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COVER LETTER 

In vitro and in vivo control of postharvest phytopathogenic fungi in rice by commercial Laurus 

nobilis L. and Syzygium aromaticum L. Merr. & Perry essential oils 

M. Pilar Santamarina*, Josefa Roselló, Silvia Giménez and M. Amparo Blázquez 

 

Submitted work represents a advancement in the field of plant pathology, and is clearly demonstrated in 

the manuscript. 

Due to the chemical polymorphism occurring in clove and bay leaf essential oils from different 

provenances as well as the variability observed within and between species of Fusarium sp. from rice, it 

its fundamental known the chemical composition of the samples employed  and perform the isolation of 

the phytopathogenic strains. So, the aims of this study was determine the qualitative and quantitative 

composition of commercial essential oils by GC and CG-MS and investigated the antifungal potential 

against Alternaria alternata Bipolaris oryzae, Fusarium sp. isolated in rice populations of Valencia 

(Valencia rice) from the Mediterranean area in order to obtain potential ecofriendly substances for 

sustainable management in both field and stored food products. 

The copyright to this article is transferred to effective if and when the article is accepted for publication. 

The author(s) warrants that his/her contribution is original. The author signs for and accepts responsibility 

for releasing this material on behalf of any and co-authors. 
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ABSTRACT  18 

Rice is exposed in the field and in stored conditions to a great variety of fungi that can cause a lot of 19 

diseases with potential risk to consumers. In the present study chemical composition of commercial 20 

Laurus nobilis L. and Syzygium aromaticum L. Merr. & Perry essential oils and antifungal activity against 21 

five pathogenic fungi isolated from Mediterranean rice-grains have been investigated. Thirty-seven 22 

compounds accounting for more than 99.5% of the total essential oil were identified by GC and GC-MS.  23 

1,8-Cineole (51.95%), -terpinyl acetate (12.93%) and the monoterpene hydrocarbon sabinene (9.56%) 24 

were the main compounds in bay leaf essential oil, while the phenylpropanoid eugenol (88.58%), and the 25 

sesquiterpene hydrocarbons -caryophyllene (8.13%) and -humulene (2.35%) were found in clove 26 

essential oil. Clove essential oils at 300µg/mL showed more antifungal effect than bay leaf essential oil 27 

against all tested strains. S. aromaticum essential oil showed the best antifungal activity towards 28 

Fusarium graminearum and similar antifungal activity than pure eugenol against all tested 29 

phytopathogenic fungi. In inoculated rice-grain significantly reduced the fungal infection in vivo, so S. 30 

aromaticum essential oil could be a good alternative as preservative in stored rice-grain. 31 

Keywords: essential oil, Laurus nobilis, Syzygium aromaticum, antifungal activity, rice 32 

33 
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 34 

Introduction 35 

Spices mainly used to enhance flavour and taste of foods, have been employed since ancient times for 36 

their preservative and medicinal properties. Several researches about the antioxidant, insecticidal, 37 

antimicrobial or antifungal properties of their essential oils have been carried out in order to applied 38 

theses complex mixtures as natural food preservatives. Reduce or eliminate food-related microorganisms 39 

without negative effects on food quality can extend shelf-life of food and become in an attractive option 40 

against foodborne diseases (Blázquez, 2015). 41 

Dried bay leaf (Laurus nobilis L.), a spice used in the traditional culinary practices as flavoring agent 42 

in soups, meats, fish, vinegars and beverages, play an important role in the human Mediterranean diet, 43 

being bay leaf essential oil commonly employed by the pharmaceutical industry. The antimicrobial 44 

activity showed in vitro of  bay leaf essential oil with 1,8-cineole (35.50%), linalool (14.10 %), terpinyl 45 

acetate (9.65 %) and sabinene (9.45 %) as the main compounds, towards foodborne pathogens  46 

(Escherichia coli and Yersinia enterocolitica) and also in vivo in fresh sausages (0.05 and 0.1 g/100 g 47 

concentrations) stored at 7ºC can be used to improve its safety and to extend the product shelf life for two 48 

days (Da Silveira et al., 2014). L. nobilis essential oil with eugenol (44.13%), cinnamaldehyde (30.28%) 49 

and linalool (8.49%) as principal components, completely inhibited the growth of Alternaria alternata at 50 

800 μg/mL, showing also a significant effect (68.2%) at relatively low concentration (500 g/mL). In vivo 51 

L. nobilis essential oil efficiently decreased the infection ratio of Alternaria rot disease on cherry 52 

tomatoes. In this case and also with different composition L. nobilis essential oil can be applied as a 53 

natural and environmentally friendly fungicide to control the postharvest disease of fruits (Xu et al., 54 

2014). The essential oil of L. nobilis with 1,8-cineole (24.84%), linalool (14.46%), terpinyl acetate 55 

