 (x, 1.5), f4
1 (x, 1.5)} and {f5

1 (x, 2.5), f6
1 (x, 2.5)} match, respectively.

f1
N (x, 0.5)

N=0

N=1

N=2

2 4 6 8 10
x

0.1

0.2

0.3

0.4

Figure 9.4: Approximations, fN1 (x, 0.5), of the 1-PDF of solution SP to random IVP (9.28)
taking as series order truncation N ∈ {0, 1, 2}.

From these graphical representations, one observe that differences between ap-
proximations fN+1

1 (x, t) and fN1 (x, t) are smaller as N increases. As it also
happens in the deterministic scenario, when classical Fröbenius method is ap-
plied, one observes that very good approximations are achieved even for small
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Figure 9.5: Left: Approximations, fN1 (x, 1.5), of the 1-PDF of solution SP to random
IVP (9.28) taking as series order truncation N ∈ {0, 1, 2, 3, 4}. Right: To facilitate the
graphical assessment of approximations, the functions fN1 (x, 1.5), with N ∈ {2, 3, 4}, have
been magnified.
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Figure 9.6: Left: Approximations, fN1 (x, 2.5), of the 1-PDF of solution SP to random
IVP (9.28) taking as series order truncation N ∈ {0, 1, 2, 3, 4, 5, 6}. Right: To facilitate the
graphical assessment of approximations, functions fN1 (x, 2.5), with N ∈ {4, 5, 6}, have been
magnified.

values of the truncation order N . This assertion is numerically confirmed in
Table 9.2 where the following error measure

êN =

∫ +∞

−∞

∣∣fN+1
1 (x, t)− fN1 (x, t)

∣∣ dx, N ≥ 0, t ≥ 0 fixed, (9.29)

is reported taking as stopping criterion for the tolerance error 10−2.
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êN N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

t = 0.5 0.024571 0.000159 − − − −

t = 1.5 1.25224 0.514115 0.036846 0.001671 − −

t = 2.5 1.98864 1.86826 1.61559 0.227534 0.033886 0.002859

Table 9.2: Error measure êN defined by (9.29) for different time instants, t ∈ {0.5, 1.5, 2.5},
and series truncation orders, N ∈ {0, 1, 2, 3, 4, 5} in Example 9.2. For every t, 10−2 has been
taken as stopping criterion for the tolerance error to êN , then values up to error is for the
first time less that 10−2 have just collected . Otherwise, error is still less than 10−2 and it
has been denoted by means of an hyphen −.

9.5 Conclusions

Many important differential equations belonging to the Mathematical Physics
and other areas related to Applied Mathematics are formulated through second-
order linear differential equations whose coefficients are analytic about regular
points. Taking into account the physical meaning of these equations, it is nat-
ural to consider randomness in their coefficients and initial conditions. In this
chapter approximations to the first probability density function of solution
stochastic process of such significant equations under very general hypothe-
ses have been computed. The most important issues of our contribution are,
firstly, statistical dependence among input random variables has been consid-
ered. This approach enables to deal with the more standard scenario, where
input parameters are assumed to be independent random variables, as a par-
ticular case. Secondly, uncertainty has been considered in very general point
of view since a wide range of probability distributions are allowed as input pa-
rameters, including Beta, Exponential, Uniform, Gamma, Gaussian, etc. This
is an important difference against the Itô-type approach, where uncertainty
into stochastic differential equations is formulated through the differential of
brownian motion or Wiener process, usually referred to as, white noise, which
is a Gaussian distribution. Thirdly, it has been pointed out that an impor-
tant advantage of computing approximations of the first probability density
function of solution stochastic process allows for computing approximations of
mean and variance just as merely particular cases. Therefore, this contribution
addresses a quite general problem.
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Chapter 10

On the computation of the first
probability density function to

random non-autonomous
first-order linear homogeneous

differential equations

This chapter is devoted to construct approximations of the
probability density function of non-autonomous first-order homoge-
neous linear random differential equation, where initial condition
and diffusion coefficient are assumed to be a random variable and
a stochastic process, respectively. Random Variable Transforma-
tion technique and Karhunen-Loève expansion will be combined to
construct reliable approximations under general conditions. Several
numerical examples illustrate theoretical findings.
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10.1 Introduction

Throughout this chapter non-autonomous first-order linear random differential
equations will be considered. Down below, some illustrative examples that are
aimed to motivate the interest in studying this kind of IVPs will be exhibited.
Indeed, important results, well-known in the deterministic framework, are sa-
tisfied in the random scenario only under restrictive assumptions. For instance,
considering the autonomous first-order linear random differential equation with
deterministic initial condition

Ẋ(t, ω) = A(ω)X(t, ω), t ≥ 0; X(0, ω) = 1, ω ∈ Ω,

where A ≡ A(ω) is a 2-RV, it can be shown that the extension to the random
scenario of the classical existence and uniqueness Picard’s theorem is satisfied
if, and only if, A is bounded almost surely [85, p.119], [86]. As a consequence,
this important result is not applicable when A assumes a Gaussian or a Poisson
distribution, for instance. As a second illustrative example involving the com-
putation of the expectation of solution SP to non-autonomous linear RDEs,
let us consider random IVP

Ẋ(t, ω) = A(t, ω)X(t, ω) +B(t, ω), X(t0, ω) = X0(ω), ω ∈ Ω,

where A(t, ω) and B(t, ω) are second-order SPs (E[(A(t, ω))2] and E[(B(t, ω))2]
are finite for all t) and A0(ω) is a second-order RV. If E[·] denotes the expec-
tation operator, then it can be shown that the mean of solution, µX(t) =
E[X(t, ω)], does not satisfy the corresponding averaged ordinary differential
equation

dµX(t)

d t
6= E[A(t, ω)]µX(t) + E[B(t, ω)], µX(t0) = E[X0(ω)].

Instead the computation of the expectation µX(t) is more involved (see, [85,
Chapter 8] and [40, p. 66]). The earlier examples illustrate the challenges when
dealing with both theoretical and practical aspects regarding linear random
differential equations.

The computation of the 1-PDF of solution SP for linear random differential
equation has been recently undertaken in [16], where inputs parameters were
considered RVs rather than deterministic constants. In this chapter, it will
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be studied the non-autonomous case for the homogeneous linear random dif-
ferential equation whose initial condition is assumed to be a RV. Specifically,
hereinafter the following random IVP will be considered

Ẋ(t, ω) = A(t, ω)X(t, ω), t ∈ T = [t0, T ] ⊂ R,
X(t0, ω) = X0(ω).

}
(10.1)

The main goal of this chapter is to obtain the 1-PDF, f1(x, t), of solution SP,
X(t, ω), to random IVP (10.1). To achieve this objective, it will combined the
application of RVT technique (see Theorem 2.1) and Karhunen-Loève expan-
sion (KLE).

The chapter is organized as follows. In Section 10.2 both the notation, that
will be used in this chapter, and the definition and some results regarding the
KLE will be established. The aim of Section 10.3 is twofold, first to compute
the 1-PDF, fN1 (x, t), of the truncated solution SP, XN(t, ω), secondly, to pro-
vide sufficient conditions in order to guarantee the convergence of the 1-PDF,
fN1 (x, t), to exact solution SP, X(t, ω), as N → +∞. In Section 10.4, two nu-
merical examples will be shown to illustrate the theoretical results established
in Section 10.3. Conclusions are drawn in Section 10.5.

10.2 Notation and auxiliary results

It is important to point out that the rigorous analysis of stochastic differential
equations and random differential equations usually takes place in the Hilbert
space L2(Ω,L2(T ,H)) of mean square integrable SPs, that are valued on a
Hilbert space (H, 〈·, ·〉H), and these SPs are defined over an underlying complete
probability space (Ω,A,P). Let us introduce the mathematical ingredients that
will be required to develop rigorously the working context:

• The Hilbert space (H, 〈·, ·〉H) previously introduced. For reasons that
will be apparent later, elements of (H, 〈·, ·〉H) will be denoted by X(t, ω).
Then,

H = {X(t, ω) : ‖X(t, ω)‖H =
√
〈X(t, ω), X(t, ω)〉H < +∞, (t, ω) ∈ T ×Ω}.

• The Hilbert space (L2(T ,H), 〈·, ·〉L2(T ,H)), T ⊂ R, defined as
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L2(T ,H) =
{
X(·, ω) : T −→ H : ‖X(·, ω)‖L2(T ,H) < +∞

}
,

where

〈X(·, ω), Y (·, ω)〉L2(T ,H) =

∫
T
〈X(t, ω), Y (t, ω)〉H dt,

and

‖X(·, ω)‖L2(T ,H) = +
√
〈X(·, ω), X(·, ω)〉L2(T ,H)

=

(∫
T
〈X(t, ω), X(t, ω)〉H dt

)1/2

=

(∫
T

(‖X(t, ω)‖H)
2

dt

)1/2

< +∞.

From these ingredients, one defines the Hilbert space

L2(Ω,L2(T ,H)) =
{
X : T × Ω −→ L2(T ,H) : ‖X‖L2(Ω,L2(T ,H)) < +∞

}
,

with the following inner product

〈X,Y 〉L2(Ω,L2(T ,H)) =

∫
Ω

〈X(t, ω), Y (t, ω)〉L2(T ,H) dP(ω)

=

∫
Ω

∫
T
〈X(t, ω), Y (t, ω)〉H dtdP(ω)

=

∫
T

∫
Ω

〈X(t, ω), Y (t, ω)〉H dP(ω) dt

=

∫
T
E [〈X(t, ω), Y (t, ω)〉H] dt,

and norm
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‖X‖L2(Ω,L2(T ,H)) =

(∫
T
E
[
(‖X(t, ω)‖H)

2
]

dt

)1/2

< +∞,

where the Fubbini’s theorem has been applied to express both, the inner pro-
duct and the norm, in terms of expectation operator. So far, elements x and
x(t, ω), for the sake of convenience, will be written indistinctly.

As throughout this chapter real RVs and SPs will be considered, H = R will be
taken endowed with the standard inner product 〈x, y〉R = xy, being x, y ∈ R.
In this case L2(Ω,L2(T ,R)) is usually denoted as L2(Ω,L2(T )). Moreover, it
is assumed that A = B(R) is the Borel σ-algebra on R. Therefore, this work
is based on the Hilbert space L2(Ω,L2(T )) with the inner product

〈X,Y 〉L2(Ω,L2(T )) =

∫
T
E [X(t, ω)Y (t, ω)] dt

and whose elements are SPs such that
∫
T E

[
(X(t, ω))

2
]

dt < +∞.

In practice, an important case, that will be considered throughout the sub-
sequent development, is when T is a bounded and closed interval of the real
line, T = [t0, T ] ⊂ R. In that case, 2-RVs, that is RVs X(ω) with finite vari-
ance (and hence E[(X(ω))2] < +∞), are obviously elements of the Hilbert
space L2(Ω,L2(T )). These RVs are interpreted as constant SPs. In dealing
with sequences of 2-RVs, the above inner product defines a norm whose as-
sociate convergence is usually referred to as m.s. convergence. Apart from
this convergence, the study of stochastic differential equations and random
differential equations can be developed considering another types of stochastic
convergences such as almost surely convergence, convergence in probability and
convergence in distribution, and using the relationship among them as well.

Moreover, as it was pointed before, in this chapter KLE will be used. KLE is
a type-Fourier series method that allows to represent diffusion SP in (10.1),
A(t, ω), as a function of a denumerable set of 2-RVs {ξi(ω) : i ≥ 1} such
that they have zero mean (E[ξi(ω)] = 0), unit variance (V[ξi(ω)] = 1) and are
pairwise uncorrelated (E[ξi(ω) ξj(ω)] = 0 if i 6= j). In other words, {ξi(ω) : i ≥
1} are such that E[ξi(ω)] = 0 and E[ξi(ω) ξj(ω)] = δij, where δij denotes the
standard Kronecker delta function.

Theorem 10.1 (L2 convergence of Karhunen-Loève) [61, p.202] Consi-
der a mean square integrable continuous time stochastic process X ≡ {X(t, ω) :
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t ∈ T , ω ∈ Ω}, i.e., X ∈ L2(Ω,L2(T )) being µX(t) and cX(s, t) its mean and
covariance functions, respectively. Then,

X(t, ω) = µX(t) +
∞∑
j=1

√
νj φj(t) ξj(ω), ω ∈ Ω, (10.2)

where, this sum converges in L2(Ω,L2(T )),

ξj(ω) :=
1
√
νj
〈X(t, ω)− µX(t), φj(t)〉L2(T )

,

{(νj, φj(t)) : j ≥ 1} denote, respectively, the eigenvalues with ν1 ≥ ν2 ≥ · · · > 0
and eigenfunctions of the following integral operator C

(Cf)(t) :=

∫
T
cX(s, t)f(s) ds, f ∈ L2(T ),

associated to the covariance function cX(s, t). Random variables ξj(ω) have
zero mean, unit variance and are pairwise uncorrelated. Furthermore, if X(t, ω)
is Gaussian, then ξj(ω) ∼ N(0; 1) are i.i.d.

To keep the computational burden feasible, later to apply RVT technique to
compute approximations of the 1-PDF, f1(x, t), it will be needed to consider
the N -truncation of the infinite sum (10.2)

XN(t, ω) = µX(t) +
N∑
j=1

√
νj φj(t) ξj(ω), ω ∈ Ω. (10.3)

10.3 Computing the 1-PDF of truncated solution stochastic
process

In this section the 1-PDF of truncated solution SP of IVP (10.1) will be ob-
tained. Notice that in IVP (10.1) it will be considered

H1 : X0(ω) is a second-order RV and A(t, ω) ∈ L2(Ω,L2(T )),
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satisfying certain additional conditions that will be specified later. As it is
assumed that X0(ω) is a 2-RV (E[(X0(ω))2] = k0 < +∞) and T = [t0, T ] has
finite volume, then X0(ω) ∈ L2(Ω,L2(T ))

‖X0‖L2(Ω,L2(T ,H)) =

(∫
T
E
[
(‖X0(ω)‖H)

2
]

dt

)1/2

<
√
k0(T − t0) < +∞.

It is known that the exact closed solution SP to random IVP (10.1) is

X(t, ω) = X0(ω)Exp
[∫ t

t0

A(s, ω)ds

]
, ω ∈ Ω. (10.4)

It is important to note that given a SP, say A(t, ω), in general nothing is
known about the probabilistic distribution of the SP, Â(t, ω) =

∫ t
0
A(s, ω) ds.

An exception is when A(t, ω) is a Gaussian SP. In that case, it can be proved
that Â(t, ω) is also Gaussian, see [85, Theorem 4.64, p.112]. This chapter is
focused in the determination of the 1-PDF of the SP (10.4) in the general
case that the SP A(t, ω) has an arbitrary probabilistic distribution (hence no
Gaussian in general), KLE and RVT techniques will be combined to give an
answer to this interesting question under mild conditions.