(12.36%) and methyl eugenol (10.09%), obtained by supercritical carbon dioxide technique showed in 56 

vitro and in vivo antifungal activity against the serious fruit postharvest diseases caused by Botrytis 57 

cinerea, Monilinia laxa and Penicillium digitatum. M. laxa was totally inhibited in vitro at all the 58 

concentrations (1000, 800, 600, 400 and 200 g/mL) applied. The mycelial growth inhibition of B. 59 

cinerea resulted 100, 90, 84, 68 and 54% respectively, whereas P. digitatum was only partially inhibited 60 

(71, 53, 31, 34 and 23%) at all the concentrations assayed.  In vivo the best antifungal activity (3 mg/mL) 61 
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was found on kiwifruits and peaches (68 and 91% of decay inhibition respectively) (De Corato, Maccioni, 62 

Trupo, & Di Sanzo, 2010). 63 

Clove (Syzygium aromaticum (L.) Merr. and Perr.), like others spices with an intense flavor, is 64 

recommended in processed and ready-to-eat foods as a preservative. The essential oil contents high 65 

percentages of phenylpropanoids such as eugenol, responsible for a wide range of activities and uses. It is 66 

a fast-acting contact insecticide effective against a broad variety of insects and mites (Dayan, Cantrell, & 67 

Duke, 2009). Clove essential oil (90% eugenol) is a desirable tool instead of conventional insecticides for 68 

protecting Phaseolus vulgaris L. against Acanthoscelides obtectus Say, liable of severe postharvest losses 69 

in the common bean (Viteri Jumbo, Faroni, Oliveira, Pimentel, & Silva, 2014). Recently the clove 70 

essential oil (eugenol 59.75% and eugenyl acetate 29.24%) showed significant activity against the most 71 

devastating visceral leishmaniasis or kala-azar caused by Leishmania donovani with IC50 of 21±0.16 72 

mg/mL and 15.24±0.14 mg/mL against promastigotes and intracellular amastigotes respectively. So, this 73 

essential oil could be an alternative to drugs of choice more expensive and with multiple side effects 74 

(Islamuddin, Sahal, & Afrin, 2014). In concerning to the effect of clove on the growth of Penicillium 75 

citrinum and citrinin production in culture medium and rice, all the concentrations (0.2, 0.5, 0.8, 1.6, 1.8 76 

mg/mL) assayed, inhibited the fungal growth in a dose dependent manner, however citrinin production, a 77 

nephrotoxin found as a common contaminant in rice, wheat and red yeast rice, was inhibited significantly 78 

only at higher concentration. In rice, clove inhibited the fungal growth as well as citrinin production up to 79 

3 days (Aiko & Mehta, 2013). 80 

The antifungal activity showed by L. nobilis essential oils  (eugenol type) againts Alternaria alternata  81 

and S. aromaticum essential oil on rice towards Penicillium citrinum leads us to continue with these 82 

spices testing the antifungal activity of bay leaf essential oil (1,8-cineol type) employed in pharmaceutical 83 

industry and clove essential oil against five postharvest phytopathogenic fungi (Alternaria alternata, 84 

Bipolaris oryzae, Fusarium graminearum, Fusarium equiseti and Fusarium verticillioides ) isolated from 85 

rice populations of Valencia from Mediterranean area (Santamarina, Roselló, Sempere, Giménez, & 86 

Blázquez, 2015) and wells as to compare at the same doses the more antifungal essential oils with  those 87 

of eugenol since this phenolic compound has been recently approved (Reg. (EU) No 546/2013) by the 88 

European Food Safety Authority (EFSA) as fungicide (2007/442/EC, Dossier complete 2011/266/EU), in 89 

order to find cheaper natural products to improve safety and shelf life of stored rice-grains. 90 

 91 
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1. Materials and Methods 92 

2.1 Plant material 93 

Commercial samples of bay leaf (Laurus nobilis L.) essential oil lot 719B032807supplied by Essential 94 

Arôms (Lleida, Spain), and clove leaf (Syzygium aromaticum (L.) Merr. & Perry), essential oil lot 95 

9449600032 purchased from Guinama (Valencia, Spain) were stored at 4ºC until chemical analysis and 96 

antifungal studies. Other materials and chemical used were of analytical grade and purchased from local 97 

suppliers. 98 

1.2 Chemical composition of the essential oils 99 

2.2.1 Gas chromatography (GC/FID) 100 

GC was performed using a Perkin-Elmer Clarus 500GC apparatus equipped with a flame ionization 101 

detector (FID), and a Hewlett-Packard HP-1 (cross-linked methyl silicone) capillary column (30 m long 102 

and 0.2 mm i.d., with 0.33 µm film thickness). The column temperature program was 60 °C during 5 min, 103 

with 3 °C/min increases to 180 °C, then 20 °C/min increases to 280 °C, which was maintained for 10 min. 104 