The analysis will be carried out assuming that initial condition X0(ω) is a RV
such as, for every t ∈ T = [t0, T ] fixed, X0(ω) and A(t, ω) are independent RVs.
Observe that this assumption is realistic from a practical standpoint when deal-
ing with physical models since initial conditions and coefficients involved in the
differential equations are not often physically related. Anyway, the subsequent
analysis can also be carry out if independence betweenX0(ω) and A(t, ω) is not
embraced. As a consequence, if denoting by ξN(ω) = (ξ1(ω), . . . , ξN(ω)) the
random vector whose components are the RVs arising in the KLE of A(t, ω),
then it will be assumed that X0(ω) and ξN(ω), are independent. Additionally,
it will be supposed that X0(ω) is an absolutely continuous RV and ξN(ω) is an
absolutely continuous random vector whose PDFs will be denoted by f0(x0) and
fξN (ξ1, . . . , ξN), respectively. Denoting by ξN+1 = (x0(ω), ξ1(ω), . . . , ξN(ω)),
observe that due to independence between X0(ω) and ξN(ω), their joint PDF,
fξN+1

(x0, ξ1, . . . , ξN), is the product of their marginal PDFs, i.e.,

fξN+1
(x0, ξ1, . . . , ξN) = f0(x0)fξN (ξ1, . . . , ξN). (10.5)

Summarizing, in the following it will be assumed that
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H2 :

X0(ω), ξi(ω), 1 ≤ i ≤ N, are absolutely continuous RVs.
X0(ω), ξN(ω) = (ξ1(ω), . . . , ξN(ω)) are independent
with PDFs f0(x0) and fξN (ξ1, . . . , ξN), respectively.
Moreover, E[ξi(ω)] = 0 and E[ξi(ω) ξj(ω)] = δij.

Let us assume that A ≡ A(t, ω) is a continuous time SP such that A ∈
L2(Ω,L2(T )) and let µA(t) and cA(s, t) denote its mean and covariance func-
tions, respectively. According to Theorem 10.1, the SP A(t, ω) admits a KLE,
and let us consider its truncation of order N (see expression (10.3))

AN(t, ω) = µA(t) +
N∑
j=1

√
νj φj(t) ξj(ω), ω ∈ Ω.

Therefore substituting this expression in (10.4), a formal approximate solution
SP to random IVP (10.1) is given by

XN(t, ω) = X0(ω)Exp
[∫ t

t0

AN(s, ω) ds

]

= X0(ω)Exp

[∫ t

t0

(
µA(s) +

N∑
j=1

√
νj φj(s) ξj(ω)

)
ds

]
.

(10.6)

Now, RVT technique, stated in Theorem 2.1, will be applied to obtain the
1-PDF of the approximate solution SP (10.6) in terms of the PDFs f0(x0) and
fξN (ξ1, . . . , ξN), which are assumed known. As the RVT method applies to
RVs, first fix t ∈ T = [t0, T ] and then the following mapping r : RN+1 → RN+1

is considered

y1 = r1(x0, ξ1, . . . , ξN) = x0 Exp

[∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s) ξj

)
ds

]
,

y2 = r2(x0, ξ1, . . . , ξN) = ξ1,
...

yN+1 = rN+1(x0, ξ1, . . . , ξN) = ξN ,

whose inverse transformation s = r−1 is
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x0 = s1(y1, y2, . . . , yN+1) = y1Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s) yj+1

)
ds

]
,

ξ1 = s2(y1, y2, . . . , yN+1) = y2,
...

ξN = sN+1(y1, y2, . . . , yN+1) = yN+1.

The absolute value of the Jacobian of this mapping is given by

|JN+1| = Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s) yj+1

)
ds

]
6= 0,

that is non-zero because is defined by an exponential. Then, applying Theorem
2.1 and using independence between RVX0 and random vector ξN , one obtains
the joint PDF of random vector YN+1(ω) = (Y1(ω), Y2(ω), . . . , YN+1(ω)) in
terms of PDFs f0(x0) and fξN (ξ1, . . . , ξN) (see (10.5))

fYN+1
(y1, . . . , yN+1)

= fξN+1

(
y1 Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νjφj(s)yj+1

)
ds

]
, y2, . . . , yN+1

)

× Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νjφj(s)yj+1

)
ds

]

= f0

(
y1 Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νjφj(s)yj+1

)
ds

])
fξN (y2, . . . , yN+1)

× Exp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νjφj(s)yj+1

)
ds

]
.

(10.7)
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Finally, taking t ∈ T = [t0, T ] arbitrary and marginalizing expression (10.7)
with respect to Y2 = ξ1, . . . , YN+1 = ξN , the 1-PDF of the truncated solution
SP is

fN1 (x, t)

=

∫
RN
f0

(
xExp

[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s) ξj

)
ds

])
fξN (ξ1, . . . , ξN)

×Exp
[
−
∫ t

t0

(
µa(s) +

N∑
j=1

√
νj φj(s) ξj

)
ds

]
dξN · · · dξ1.

(10.8)

Observe that the domain of the integral must be understood as the correspon-
ding subset of RN where the random vector ξN(ω) = (ξ1(ω), . . . , ξN(ω)) takes
values for all ω ∈ Ω. As usual in the context of PDFs, this convention will be
adopted from now on.

Now, it will be established sufficient conditions in order to guarantee the uni-
form convergence of this sequence fN1 (x, t) to the exact 1-PDF, f1(x, t), i.e.,

lim
N→+∞

fN1 (x, t) = f1(x, t), ∀(x, t) ∈ R× [t0, T ].

Since the exact 1-PDF, f1(x, t), is not known, this convergence is established
applying the classical Cauchy condition to the sequence fN1 (x, t) defined by
(10.8). Thus, it will be proved that for ε > 0 fixed, there exists n0 (independent
of (x, t)), such as

∣∣fN1 (x, t)− fM1 (x, t)
∣∣ < ε, ∀(x, t) ∈ R× [t0, T ], ∀N,M ≥ n0.

For the sake of clarity, henceforth the following notation will be used

KN(t, ξN(ω)) =

∫ t

t0

(
µA(s) +

N∑
j=1

√
νj φj(s) ξj(ω)

)
ds, (10.9)
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thus expression (10.8) writes

fN1 (x, t) =

∫
RN
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1.

(10.10)

Additionally, the following hypotheses will be assumed throughout in the sub-
sequent development.

H3 :
f0(x0) is Lipschitz in R, i.e.,

∃Lf0 : |f0(x0,1)− f(x0,2)| ≤ Lf0 |x0,1 − x0,2|, ∀x0,1, x0,2 ∈ R,

and

H4 :
SP A(t, ω) admits a Karhunen-Loève expansion of type (10.2),

such that there exists a positive constant C > 0 such that
E
[
e−4KN (t,ξN (ω))

]
≤ C, for all positive integer N.

Later it will be showed that this condition can be guaranteed in practice (see
Remark 10.2).

Let ε > 0, J ⊂ R bounded, (x, t) ∈ J × [t0, T ] an arbitrary point and N > M
integers. Taking into account (10.10), below it will be shown that {fN1 (x, t) :
N ≥ 1} is a Cauchy sequence by using several bounds that will be justified
later.

|fN1 (x, t)− fM1 (x, t)|

=

∣∣∣∣∫
RN
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−
∫
RM

f0

(
x e−KM (t,ξM )

)
fξM (ξ1, . . . , ξM) e−KM (t,ξM ) dξM · · · dξ1

∣∣∣∣
(I)
=

∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN )−f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]
× fξN (ξ1, . . . , ξN) dξN · · · dξ1

∣∣
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≤
∫
RN

∣∣∣[f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN )−f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]∣∣∣
×fξN (ξ1, . . . , ξN) dξN · · · dξ1

=

∫
RN

∣∣∣[f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN )−f0

(
x e−KN (t,ξN )

)
e−KM (t,ξM )

+f0

(
x e−KN (t,ξN )

)
e−KM (t,ξM )−f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]∣∣
×fξN (ξ1, . . . , ξN) dξN · · · dξ1

≤
∫
RN

[
f0

(
x e−KN (t,ξN )

) ∣∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣∣

+
∣∣∣f0

(
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣∣ e−KM (t,ξM )
]

×fξN (ξ1, . . . , ξN) dξN · · · dξ1

=

∫
RN
f0

(
x e−KN (t,ξN )

)
︸ ︷︷ ︸

(1)

∣∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣∣︸ ︷︷ ︸

(2)

fξN (ξ1, . . . , ξN) dξN · · · dξ1

+

∫
RN

∣∣∣f0

(
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣∣︸ ︷︷ ︸
(3)

e−KM (t,ξM )

×fξN (ξ1, . . . , ξN) dξN · · · dξ1

(II)

< Lf0 |x|
∫
RN

(
e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM )

)
|KN(t, ξN)−KM(t, ξM)|

×fξN (ξ1, . . . , ξN) dξN · · · dξ1

+F0

∫
RN

(
e−KN (t,ξN ) + e−KM (t,ξM )

)
|KN(t, ξN)−KM(t, ξM)|

×fξN (ξ1, . . . , ξN) dξN · · · dξ1

+Lf0 |x|
∫
RN

(
e−2KM (t,ξM ) + e−KN (t,ξN )−KM (t,ξM )

)
|KN(t, ξN)−KM(t, ξM)|
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×fξN (ξ1, . . . , ξN) dξN · · · dξ1

= Lf0 |x|E
[(

e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|]

+F0E
[(

e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|]

+Lf0 |x|E
[(

e−2KM (t,ξM (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|] .

Now, steps (I)-(II) given in the earlier development will be justified, but for
the sake of clarity in the presentation, conclusion is summarized

|fN1 (x, t)− fM1 (x, t)|

≤ Lf0 |x|E
[(

e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|]

+F0E
[(

e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|]

+Lf0 |x|E
[(

e−2KM (t,ξM (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)

× |KN(t, ξN(ω))−KM(t, ξM(ω))|] .

(10.11)

Step (I): Let N > M , if the joint PDF, gXM
(x1, . . . , xM), of a random vector,

say,

XN(ω) = (X1(ω), . . . , XM(ω), XM+1(ω), . . . , XN(ω))
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is marginalized with respect to RVsXM+1(ω), . . . , XN(ω), joint PDF of random
vector XM(ω) = (X1(ω), . . . , XM(ω)) is obtained, i.e.,

gXM
(x1, . . . , xM) =

∫
RN−M

gXN
(x1, . . . , xM , xM+1, . . . , xN) dxN · · · dxM+1.

Using the notation of previous development with Xi ≡ ξi, 1 ≤ i ≤ N and

gXM
(x1, . . . , xM) = fξM (ξ1, . . . , ξM) ,

(observe that this gXM
(x1, . . . , xM) is a PDF), one gets

fξM (ξ1, . . . , ξM) =

∫
RN−M

fξN (ξ1, . . . , ξN) dξN · · · dξM+1.

Therefore, substituting this expression in the left-hand side of (I) this term
can be expressed as∣∣∣∣∫

RN
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−
∫
RM

f0

(
x e−KM (t,ξM )

)
fξM (ξ1, . . . , ξM) e−KM (t,ξM ) dξM · · · dξ1

∣∣∣∣
=

∣∣∣∣∫
RN
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−
∫
RM

f0

(
x e−KM (t,ξM )

)( ∫
RN−M

fξN (ξ1, . . . , ξN) dξN · · · dξM+1

)

× e−KM (t,ξM ) dξM · · · dξ1

∣∣∣
=

∣∣∣∣∫
RN
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−
∫
RN
f0

(
x e−KM (t,ξM )

)
fξN (ξ1, . . . , ξN) e−KM (t,ξM ) dξN · · · dξ1

∣∣∣∣
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=

∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
fξN (ξ1, . . . , ξN) e−KN (t,ξN )−f0

(
x e−KM (t,ξM )

)
× fξN (ξ1, . . . , ξN) e−KM (t,ξM )

]
dξN · · · dξ1

∣∣∣
=

∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN )−f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]
× fξN (ξ1, . . . , ξN) dξN · · · dξ1

∣∣ ,
which is just the right-hand side of (I). This justifies Step (I).

Step (II): Now, bounds used in this step will be legitimated. Without loss of
generality, let F0 = f0(0) and then first bound the term (1) using hypothesis
H3:

f0

(
x e−KN (t,ξN (ω))

)
≤

∣∣∣f0

(
x e−KN (t,ξN (ω))

)
− f0(0)

∣∣∣+ |f0(0)|

≤ Lf0 |x| e−KN (t,ξN (ω)) +F0.

Secondly, bound for the product of terms (1) and (2) will be obtained as follows

f0

(
x e−KN (t,ξN )

) ∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣

≤
(
Lf0 |x| e−KN (t,ξN (ω)) +F0

) ∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣

= Lf0 |x|
∣∣∣e−2KN (t,ξN )− e−KN (t,ξN )−KM (t,ξM )

∣∣∣
+F0

∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣ .

(10.12)

Now, by applying the Mean Value Theorem twice to function e−z, it is gua-
ranteed that

∃ δ(1)
t,ξN
∈ ]min {a, b} ,max {a, b}[ , where

 a = 2KN(t, ξN),

b = KN(t, ξN) +KM(t, ξM),
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such that∣∣∣e−2KN (t,ξN )− e−KN (t,ξM )−KM (t,ξM )
∣∣∣ = e−δ

(1)
t,ξN |KN(t, ξN)−KM(t, ξM)| ,

(10.13)

and

∃ δ(2)
t,ξN
∈ ]min {KN(t, ξN),KM(t, ξM)} ,max {KN(t, ξN),KM(t, ξM)}[

such that∣∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣∣ = e−δ

(2)
t,ξN |KN(t, ξN)−KM(t, ξM)| , (10.14)

respectively. As a consequence of (10.13) and (10.14), one gets

e−max{2KN (t,ξN ),KN (t,ξN )+KM (t,ξM )} < e−δ
(1)
t,ξN < e−min{2KN (t,ξN ),KN (t,ξN )+KM (t,ξM )}

and

e−max{KN (t,ξN ),KM (t,ξM )} < e−δ
(2)
t,ξN < e−min{KN (t,ξN ),KM (t,ξM )},

respectively. Therefore,

e−δ
(1)
t,ξN < e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM ) (10.15)

and

e−δ
(2)
t,ξN < e−KN (t,ξN ) + e−KM (t,ξM ), (10.16)

respectively. Applying (10.13)–(10.16) in (10.12) one deduces
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f0

(
x e−KN (t,ξN )

) ∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣

≤ Lf0 |x|
∣∣∣e−2KN (t,ξN )− e−KN (t,ξN )−KM (t,ξM )

∣∣∣
+F0

∣∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣∣

= Lf0 |x| e
−δ(1)t,ξN |KN(t, ξN)−KM(t, ξM)|

+F0 e−δ
(2)
t,ξN |KN(t, ξN)−KM(t, ξM)|

<
{
Lf0 |x|

(
e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM )

)
+F0

(
e−KN (t,ξN ) + e−KM (t,ξM )

)}
|KN(t, ξN)−KM(t, ξM)| .

Now, a bound for term (3) will be constructed following a similar argument
shown above. Indeed, on the one hand, by applying hypothesis H3 one gets∣∣∣f0

(
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣∣ ≤ Lf0 |x| ∣∣∣e−KN (t,ξN )− e−KM (t,ξM )
∣∣∣ .

(10.17)

On the other hand, by applying the Mean Value Theorem to function e−z, it
is guaranteed that

∃ δ(3)
t,ξN
∈ ]min {a, b} ,max {a, b}[ , where

 a = 2KM(t, ξM),

b = KN(t, ξN) +KM(t, ξM),

such that∣∣∣e−KN (t,ξN )−KM (t,ξM )− e−2KM (t,ξM )
∣∣∣ = e−δ

(3)
t,ξN |KN(t, ξN)−KM(t, ξM)| .