The carrier gas was helium at a flow-rate of 1 mL/min. Both the FID detector and injector port 105 

temperature were maintained at 250 and 220 °C, respectively.  106 

2.2.2 Gas chromatography and gas chromatography/mass spectrometry (GC/MS) 107 

GC-MS analysis were carried out with a Varian Saturn 2000 equipped with a Varian C.S VA-5MS 108 

capillary column (30 m long and 0.25 mm i.d. with 0.25 µm film thickness). The same working 109 

conditions used for GC and split mode injection (ratio 1:25) were employed. Mass spectra were taken 110 

over the m/z 28–400 range with an ionizing voltage of 70 eV. Kovat’s retention index was calculated 111 

using co-chromatographed standard hydrocarbons. The individual compounds were identified by MS and 112 

their identity was confirmed by comparison of their RIs, relative to C8-C32 n-alkanes, and by comparing 113 

their mass spectra and retention times with those of authentic samples or with data already available in the 114 

NIST 2005 Mass Spectral Library and in the literature (Adams, 2007). 115 

2.3 Antifungal activity 116 

2.3.1 Fungal species 117 



6 

 

Five phytopathogenic fungi, Alternaria alternata (Fr.) Keissler CECT 20923 (LBEA 2105), Bipolaris 118 

oryzae (Breda de Haan) Shoemaker CECT 2776 (LBEA 2100), Fusarium graminearum Schwabe CECT 119 

20924 (LBEA 2165), Fusarium equiseti (Corda) Saccardo CECT 20925 (LBEA 2166), Fusarium 120 

verticillioides (Sacc.) Nirenberg  CECT 20926 (LBEA 2167), were isolated in the Botany Laboratory of 121 

the Department of Agroforest Ecosystems (LBEA) from rice samples collected in the Albufera rice-122 

producing of the Mediterranean area (Valencia, Spain) and deposited in Spanish Culture Tipe Collection 123 

(CECT).  124 

2.3.2 Fungal strains identification  125 

The fungal strains were determined at the molecular level by the analysis of two different regions of 126 

ribosomal DNA genes: the nuclear ribosomal internal transcribed spacer “ITS region” and D1/D2 127 

domains of the 28S rRNA. The ITS region, considered as the formal fungal barcode, includes the 128 

contiguous region of ITS1, the 5.8S gene and ITS2 and is in most cases the marker of choice for the 129 

exploration of fungal diversity in environmental samples (Schoch et al., 2012). 130 

A third genetic marker, the translation elongation factor 1-alpha (EF-1α) gene region, was used for 131 

species-level identification of the isolates belonging to the genus Fusarium.  132 

The primers used for the amplification were ITS1 and ITS4 (White, Bruns, Lee, & Taylor, 1990) for 133 

the ITS region, NL1 and NL4 (Kurtzman & Robnett, 1998) for the D1/D2 LSU region and EF1-728F and 134 

EF1-986R (Carbone & Kohn, 1999) for the EF-1α gene. 135 

2.3.3 Antifungal activity in solid media (Potato Dextrose Agar) 136 

The bioassay was performed in Petri dish (90x15mm and 150x20mm), dissolving 300 µg/mL (Tween 137 

20, 0.1%) of commercial essential oils in previously sterilized Potato Dextrose Agar (PDA) growth 138 

medium flasks at 45-50ºC while the medium was still in a liquid form and distributed into Petri dishes. 139 

Petri dishes were inoculated with an 8 mm diameter disk of 7-day old colony on PDA of each tested 140 

fungi. Plates were incubated in the dark at 25ºC during 7 and 14 days. Petri dish control contained equal 141 

amounts of sterilized water/Tween 20 (0.1%) on PDA was employed. Fungal growth was evaluated by 142 

measuring daily the diameter of the colony in two perpendicular directions and speed of growth was 143 

calculated. For each essential oil and fungi, six replicate dishes were used. Also, mycelial growth 144 

inhibition (MGI) was calculated at day 7, using the following formula (Albuquerque, Camara, Willadino, 145 

& Ulises, 2006).  146 
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MGI = [(DC-DO)/DC]×100 147 

Where, DC is average of colonies diameter in untreated plates, DO is the average of colonies diameter in 148 

plates treated with oil. 149 

2.3.4. Effect of clove essential oil on rice grain conservation 150 

Healthy Valencia rice-grain, were collected from the Albufera rice-producing Mediterranean area. 151 

Kernels were washed with sodium hypochlorite (0.2%) for 5 min, rinsed twice with distilled water and 152 

air-dried at room temperature (25+2ºC). Rice grains were placed into 150x150mm polystyrene containers 153 