(10.18)

Therefore,

e−max{2KM (t,ξM ),KN (t,ξN )+KM (t,ξM )} < e−δ
(3)
t,ξN < e−min{2KM (t,ξM ),KN (t,ξN )+KM (t,ξM )}
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and hence

e−δ
(3)
t,ξN < e−2KM (t,ξM ) + e−KN (t,ξN )−KM (t,ξM ) . (10.19)

Multiplying (10.17) by e−KM (t,ξM ) and applying (10.18) and (10.19), one de-
duces∣∣f0

(
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣ e−KM (t,ξM )

≤ Lf0 |x|
∣∣∣e−KN (t,ξN )− e−KM (t,ξM )

∣∣∣ e−KM (t,ξM )

= Lf0 |x|
∣∣∣e−KN (t,ξN )−KM (t,ξM )− e−2KM (t,ξM )

∣∣∣
= Lf0 |x| e

−δ(3)t,ξN |KN(t, ξN)−KM(t, ξM)|

< Lf0 |x|
(

e−2KM (t,ξM ) + e−KN (t,ξN )−KM (t,ξM )
)
|KN(t, ξN)−KM(t, ξM)| .

Now, a bound for every expectation appearing in (10.11) will be obtained.
Applying Cauchy-Schwarz inequality for expectations

E
[(

e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)
|KN(t, ξN(ω))−KM(t, ξM(ω))|

]
= E

[
e−2KN (t,ξN (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
+E

[
e−KN (t,ξN (ω))−KM (t,ξM (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
≤
(
E
[
e−4KN (t,ξN (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−2KN (t,ξN (ω)) e−2KM (t,ξM (ω))

])1/2
×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

(10.20)
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≤
(
E
[
e−4KN (t,ξN (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−4KN (t,ξN (ω))

])1/4 (E [e−4KM (t,ξM (ω))
])1/4

×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

=
{(

E
[
e−4KN (t,ξN (ω))

])1/2
+
(
E
[
e−4KN (t,ξN (ω))

])1/4 (E [e−4KM (t,ξM (ω))
])1/4}

×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

,

(10.21)

E
[(

e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))
)
|KN(t, ξN(ω))−KM(t, ξM(ω))|

]
= E

[
e−KN (t,ξN (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
+E

[
e−KM (t,ξM (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
≤
(
E
[
e−2KN (t,ξN (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−2KM (t,ξM (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

≤
(
E
[
e−4KN (t,ξN (ω))

])1/4 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−4KM (t,ξM (ω))

])1/4 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

=
{(

E
[
e−4KN (t,ξN (ω))

])1/4
+
(
E
[
e−4KM (t,ξM (ω))

])1/4}
×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

,
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and

E
[(

e−2KM (t,ξM (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
)
|KN(t, ξN(ω))−KM(t, ξM(ω))|

]
= E

[
e−2KM (t,ξM (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
+E

[
e−KN (t,ξN (ω))−KM (t,ξM (ω)) |KN(t, ξN(ω))−KM(t, ξM(ω))|

]
≤
(
E
[
e−4KM (t,ξM (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−2KN (t,ξN (ω)) e−2KM (t,ξM )(ω)

])1/2
×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

≤
(
E
[
e−4KM (t,ξM (ω))

])1/2 (E [|KN(t, ξN(ω))−KM(t, ξM(ω))|2
])1/2

+
(
E
[
e−4KN (t,ξN (ω))

])1/4 (E [e−4KM (t,ξM (ω))
])1/4

×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

≤
{(

E
[
e−4KM (t,ξM (ω))

])1/2
+
(
E
[
e−4KN (t,ξN (ω))

])1/4 (E [e−4KM (t,ξM (ω))
])1/4}

×
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

.

(10.22)

By substituting the three bounds given in (10.20)–(10.22) into expression
(10.11)
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|fN1 (x, t)− fM1 (x, t)|

≤
[
Lf0 |x|

{(
E
[
e−4KN (t,ξN (ω))

])1/2

+
(
E
[
e−4KN (t,ξN (ω))

])1/4

×
(
E
[
e−4KM (t,ξM (ω))

])1/4}
+F0

{(
E
[
e−4KN (t,ξN (ω))

])1/4

+
(
E
[
e−4KM (t,ξM (ω))

])1/4
}

+Lf0 |x|
{(

E
[
e−4KM (t,ξM (ω))

])1/2

+
(
E
[
e−4KN (t,ξN (ω))

])1/4

×
(
E
[
e−4KM (t,ξM (ω))

])1/4
}] (

E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

.

Now, using hypothesis H4 one gets

|fN1 (x, t)− fM1 (x, t)|

≤
[
Lf0 |x|

{
C1/2 + C1/4 × C1/4

}
+ F0

{
C1/4 + C1/4

}
+Lf0 |x|

{
C1/2 + C1/4 × C1/4

}](
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

= [α|x|+ β]
(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

,

(10.23)

where

α = 4C1/2Lf0 , β = 2C1/4F0.

Let us observe by applying the Cauchy-Schwarz inequality for integrals and
the definition of the norm ‖·‖L2(Ω,L2(T )) for T = [t0, T ], that
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E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

]

= E

(∫ t

t0

N∑
j=M+1

√
νjφj(s)ξj(ω) ds

)2


≤ E

(∫ t

t0

12 ds

)∫ t

t0

(
N∑

j=M+1

√
νjφj(s)ξj(ω)

)2

ds



= (t− t0)E

∫ t

t0

(
N∑

j=M+1

√
νjφj(s)ξj(ω)

)2

ds



≤ (T − t0)E

∫ T

t0

(
N∑

j=M+1

√
νjφj(s)ξj(ω)

)2

ds


= (T − t0)E

[∫ T

t0

(AN(t, ω)−AM(t, ω))
2

ds

]

= (T − t0)

∫ T

t0

E
[
(AN(t, ω)−AM(t, ω))

2
]

ds

= (T − t0)
(
‖AN −AM‖L2(Ω,L2([t0,T ]))

)2

.

Substituting this latter conclusion in (10.23) and applying the Cauchy con-
vergence condition for the KLE of diffusion coefficient A(t, ω) in the norm
‖·‖L2(Ω,L2([t0,T ])) (see Theorem 10.1), one deduces

∣∣fN1 (x, t)− fM1 (x, t)
∣∣ ≤ [α|x|+ β]

(
E
[
|KN(t, ξN(ω))−KM(t, ξM(ω))|2

])1/2

≤ [α|x|+ β]
√
T − t0 ‖AN −AM‖L2(Ω,L2([t0,T ])) −−−−−−→N,M→+∞

0.

This proves that {fN1 ≡ fN1 (x, t) : N ≥ 1} is a uniformly Cauchy sequence in
J × [t0, T ] for all J ⊂ R bounded.

200



10.3 Computing the 1-PDF of truncated solution stochastic process

Summarizing, the following result has been established.

Proposition 10.1 Under hypotheses H1–H4, the sequence {fN1 (x, t) : N ≥ 1}
of 1-PDFs, defined by (10.8), converges uniformly in (x, t) ∈ J × T for all
J ⊂ R bounded, to the exact 1-PDF, f1(x, t), of solution SP of random IVP
(10.1).

Remark 10.1 Here, it will be shown that hypothesis H3 is fulfilled by the PDF
of a wide variety of RVs. In fact, as a consequence of the Mean Value Theorem
it is well known that if a function, say f0, has bounded first derivative in in
R, then f0 is Lipschitz over the whole real line. It is straightforwardly to check
that the PDF of important RVs such as Uniform, Beta, Gaussian, Gamma,
etc. have bounded first derivative over the whole real line. For example, if f0

is the PDF of an Exponential RV of parameter λ > 0, then f0(x0) = λ e−λx0 ,
x0, λ > 0. As df0

dx0
= −λ2 e−λx0 is continuous in [0,+∞[ and limx0→+∞

df0
dx0

= 0,
therefore f0(x0) is Lipschitz in [0,+∞[.

Remark 10.2 It will be shown that hypothesis H4 is not restrictive in prac-
tice. In fact, it is important to observe that given the coefficient A(t, ω) ∈
L2(Ω,L2(T )) of random IVP (10.1), then according to KLE, the involved RVs
ξj(ω) can be chosen in many ways so that E[ξj(ω)] = 0, V[ξj(ω)] = 1 and they
are uncorrelated (E[ξi(ω) ξj(ω)] = 0 for i 6= j ). As in our case they must be
absolutely continuous RVs, they can be chosen, for example, as uncorrelated
Gaussian RVs with zero mean and unit variance, ξj(ω) ∼ N(0; 1). Next, it will
be proven that making this choice, then hypothesis H4 holds. First, observe
that taking into account (10.9), the expectation involved in H4 can be written
as

E
[
ebKM (t,ξM (ω))

]
= e

b
∫ t
t0
µA(s) ds E

[
M∏
j=1

e
bξj(ω)

√
νj
∫ t
t0
φj(s) ds

]

= e
b
∫ t
t0
µA(s) ds

M∏
j=1

E
[
e
bξj(ω)

√
νj
∫ t
t0
φj(s) ds

]
,

where in the last step it is used that ξj(ω) are independent RVs (since they are
uncorrelated and Gaussian), hence the expectation of the product is the product
of expectations. Now, the following property
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E
[
eλZ(ω)

]
= e

λ2

2 , λ ∈ R, Z(ω) ∼ N(0; 1),

is used to compute every factor of the last product. This leads to

E
[
ebKM (t,ξM (ω))

]
= e

b
∫ t
t0
µA(s) ds

M∏
j=1

e
b2

2 νj

(∫ t
t0
φj(s) ds

)2

= e
b
∫ t
t0
µA(s) ds

e
b2

2

∑M
j=1 νj

(∫ t
t0
φj(s) ds

)2

.

(10.24)

Applying the Cauchy-Schwarz inequality for integrals one gets

(∫ t
t0
φj(s) ds

)2

≤ (t− t0)

(∫ t

t0

(φj(s))
2 ds

)

≤ (T − t0)

(∫ T

t0

(φj(s))
2 ds

)
, t0 ≤ t ≤ T.

Therefore, expression (10.24) can be bounded as follows

E
[
ebKM (t,ξM (ω))

]
≤ e

b
∫ t
t0
µA(s) ds

e
b2

2 (T−t0)
∑M
j=1 νj

∫ T
t0

(φj(s))
2 ds

≤ e
b
∫ t
t0
µA(s) ds

e
b2

2 (T−t0)
∫ T
t0

(
∑∞
j=1 νj(φj(s))

2) ds
.

(10.25)

Now, let us bound every integral term in the right-hand side of this expression,
thus proving the finiteness of E

[
ebKM (t,ξM (ω))

]
< +∞. As a consequence, taking

b = 4 and important scenario where hypothesis H4 holds will be shown. On the
one hand, by Cauchy-Schwarz inequality for integrals, applying that (µA(s))2 =
(E[(A(s)])2 ≤ E[(A(s))2] and the fact that A ∈ L2(Ω,L2([t0, T ])), one gets
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∫ t

t0

|µA(s)| ds ≤
∫ T

t0

|µA(s)| ds

≤
√
T − t0

(∫ t

t0

(µA(s))2 ds

)1/2

≤
√
T − t0

(∫ T

t0

E[(A(s))2] ds

)1/2

=
√
T − t0 ‖A‖L2(Ω,L2([t0,T ])) < +∞.

Since
∣∣∣∫ tt0 µA(s) ds

∣∣∣ ≤ ∫ tt0 |µA(s)| ds, this justifies e
b
∫ t
t0
µA(s) ds

< +∞, which is
the first factor of the right-hand side in (10.25). On the other hand, let us
observe

E[(A(s))2] = (µA(s))2 +
∞∑
j=1

νj(φj(s))
2,

A(s) = µA(s) +
+∞∑
j=1

√
νjφj(s)ξj(ω) in L2(Ω,L2([t0, T ])),

hence

∞∑
j=1

νj(φj(s))
2 ≤ E[(A(s))2]

and

∫ T

t0

∞∑
j=1

νj(φj(s))
2 ds ≤

∫ T

t0

E[(A(s))2] ds =
(
‖A‖L2(Ω,L2([t0,T ]))

)2

< +∞.

Therefore, the second factor of the right-hand side in (10.25) is finite, i.e.
e
b2

2 (T−t0)
∫ T
t0

(
∑∞
j=1 νj(φj(s))

2) ds
< +∞. Summarizing, if ξj(ω) in the KLE are

chosen as uncorrelated standard Gaussian RVs, then hypothesis H4 is guaran-
teed.
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10.4 Numerical examples

In this section, two examples will be shown. In the first example, the SP
A(t, ω), playing the role of diffusion coefficient in random IVP (10.1), is the so-
called Brownian motion or standard Wiener process. As the exact distribution
of the Brownian motion is known, then the exact 1-PDF f1(x, t) of solution SP
X(t, ω) to (10.1) can be derived. Hence, this first example will be used as a
test to compare the approximations, fN1 (x, t) given by (10.8), for different
values of the truncation order N against the exact values. In the second
example a covariance function is considered. Then, from the knowledge of
its eigenpairs {(νj, φj(t)) : j ≥ 1}, approximations of the 1-PDF are given. In
both examples, approximations of the mean and standard deviation of X(t, ω)
are given from fN1 (x, t). Finally, in both examples error measures are provided
in order to quantify the accuracy of approximations of the 1-PDF, the mean
and the standard deviation.

10.4.1 Example 1: Brownian motion

In this example, SP A(t, ω) ≡ B(t, ω) is the Brownian motion or standard
Wiener and t0 = 0. Then, it is known that µA(t) = 0 and V[A(t, ω)] = 1,
∀t ∈ T = [0, T ], T > 0. In addition, the covariance function is given by

cA(s, t) = min (s, t), (s, t) ∈ T × T ,

which has the following eigenvalues and normalized eigenfunctions

νj =
4T 2

π2(2j − 1)2
, φj(t) =

√
2

T
sin

(
(2j − 1)πt

2T

)
, j = 1, 2, . . . (10.26)

Then, the 1-PDF of the truncated solution SPXN(t, ω) is obtained substituting
(10.26) in (10.8)

fN1 (x, t) =

∫
RN
f0

(
x

N∏
j=1

e−hj(t)ξj

)
fξN (ξ1, . . . , ξN)

N∏
j=1

e−hj(t)ξj dξN · · · dξ1,

(10.27)
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where

hj(t) =

(
2T

(2j − 1)π)

)2
√

2

T

(
1− cos

(
(2j − 1)πt

2T

))
. (10.28)

In this example the 1-PDF of the exact solution SP, X(t, ω), can be computed
taking into account that B̂(t) =

∫ t
0
B(s)ds ∼ N

(
0;
√

t3

3

)
. Hence B̂(t)

d
=√

t3

3
Z, Z ∼ N(0; 1), that is, the SP B̂(t) has the same distribution as RV

√
t3

3
Z,

being Z a standard Gaussian RV. Using RVT method, it is straightforwardly
to check that the 1-PDF of X(t, ω) is given by

f1(x, t) =

∫ ∞
−∞

f0

(
x e−
√

t3

3 z

)
fZ(z) e−

√
t3

3 z dz, (10.29)

where f0(x0) and fZ(z) denote the PDFs of RVs X0 and Z, respectively.