(100 grains per container). The containers with rice-grain were sprayed with 5 mL of a spore suspension 154 

of 5x10
5
 conidia ml

-1
 of each fungus tested, and were air-dried to completely dry.  155 

Two concentrations (300 and 600 µg/mL) of clove essential oil were prepared in Tween 20 (0.1%). 156 

Then 2 mL of each solution was vaporized (Sprayed) into the containers spontaneously at 20ºC. Controls 157 

were prepared similarly except for the volatile treatment. Filter paper, moistened with 0.5 mL sterilized 158 

water, was placed into each container and high relative humidity (90-95%) was maintained during the 159 

storage period. All the containers were then transferred to storage at 28ºC for 20 days. The percentage of 160 

infected rice grains was recorded after 15 days of incubation with a magnifying glass model Olympus 161 

SZX10. Five replicates per treatment were used.  162 

 163 

2.4 Statistical analysis 164 

The fungal growth results were submitted to variance analysis (ANOVA) using Fisher test of least 165 

significant difference (LSD) with significant values at P<0.05. Data analysis was performed using Stat 166 

Graphics Plus 5.0 software (Stat Point, Inc., Herndon, Virginia, USA). 167 

 168 

2. Results and discussion 169 

3.1 Chemical composition of the essential oils 170 

The chemical composition of commercial bay and clove leaves essential oils was determined by GC and 171 

GC/MS analysis. Thirty seven compounds accounting for more than 99.5% of the total essential oil were 172 

identified. Components are clustered  (Table 1) in homologous series of monoterpene hydrocarbons, 173 

oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, phenylpropanoids 174 
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and others and listed according to Kovat’s retention index calculated in GC on apolar HP-1 column. In 175 

Laurus nobilis essential oil, highest quantities of monoterpene compounds (95.83%) was found. Both 176 

hydrocarbons (21.49) and oxygenated monoterpenes (74.34%) with 12 and 11 identified compounds 177 

respectively, were also qualitatively the principal phytochemical group. 1,8-cineole (51.95%), -terpinyl 178 

acetate (12.93%) followed of the monoterpene hydrocarbon sabinene (9.56%) were the main compounds. 179 

Among the sesquiterpene fraction, only -caryophyllene (0.10%), -elemene and caryophyllene oxide as 180 

trace amounts were detected. Between phenylpropanoid compounds biosynthesized by shikimic pathway, 181 

relative large amount of methyl eugenol (2.89%) followed by eugenol (0.62%) were identified.  182 

Several studies in vitro have been conducted about de antifungal activity of L. nobilis essential oils in 183 

order to obtain natural food preservative. The inhibitory effect has been attributed to the main compounds 184 

however the chemical composition is highly influenced by many factors, including the genotype of the 185 

plant species, seasonality, geographic and weather conditions. The main compounds of bay essential oil 186 

against the fungi commonly causing spoilage of bakery products Eurotium amstelodami, E. herbariorum, 187 

E. repens, E. rubrum, Aspergillus flavus, A. niger and Penicillium corylophilum were eugenol (57.0%), 188 

myrcene (12.4%) and linalool (2.6%) (Guynot et al., 2003). Also eugenol (44.13%) but followed of 189 

cinnamaldehyde (30.28%) and linalool (8.49%) were the principal components of L. nobilis essential oil 190 

of Chinese origin responsible of the fungicide effect against the postharvest disease caused by Alternaria 191 

alternata in cherry tomato (Xu et al., 2014). 192 

High content of 1,8-cineole (39.81%), 2-carene (13.08%), trans-ocimene (7.05%), sabinene (6.17%) 193 

and cis-ocimene (3.06%) were the main constituents of L. nobilis essential oil with antimicrobial activity 194 

against foodborne pathogens (Cherrat et al., 2013). Also 1,8-cineole, but followed of linalool and terpinyl 195 

acetate was found in L. nobilis essential oil against Botrytis cinerea, Monilinia laxa and Penicillium 196 

digitatum (De Corato, Maccioni, Trupo, & Di Sanzo, 2010) or towards foodborne pathogens in fresh 197 

Tuscan sausage (Da Silveira et al., 2014).  Quantitative similar results of the main compounds were 198 

recently found in commercial Laurus nobilis essential oil (Peris & Blázquez, 2015) purchased in 199 

Pharmacy for medicinal use as well as in plants from Brazil and Argentine (Di Leo Lira et al., 2009; Da 200 

Silveira et al., 2014) or with essential oil obtained by different extraction process (Flamini et al., 2007; De 201 

Corato, Maccioni, Trupo, & Di Sanzo, 2010).  202 

On the other hand phenylpropanoids (88.58%) with only eugenol identified, is by far the main fraction 203 

of Syzygium aromaticum essential oil. Although qualitatively sesquiterpene hydrocarbons with 5 204 
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compounds identified, is the principal fraction, only reached 10.70% of the total essential oil. -205 

caryophyllene (8.13%) followed by -humulene (2.35%) were the main compounds of this fraction. 206 