In Figure 10.1, it is shown 3D-plots of the exact 1-PDF (left) and two ap-
proximations fN1 (x, t) using (10.27)–(10.28) with N = 1 (center) and N = 2
(right), respectively, over the time interval [0, T ] = [0, 2]. it have been taken
ξj(ω), j ∈ {1, 2} uncorrelated standard Gaussian RVs and X0(ω) a Uniform
RV on the interval [0, 1], i.e., X0(ω) ∼ Un([0, 1]). As in the theoretical devel-
opment, X0(ω) is assumed to be independent of ξ1(ω) and ξ2(ω). Notice that
this assumption has been already used in (10.29). In the context of this ex-
ample, clearly all hypotheses H1–H4 hold (see Remarks 10.1 and 10.2 to check
H3 and H4, respectively). From Figure 10.1, one can see that the first and
second order truncations (plots in the center and in the right, respectively) are
close to the 1-PDF of the exact solution (plot in the left). This feature can be
observed in detail in Figure 10.2 where the exact PDF, f1(x, t), and the two
previous approximations, f1

1 (x, t) and f2
1 (x, t) have been plotted in different

time instants (t ∈ {0.1, 1, 2}). For sake of clarity, in Table 10.1, total error is
collected, defined by the following expression (10.30), between the exact 1-PDF
and the approximation with order of truncation N at different times instants

ePDF
N (t) =

∫ ∞
−∞

∣∣f1(x, t)− fN1 (x, t)
∣∣ dx. (10.30)

Finally, in Figure 10.3 exact mean and exact standard deviation are compared
with the approximations. From these plots, one can see that approximations
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Figure 10.1: Left: 1-PDF of the exact solution SP given by (10.29). Center: 1-PDF of the
first truncation given by (10.27)–(10.28) with N = 1. Right: 1-PDF of the second truncation
given by (10.27)–(10.28) with N = 2.

ePDF
N (t) N = 1 N = 2

t = 0.1 0.010021 0.008682

t = 1 0.077919 0.008663

t = 2 0.005310 0.000832

Table 10.1: Error measure ePDF
N (t) defined by (10.30) for different time instants, t ∈ {0.1,

1, 2}, and truncation orders N ∈ {1, 2}, in the context of Example 10.4.1.

are good, being slower the convergence of standard deviation. The errors
of these approximations are shown in Table 10.2. These figures have been
calculated using

eµN =

∫ T

t0

∣∣µX(t)− µNX(t)
∣∣ dt, eσN =

∫ T

t0

∣∣σX(t)− σNX (t)
∣∣ dt, (10.31)

with t0 = 0 and T = 2.

Error N = 1 N = 2 N = 3 N = 4

Mean eµN 0.055567 0.005541 0.002425 0.000871

Standard deviation eσN 0.383975 0.169942 0.159339 0.151808

Table 10.2: Values of errors eµN and eσN for the mean and standard deviation, given by
(10.31) using different orders of truncation N , in the context of Example 10.4.1.
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Figure 10.2: 1-PDF f1(x, t) of the exact solution SP and the two first truncations fN1 (x, t),
N ∈ {1, 2}, for different values of t in the context of Example 10.4.1. Top left: t = 0.1. Top
right: t = 1. Bottom: t = 2.

10.4.2 Example 2: Exponential covariance

As the KLE relies upon the covariance function cA(s, t) of the SP, in this exam-
ple the covariance function of the SP A(t, ω) will be assumed known instead of
giving the SP itself. Let us consider the following covariance function, usually
referred to as exponential covariance,

cA(s, t) = e
−|s− t|

b , (s, t) ∈ T × T , T = [−a, a], a > 0, (10.32)

where b > 0 is often termed the correlation length, since it reflects the rate at
which the correlation decays between two times of the process. The eigenvalues
and normalized eigenfunctions of the covariance function are given by [61, p.
294–295]
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Figure 10.3: In the context of Example 10.4.1. Left: Exact mean (µx) of solution and
its approximations using truncations of order N ∈ {1, 2} (µ1

x and µ2
x, respectively). Right:

Exact standard deviation (σx) of solution and its approximations using truncations of order
N ∈ {1, 2, 3, 4} (σix, i ∈ {1, 2, 3, 4}).

φj(t) =
cos(zjx)√

a+
sin(2zja)

2zj

, νj =
2c

z2
j + c2

, j odd,

φ∗j (t) =
sin(z∗jx)√

a−
sin(2z∗j a)

2z∗j

, ν∗j =
2c

(z∗j )
2 + c2

, j even,

being c = 1/b and zj, z∗j solutions of the following transcendental equations

c− zj tan(zja) = 0, j odd,
z∗j + c tan(z∗j a) = 0, j even.

Then, considering the mean of the SP A(t, ω) is zero, the KLE of A(t, ω) is
given by

A(t, ω) =
∞∑
j=1

(√
ν2j−1φ2j−1(t) ξ2j−1(ω) +

√
ν∗2jφ

∗
2j(t) ξ

∗
2j(ω)

)
. (10.33)

Next, it will be shown approximations, fN1 (x, t), of the 1-PDF, f1(x, t), of
solution SP, X(t, ω), to random IVP (10.1), being A(t, ω) represented by the
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KLE (10.33). These approximations will be constructed using the expression
(10.8) with different orders of truncation N .

In Figure 10.4, fN1 (x, t) has been plotted with N = 1 and N = 2 for two
different correlation lengths, b = 0.1 and b = 1, over the time domain T =
[−0.5, 0.5] corresponding to a = 0.5. Therefore, initial time instant is t0 =
−0.5. ξj(ω), j ∈ {1, 2}, have been chosen as uncorrelated standard Gaussian
RVs to represent the SP A(t, ω) by KLE (10.33). Initial condition X0(ω) is
assumed to be an Exponential RV with mean 1/4, i.e., X0(ω) ∼ Exp(4). Hence,
by Remark 10.1, hypothesis H3 holds. X0(ω), ξ1(ω) and ξ2(ω) are assumed
independent RVs. From Figure 10.4, one can observe that both f1

1 (x, t) and
f2

1 (x, t) are very similar, then indicating quick convergence with respect to
the truncation order N . This happens for both values of parameter b over
the whole space-time domain. For the sake of clarity, in Figure 10.5 both
approximations are shown in the middle point t = 0 of the domain T for
b = 0.1 and b = 1. As an indicator of convergence, in Table 10.3 the following
error has been computed

êPDF
N (t) =

∫ ∞
−∞

∣∣fN1 (x, t)− fN−1
1 (x, t)

∣∣ dx, (10.34)

between consecutive approximations over the whole spacial domain at t = 0
(middle time instant) for both values of parameter b.

êPDF
N (0) N = 2 N = 3

b = 1 0.0106515 0.0000164

b = 0.1 0.0147553 0.0008538

Table 10.3: Error measure êN (t) defined by (10.34) for time instant t = 0, and truncation
orders, N ∈ {2, 3} for b = 1 and b = 0.1, in the context of Example 10.4.2.

In Figure 10.6, mean and standard deviation are shown with b = 0.1 and b = 1
for different orders of truncation.

To account for the error, in Table 10.4 and Table 10.5 the following errors for
b = 0.1 and b = 1 respectively, with t0 = −0.5 and T = 0.5 are computed

êµN =

∫ T

t0

∣∣µNX(t)− µN−1
X (t)

∣∣ dt, êσN =

∫ T

t0

∣∣σNX (t)− σN−1
X (t)

∣∣ dt, (10.35)
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Figure 10.4: In the context of Example 10.4.2. Top: 1-PDF of the truncations N = 1 and
N = 2, with b = 1 Bottom: 1-PDF of the truncations N = 1 and N = 2, with b = 0.1.

where µnX(t) and σnX(t), n = N − 1, N , are approximations to the mean and
the standard deviation.

From Table 10.3, one observes that the error êPDF
N (0) is smaller for b = 1 than

b = 0.1. This same behaviour happens regarding the approximations of the
mean and the standard deviation, namely, they are better for b = 1 than for
b = 0.1, except for N = 2 (see Table 10.4 and Table 10.5). This result can be
expected from the decay of eigenvalues vj. In fact, it is well-known that [61,
p. 204]

‖A(t, ω)−AN(t, ω)‖L2(Ω,L2(T )) =

∫
T
V[A(t, ω)] dt−

N∑
j=1

νj.
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Figure 10.5: 1-PDF of the truncations N ∈ {1, 2}, for t = 0, in the context of Example
10.4.2. Left: b = 1. Right: b = 0.1.

error (b = 0.1) N = 2 N = 3 N = 4 N = 5

êµN 0.0018717 0.0004470 0.0001983 0.0000631

êσN 0.0057412 0.0013707 0.0006206 0.0003282

Table 10.4: Errors êµN and êσN for the mean and the standard deviation, defined by (10.35)
respectively, using different orders of truncations (N ∈ {2, 3, 4, 5}) and correlation length
b = 0.1, in the context of Example 10.4.2.