These results were also found (Srivastava, Srivastava, & Syamsundar, 2005) with samples of Syzygium 207 

aromaticum leaf essential oil grown in Madagascar (eugenol 82%, -caryophyllene 13% and -humulene 208 

1.5%). Also eugenol (78.1%) and -caryophyllene (20.5%) were the main compounds in clove leaves 209 

essential oil from Cuba (Pino, Marbot, Aguero, & Fuentes, 2001), showing less percentages in clove buds 210 

essential oil, characterized also by large amount of eugenyl acetate (eugenol 69.8%, -caryophyllene 211 

13.0% and eugenyl acetate 16.1%). The oxygenated sesquiterpene fraction was only represented (0.67%) 212 

by epoxide derivatives of caryophyllene (0.67%) and humulene (trace amount <0.05%). Finally 213 

monoterpene compounds were no detected in the commercial Syzygium aromaticum essential oil here 214 

analysed. 215 

 216 

2.2 Antifungal activity  217 

3.2.1 Fungal strains 218 

Sequences comparison between the amplified regions and those available in the NCBI Taxonomy 219 

database (http://www.ncbi.nlm.nih.gov/taxonomy) showed that isolate LBEA 2105 (CECT 20923) 220 

showed 100% of identity for both regions ITS región (570/570 pb) and D1/D2 LSU (614/614 pb) 221 

ribosomal DNA genes with genus Alternaria section Alternata. 222 

The Blast analysis of the sequences against AFTOL (Assembling the Fungal Tree of Life) and 223 

MycoBank /CBS-KNAW Fungal Biodiversity Centre (BioloMICSNet Software) databases showed a 99% 224 

identity for D1/D2 LSU (602/603 bp) with the sequence DQ678082 (strain AFTOL 1610; CBS 916.96) 225 

and 100% identity for ITS region (570/570 pb) with the sequence KC253942, belonging to the species 226 

Alternaria alternata. 227 

Sequences comparison between the amplified regions and those available in the NCBI Taxonomy 228 

database (http://www.ncbi.nlm.nih.gov/taxonomy) showed that isolate Bipolaris oryzae LBEA 2100 229 

(CECT 2776) showed 99% of identity for both regions ITS región and D1/D2 LSU ribosomal DNA genes 230 

with  Curvularia spicifera (Bipolaris oryzae) synonymous genus  Coclhiobolus, Pseudocochliobolus, 231 

Bipolaris.   232 

The Blast analysis of the sequences against AFTOL (Assembling the Fungal Tree of Life) and MycoBank 233 
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/CBS-KNAW Fungal Biodiversity Centre (BioloMICSNet Software) databases showed a 99% identity 234 

for Curvularia spicifera CBS 198.31S15646. It also appears very close to Curvularia australiensis 235 

species, but both species can be differentiated morphologically. 236 

The Blast analysis of the EF-1α gene sequences with those available in the NCBI Taxonomy database 237 

(Fusarium taxid 5506) and the Fusarium-ID database (Geiser et al., 2004) showed 100% identity (305/305 238 

pb) with the sequence  AF212459 (strain NRRL 28336) belonging to the species Fusarium graminearum 239 

(Teleomorph Gibberella zeae) for the strain LBEA 2165 (CECT 20924).  240 

Regarding to the strain LBEA2166 (CECT 20925), 99% identity (287/289 pb) with the sequence 241 

JF508173 (strain HEB01, sequence equivalent to type material NRRL 26419) belonging to the species 242 

Fusarium equiseti (Teleomorph Gibberella intricans) was found.  243 

Finally, the strain LBEA 2167 (CECT 20926) showed 100% identity (284/284 pb) with the sequence 244 

AF273317 (strain NRRL 28898) belonging to the species Fusarium verticillioides (Teleomorph 245 

Gibberella moniliformis). 246 

 247 

3.2.2 Antifungal effects of essential oils on mycelial growth and growth rates 248 

Clove essential oil at 300µg/mL displayed more antifungal potential as a mycelia growth inhibitor 249 

than bay leaf essential oil (Table 2, Figures 1,2) against all tested phytopathogenic fungi isolated from 250 

rice. In vitro at the higher doses assayed the most susceptible fungus against clove essential oil was F. 251 

graminearum (6.511.48), being the most resistant fungi A. alternata and F. verticillioides with 252 

11.781.36 and 9.181.12 of mycelia radial growth respectively. A. alternata was also the most resistant 253 

fungus by disk diffusion methods with higher concentrations (400 and 800 µg/mL) of Echinophora 254 

platyloba essential oil (Moghaddam, Taheri, Pirbalouti & Mehdizadeh, 2015), rich in the monoterpene 255 

hydrocarbons p-cymene (22.15%), α-pinene (18.52%), β-phellandrene (14.50%) and α-phellandrene 256 

(9.68%) and also with relative large amount of carvacrol (3.49%). Our results corroborated than 257 

monoterpene hydrocarbons are less active than oxygenated monoterpenes and between them essential oil 258 

rich in eugenol (clove 88.58%) are more effective against A. alternata than essential oil rich in 1,8-cineol 259 

(bay leaf 51.95%).  In this sense Eucalyptus globulus and E. radiata essential oils with high levels of 1,8-260 

cineole 80.8% and 69.8% respectively exhibited poor activities against Lasiodiplodia theobromae, 261 

Colletotrichum gloeosporioides, Alternaria citrii and Botrytis cinerea being effective against Penicillium 262 
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digitatum from citrus and cactus pear, whereas Syzygium aromaticum  and Cinnamonum zeylanicum 263 

essential oils contained 88.3% and 81.2% of eugenol respectively were more effectives against the same 264 

pathogens (Combrinck et al., 2011). In concerning to F. verticillioides it is more sensitive with essential 265 

oils rich in the phenolic compound cinnamaldehyde. The antifungal activity of cinnamon essential oil was 266 

proportional to its cinnamaldehyde concentration, being the minimal inhibitory concentrations (MICs) of 267 

cinnamon essential oil (85% cinnamaldehyde), natural cinnamaldehyde (95%), and synthetic 268 

cinnamaldehyde (99%) of 60, 50, and 45 µL/L, respectively. F. verticillioides diameter treated with 269 

cinnamon essential oil did not increase and was maintained at 1.1±0.1 cm from 6 to 20 days. Cinnamon 270 

essential oil was the most effective against F. verticillioides, followed by peppermint essential oil (50% 271 

menthol), eugenol (99%), camphor essential oil (55% borneol), anise essential oil (92% anethole), and 272 

eucalyptus essential oil with 80% of 1,8-cineole (Xing et al., 2014). The use of essential oils rich in 273 

eugenol and cinnamaldehyde are interesting because recently it has been found that the antifungal activity 274 

after 14 days against Aspergillus niger, was confirmed in five (thymol, thymoquinone, eugenol, carvacrol, 275 

and cinnamaldehyde) of the seven tested compounds and in addition when these substances were 276 

encapsulated into mesoporous silica material MCM-41, thymol, thymoquinone, and eugenol were even 277 

more effective in a state of encapsulation than in the pure state (Janatova et al., 2015). 278 

On the other hand the growth speed until the sixth (F. graminearum and B. oryzae) or seventh (F. 279 

equiseti, F. verticillioide and A. alternate) day (Figure 2) was not significantly affected by the treatment 280 

with bay leaf essential oil. In the same conditions clove essential oil produced between the second and 281 

seventh days a very low growth speed on Fusarium sp. and A. alternata (2.517 mmd
-1

 vs 5.2657 mmd
-1

) 282 

as well as total radial inhibition of B. oryzae until the eight day, producing between the eight and fourteen 283 

a very low growth speed (1.1592 mmd
-1

 vs 6.841 mmd
-1

) (Figure 1). B. oryzae is the most sensitive 284 

fungus to essential oils rich in phenolic compounds such as thymol, carvacrol or eugenol, being also this 285 

behavior proportional to eugenol content (Santamarina, Roselló, Sempere, Giménez, & Blázquez, 2015). 286 

So, the total radial inhibition of B. oryzae was until the tenth day after the treatment with oregano 287 

essential oil (thymol 21.64%, carvacrol 43.26%) and until the sixth or eight day with cinnamon (eugenol 288 

62.65%) and clove (eugenol 88.58%) essential oils respectively. 289 

Since eugenol, the main compounds of clove essential oil has been recently approved as natural 290 

fungicide, the micelial growth inhibition of the five isolated phytopathogenic fungi was determined with 291 

100, 200 and 300 µg/mL of both clove essential oil and eugenol in order to corroborate if the antifungal 292 
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activity of clove essential oil is due to major component or if other minor compounds may act 293 

synergistically. Clove essential oil reduced mycelium growth of A. alternata, B. oryzae and F. equiseti at 294 

100, 200 and 300 µg/mL concentrations, with percentage of reduction ranging from 30.19 to 53.60%, 295 