Then, the first N eigenvalues νj can be added to determine the truncation
parameter N for a given error tolerance, say ε > 0, when approximating dif-
fusion coefficient A(t, ω) using the KLE. Obviously, the greater the values of
vj, the smaller the value of N . In the context of this example the decay of
eigenvalues νj depends on the choice of parameter b. The bigger b the faster
decay of νj and, as a consequence, a smaller value of the truncation parameter
N will be required to achieve the accuracy ε in order to approximate A(t, ω).
In Table 10.6, the first eigenvalues of the covariance function (10.32) are shown
for b = 0.1 and b = 1 over the time interval T = [−0.5, 0.5]. These eigenvalues
have been represented in Figure 10.7. As it can be observed in this plot, the
eigenvalues corresponding to b = 1 decay faster than those ones correspond-
ing to b = 0.1. This fact is in agreement with figures collected in Table 10.3
(corresponding to approximation of 1-PDF) and in Tables 10.4 and 10.5 (cor-
responding to approximations of mean and standard deviation), where error
associated to b = 1 is smaller than to b = 0.1, for a fixed truncation order N .
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Figure 10.6: In the context of Example 10.4.2. Top: Approximations of the mean and
standard deviation using different orders of truncation N ∈ {1, 2, 3} with correlation length
parameter b = 1. Bottom: Approximations of the mean and standard deviation using
different orders of truncation N ∈ {1, 2, 3, 4, 5} with correlation length parameter b = 0.1.

In the context of this example, where neither the exact 1-PDF nor the exact
mean and standard deviation are not available, it is very interesting to establish
a stopping criterion in order to determine the order of truncation N for a given
error tolerance ε > 0. Just as an example to illustrate the way findings can
be used in this regard, if ε = 10−3 then, according to Table 10.4 and Table
10.5, it is enough to take N = 3 as the order of truncation for both values
of parameter b, while N = 3 and N = 4 are required to guarantee the same
accuracy for the standard deviation when b = 1 and b = 0.1, respectively.
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error (b = 1) N = 2 N = 3

êµN 0.0019514 0.0001370

êσN 0.0064182 0.0004473

Table 10.5: Errors êµN and êσN for the mean and the standard deviation, defined by (10.35)
respectively, using different orders of truncations (N ∈ {2, 3, 4, 5}) and correlation length
b = 1, in the context of Example 10.4.2.

ν1 ν2 ν3 ν4 ν5

b = 0.1 0.187083 0.156046 0.121154 0.091324 0.068736

b = 1 0.738813 0.138000 0.045089 0.021329 0.012279

ν6 ν7 ν8 ν9 ν10

b = 0.1 0.052403 0.040695 0.032225 0.025998 0.021333

b = 1 0.007945 0.005551 0.004093 0.003142 0.002486

Table 10.6: First eigenvalues, νj , of the covariance function (10.32) for j ∈ {1, 2, . . . , 10}
for b = 0.1 and b = 1 over the time interval T = [−0.5, 0.5], in the context of Example 10.4.2.
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Figure 10.7: First eigenvalues, νj , of the covariance function (10.32), in the context of
Example 10.4.2.
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10.5 Conclusions

In this chapter, it have been constructed approximations of the first probabil-
ity density function to the linear homogeneous first-order random differential
equation. It has been proved that these approximations are convergent under
mild conditions upon initial condition and diffusion coefficient which are as-
sumed to be an initial condition and a stochastic process, respectively. The
key idea to construct these approximations has been to combine the Random
Variable Transformation technique and the Karhunen-Loève expansion. Two
illustrative examples have been considered showing that approximations con-
verge very rapidly. Indeed, just a few terms are need to approximate the first
probability density function in both examples. The first probability density
function has been used to approximate both the mean and the variance in both
examples. All numerical results are also satisfactory. Finally, as it has been
underlined in the motivation of the chapter, although the formulation of the
target problem appears to be simple, the analysis does not. This is a genuine
feature usually met when deterministic results are extended to the random
scenario.
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Conclusions

The main objective of this dissertation has been to solve, from a probabilis-
tic point of view, several fundamental random initial value problems. The
mathematical nature of these problems is based upon random difference and
differential equations. In both cases, randomness has been considered in all in-
put parameters (coefficients, source term and initial conditions). For the sake
of generality, in most of scenarios treated, input random parameters have been
considered via absolutely continuous random variables without assuming sta-
tistical independence and having arbitrary joint probability density functions,
that include both standard and non-standard distributions. Unlike most con-
tributions dealing with random difference and differential equations focus on
solving the corresponding equations and then they compute the mean and the
variance, in this dissertation one addresses an ambitious target, namely, the
computation of the first probability density function of the solution stochastic
process. In this manner, the solution is probabilistically characterized at every
time instant, allowing for the computation of every one-dimensional statistical
moment (mean, variance, skewness, kurtosis, etc.) as well as the determination
of probabilities that the solution lies on a set of particular interest.

The cornerstone tool to conduct the stochastic analysis throughout this disser-
tation has been the Random Variable Transformation technique. This method
turns out very useful to determine the probability density function of a random
vector that results from a mapping of another random vector whose probabi-
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lity density function is known. This technique has been adequately applied
to the framework of both random difference and differential equations to ac-
count for uncertainty, via the first probability density function. An important
feature of this dissertation is that all theoretical findings have been illustrated
through numerical experiments and, when it has been possible, modelling rele-
vant problems using real data. It is worthy to point out that specific techniques
to estimate random model parameters, in the context of random difference and
differential equations, have been required to deal with mathematical models
throughout this dissertation.

As it is detailed below, the application of Random Variable Transformation
technique has been made in two different contexts, first when an exact repre-
sentation to the solution stochastic process is available, and secondly in the
case that an approximate representation, for example via series expansion, is
known.

Chapters 3–8 deal with random initial value problems where the exact solution
is known. Specifically, Chapters 3–5 are devoted to study the following random
differential equations:

• Homogeneous Riccati differential equation, Chapter 3.

• Non-homogeneous Riccati differential equation to model SIS-type epi-
demiological model, Chapter 4.

• Bernoulli differential equation, Chapter 5.

On the other hand, the theory has been extended to both random linear sys-
tems of difference and differential equations. This is presented in Chapter 6.
Chapter 7 and 8 are devoted to extend important results belonging to classical
Markov chains, by means of the complete randomization (initial condition and
transition matrix) of these models. Furthermore, the theoretical results ob-
tained for randomized Markov chains have been applied to model the diffusion
of a technology and to study the stroke disease using real data retrieved from
official sources.

So far, all previous chapters have been devoted to study random difference
and differential equations where uncertainty is just considered via random
variables, while Chapters 9 and 10 address random differential equations whose
randomness is considered via stochastic processes.

Chapter 9 focusses on second-order linear differential equations whose coe-
fficients are analytic stochastic processes about a regular point. Specifically,
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one computes approximations of the first probability density function of the
solution stochastic process taking advantage of a random power series rep-
resentation together with the application of Random Variable Transformation
technique. The theoretical analysis is completed by means of several numerical
experiments.

Chapter 10 addresses the computation of reliable approximations of the first
probability density function of the solution of random first-order linear differ-
ential equations, where the diffusion coefficient has a denumerable degree of
randomness. Then, it is approximated via a truncated Karhunen-Loève expan-
sion and, the Random Variable Transformation technique is applied to obtain
approximations of the first probability density function.

In these two closing chapters, one demonstrates the convergence of approxi-
mations to the exact first probability density function, under mild conditions.

The main conclusion that can be drawn in this dissertation is the capability
of the Random Variable Transformation method, combined with other tech-
niques (Poincaré expansion, Karhunen-Loève expansion, linearization, etc.) to
determine, exact or approximately, the first probability density function of the
solution of random difference and differential equations. Furthermore, it has
been illustrated that the computation of such density is very useful in mathe-
matical modelling of real problems.
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