24.65 to 100% and 26.11 to 77.03%, respectively (Table 3). At the higher concentration (300 µg/mL), 296 

clove essential oil showed similar antifungal activity than pure eugenol against all tested phytopathogenic 297 

fungi (Table 3), however at lower doses eugenol was more active towards B. oryzae, F. graminearum, F. 298 

equiseti and F. verticillioides.  Similar results against F. culmorum and F. verticillioides were recently 299 

found in commercial essential oils by Roselló, Chiralt, Sempere and Santamarina, 2015. It is interesting to 300 

note that the micelial growth inhibition of clove essential oil was similar at all assayed doses to eugenol 301 

against A. alternata, responsible of several postharvest diseases of fruit and vegetables such as the black 302 

spot in pineapple or alternaria rot in stone fruits (Antunes & Cavaco, 2010). The results obtained in the 303 

present study indicated that there was a significant antifungal effect owing to the increased concentration 304 

of eugenol, which possesses antifungal activity and confirmed that this phenylpropanoid is the most 305 

effective component in clove essential oil. Relative large amount of the sesquiterpene hydrocarbons β-306 

caryophyllene (8.13%) and α-humulene (2.35%) not showed synergistic interactions against the isolated 307 

pathogenic fungi strains of rice. 308 

 309 

3.2.4. Effects of clove essential oil and eugenol on disease development in vivo conditions 310 

The disease produced in rice-grain inoculated with A. alternata, B. oryzae, F. graminearum, F. 311 

equiseti and F. verticillioides, with clove essential oil at 300 µg/mL and 600 µg/mL, was reduced 312 

compared with the control. Clove essential oil significantly (P<0.05) inhibited pathogenic fungal 313 

development in stored rice compared with the control in a dose-dependent manner after 20 days of 314 

incubation at 28ºC. At 300 µg/mL clove essential oil showed the higher antifungal activity, reducing  B. 315 

oryzae and F. graminearum  between 73-76%.  The development of all pathogenic fungi in rice grain was 316 

significantly reduced between 85-90% with 600 µg/mL of clove essential (Figure 3), suggesting that this 317 

essential oil could be used as ecofriendly preservative for stored Valencia rice.  318 

 319 

3. Conclusions 320 
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The results showed that bay leaf essential oil with high content in the oxygenated monoterpene 1,8-321 

cineole has not significant antifungal effect towards the five pathogenic fungi isolated from rice-grains. 322 

The inhibitory effect of clove essential oil on mycelia growth depends on the day, dose and fungus. The 323 

antifungal activity of clove essential oil is mostly due to the presence of high amount of eugenol. At 100, 324 

200 and 300 µg/mL, clove essential oil (eugenol 88.58%) showed similar mycelia growth inhibition than 325 

the recently approved antifungal compound eugenol against A. alternate.  In vivo clove essential oil at 326 

600 µg/mL produced a significant reduction up to 85-90% for 20 days. The addition of clove essential oil 327 

can provide an alternative to chemical preservatives for controlling the fungi in stored rice-grains, thus 328 

extending their shelf life. Further formulation, field experiments are necessary to corroborate this target 329 

and also extend to rice derived products.  330 
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Table 1 422 
Chemical composition of commercial Laurus nobilis L. and Syzygium aromaticum (L.) Merr. & Perry 423 
essential oils. 424 
 425 

COMPOUND RI GC peak area (%)  

Bay  

GC peak area (%)     

Clove 

Monoterpene hydrocarbons                                     21.49                     - 

Tricyclene 925 t - 

α-Thujene 930 0.17 - 

α-Pinene 938 4.93 - 

Camphene 955 0.50 - 

Sabinene 976 9.56 - 

β-Pinene 980 4.80 - 

Myrcene 988 0.66 - 

α-Phellandrene 1003 0.13 - 

α-Terpinene 1016 0.21 - 

cis-Ocimene 1048 0.12 - 

γ-Terpinene 1061 0.41 - 

Terpinolene  1088 t - 

Oxygenated monoterpenes                                        74.34                    - 

1,8-Cineole 1039 51.95 - 

Linalool 1100 5.27 - 

δ-Terpineol 1166 0.08 - 

Terpinen-4-ol 1179 2.84 - 

α-Terpineol 1193 0.10 - 

α -Fenchyl acetate 1213 0.18 - 

Linalyl acetate 1249 0.24 - 

Bornyl acetate 1286 0.51 - 

δ-Terpinyl acetate 1314 0.24 - 

α-Terpinyl acetate 1347 12.93 - 

Neryl acetate 1361 t - 

Sesquiterpene hydrocarbons                                      0.10                           10.70 

β-Elemene 1383 t - 

β-Caryophyllene 1419 0.10 8.13 

-Humulene 1456 - 2.35 

trans-calamenene 1522 - t 

-cadinene 1523 - 0.14 

cis-calamenene 1529 - 0.08 

Oxygenated sesquiterpenes                                           t                                0.67 

Caryophyllene oxide 1584 t 0.67 

Humulene epoxide II 1609 - t 

Phenylpropanoids                                                       3.51                             88.58  

Eugenol 1363 0.62 88.58 

Methyl Eugenol 1397 2.89 - 

trans-Methylisoeugenol 1489 t - 

Others                                                                            0.07                               - 

Isobutyl isobutyrate 912 t - 

2-Nonanone 1089 t - 

2-Undecanone 1296 0.07 - 

TOTAL IDENTIFIED  99.51 99.95 
Compounds listed in order of elution in the HP-1column. RI: retention index relative to C8-C32 n-alkanes on the HP-1 426 
column. Peak area percentages are calculated in GC on apolar HP-1 column. t= trace amounts <0.05. 427 



 

 

Species-Treatment Mean  Lower limit Upper limit GR 

A. alternaria-PDA 26.27 ± 1.79  22.76 29.78 5.27 (0.98) 

A. alternaria-C 11.78 ± 1.36  9.11 14.46 2.51 (0.97) 

A. alternaria-BL 23.61 ± 1.66  20.34 26.88 4.61 (0.99) 

B. oryzae-PDA 27.51 ± 1.58  24.40 30.63 6.84 (0.99) 

B. oryzae-C 5.35 ± 0.88  3.61 7.08 1.15 (0.89) 

B. oryzae-BL 28.32 ± 1.82  24.73 31.91 6.63 (0.98) 

F. graminearum-PDA 39.00 ± 1.71 35.63  42.36 12.27 (0.99) 

F. graminearum-C 6.51 ± 1.48 3.60 9.42 1.49 (0.92) 

F. graminearum-BL 34.91 ± 2.72 29.57 40.26 12.49 (0.99) 

F. equiseti-PDA 26.82 ± 1.32  24.22 29.42 6.60 (0.98) 

F. equiseti-C 7.00 ± 1.12 4.80 9.21 1.91 (0.87) 

F. equiseti-BL 24.88 ± 1.66  21.61 28.15 4.85 (0.98) 

F. verticillioides-PDA 22.96 ± 1.12  20.76 25.16 5.44 (0.99) 

F. verticillioides-C 9.18 ± 1.12 6.98 11.38 2.21 (0.99) 

F. verticillioides-BL 20.77 ± 1.15 17.74 23.80 5.40 (0.99) 

     

     
     

     

     

Table 2. Effects of clove and bay leaf essential oils (300µg/mL) on radial growth and growth rates of A. 

alternata, B. oryzae, F. graminearum, F. equiseti and F. verticillioides. Confidence intervals with 

probability of 0.95. 

Mean: mean radio + standard error, GR:  growth rate (R2) 
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Table 3. Micelial growth inhibition (MGI) , of A. alternata (AA), B. oryzae (BO), F. graminearum (FG), F. 
equiseti (FE) and F. verticillioides (FV) with clove (C) and eugenol (E). 

           

           Concentration   AA   BO   FG   FE   FV 

µg/mL C E C E C E C E C E 

100 30,19 35.91  24,65  45.32 1.45   8.53 26,11  43.56 19,47  41.24 

200 45,02 46,40 57,44 85,13  24.78 34,84 45,04 58,54 39,96 58,53 

300 53,60 59,54 100 100 82,15 87,38 77,03 78,72 61,49 66,05 

           MGI: percent inhibition 

Table 3
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Figure 1. Mycelial growth of A. alternate, B. oryzae, F. graminearum, F. equiseti and F. verticillioides on PDA 

and with clove (Syzygium aromaticum) essential oil (300µg/mL).       PDA‐AA: A. alternata (control),       C‐AA: 

A. alternata (clove),       PDA‐BO: B. oryzae (control),      C‐BO: B. oryzae (clove),       PDA‐FG: F. graminearum 

(control),     C‐FG: F. graminearum (clove),      PDA‐FE: F. equiseti (control),      C‐FE: F. equiseti (clove),      PDA‐

FV: F. verticillioides (control),       C‐FV: F. verticillioides (clove).
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Figure 2. Mycelial growth of A. alternate, B. oryzae, F. graminearum, F. equiseti and F. verticillioides on PDA and

with bay leaf (Laurus nobilis) essential oil (300µg/mL).       PDA‐AA: A. alternata (control),       BL‐AA: A. alternata 

(bay leaf),       PDA‐BO: B. oryzae (control),        BL‐BO: B. oryzae (bay leaf),       PDA‐FG: F. graminearum (control),    

‐    BL‐FG: F. graminearum (bay leaf),      PDA‐FE: F. equiseti (control),      BL‐FE: F. equiseti (bay leaf),          PDA‐

FV: F. verticillioides (control),     BL‐FV: F. verticillioides (bay leaf).
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Figure 3. Efficacy of the different concentrations of clove essential oil (300 and 600 µg/mL) on fungal 

development of A. alternata, B. oryzae, F. graminearum, F. equiseti and F. verticillioides in inoculated 

rice grains. Significant difference at 95% level of probability (P<0.05) using Fisher’s least significant 

difference test (LSD).  
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