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ABSTRACT 
 

We have experimentally determined the polarizability of CO2 using the Lorentz–Lorenz equation by 

simultaneously measuring the density and the refractive index. The CO2 conditions were solid phase, 

10−7 mbar pressure, and temperature range 10–86 K. The polarizability value compares well with 

previous gas-phase experimental results and the results from simulations, and does not depend on the 

temperature of CO2 ice formation. This value is constant in the temperature range studied, despite a 

structural change from amorphous to crystalline. 
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I. INTRODUCTION  
 
There are multiple electrical properties that can be studied to determine the electronic structure of an atom or molecule. Some of 

the most basic are the dipole and quadrupole moments, and the polarizability, which is the focus of this article. The dipole moment 

gives a measure of the asymmetry of the distribution of molecular charge, and it is expressed as a vector. The quadrupole moment 

is a quantity that measures the shape of the electron distribution, and it is expressed by a second-order tensor. 

The polarizability of an atom or molecule is the physical magnitude that describes the response of the electron cloud to an external 

field. The energy shift ΔW of the atom or molecule caused by an external electric field E is proportional to E2 when E is weak 

compared with the internal electric field between the nucleus and electron cloud. The constant of proportionality is the electric 

dipole polarizability α, which is defined by ΔW=−αE2/2, where the induced electric dipole is αE. Hyperpolarizabilities, i.e., 

coefficients of higher powers of E, are less often required. The polarizability magnitude is a second-order tensor [1] that in 

spherically symmetric charge distributions reduces to a single number. In any case, an average polarizability is usually adequate in 

calculations. These magnitudes are the subject of theoretical and experimental study.  

The polarizability can be experimentally measured with different techniques. These all have the common feature of measurement 

of the refractive index and the density, which, when used in the Lorentz–Lorenz equation, gives the polarizability. For example, 
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the refraction can be measured using a Fabry–Perot refractometer [2], by the change in the resonant frequency of a chamber filled 

with the substance under study [3], or by the difference in the capacitance of a capacitor that is empty or filled with the substance 

[4]. The density is not always measured under the same conditions as the refractive index, but its value is usually extrapolated by 

an equation of state.  

In this study, we performed gas deposition experiments under conditions of low temperature (10 K) and high vacuum (10−−77 mbar) 

to produce CO2 ice. We simultaneously measured the density and the refractive index of the ice under the same conditions using a 

quartz crystal microbalance (QCMB) and two 632.8 nm He–Ne lasers using the double-laser interference technique [5]. These 

values and the Lorentz–Lorenz equation enabled us to obtain the polarizability. 

The theoretical study of the charge distribution and polarizability can be carried out using electromagnetic theory [6] or through ab 

initio quantum mechanics calculations [7][8]. To determine the electron density distribution, Hartree–Fock theory, Moller–Plesset 

perturbation theory, and quadratic configuration interaction theory [9] can be used. However, the results of these simulations need 

to be validated by comparing with experimental results. It is also important to have accurate values for the polarizability because 

they can be used to obtain other values, such as molecular anisotropy [10], the Kerr effect constant [11], and even the quadrupole 

moment [12]. 

Here, we focus on carbon dioxide (CO2) because it is important for reactions, such as hydrolysis [13], in terrestrial [14] 

and astrophysical [15] scenarios, and because of its applications [16]. CO2 is a symmetrical and linear molecule, and it is 

therefore non-polar and has no permanent dipole moment. This makes it especially suitable for theoretical study. 

 

II. EXPERIMENTAL SETUP  
 
A diagram of the experimental apparatus [5] [17] showing the high-vacuum chamber that contains the cryocooled substrate, the 

vacuum pre-chamber for preparing the molecule under study, and the position of the lasers and photodiodes is shown in Fig. 1. A 

QCMB  covered with a planar gold film that was optically thick for the He–Ne laser wavelength was used. The QCMB was put in 

thermal contact with a closed-cycle helium refrigerator and was placed inside a 10 cm deep high vacuum chamber that routinely 

operates in the 10−8–10−7 mbar range. This pressure was obtained by continuous evacuation with a turbomolecular pump backed 

with a rotary mechanical pump.  

The cooling system used was a double-stage cold head that cooled the QCMB to 10 K. A resistor was connected to the end of the 

second stage. With the collaborative work of the cryostat (always trying to cool to 10 K) and the heat from the resistor with a 

controlled intensity, the temperature could be varied from 10 to 300 K. The temperature was monitored by a silicon diode 

connected to the temperature control system, which kept the temperature constant to within 0.5 K. 
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When the desired temperature was achieved, gas molecules moved from the pre-chamber through a needle valve and filled the 

chamber. The molecules then froze on the gold electrode of the QCMB when they collided with it from all directions (background 

deposition). During deposition at a constant rate, because of the constant pressure in the pre-chamber, two interferograms of two 

polarized (perpendicular to the plane of incidence) He–Ne laser beams at different incidence angles [5] were obtained by two 

photodiodes. The interference pattern of each laser beam was caused by the interference of the reflections on the top of the CO2 ice 

and gold surface of the QCMB.  

The ice thickness (order of magnitude around 1 μm) and its refractive index were calculated using these two interference patterns. 

The deposited mass was obtained from the frequency variation of the QCMB, whose area was known. We were then able to 

calculate the density. Figure 2 shows experimental data that gave the interference curves for each laser beam. The constant slope 

of the frequency variation of the QCMB indicates a constant rate of deposition. 

 
Fig. 1 Diagram of the experimental apparatus 

 

 
                 Fig. 2. Data from a deposition experiment [17]: the interference curves of each laser beam from the photometer signals, and  

                 the frequency of the QCMB (the solid black line with constant slope) 
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III RESULTS AND DISCUSSION  
 
We performed gas deposition experiments in the temperature range of 10-86 K to form ice of CO2 and determine its density and 

the real part of the refractive index at 632.8 nm. In Fig. 3, the results [17] indicate that these parameters depend on the deposition 

temperature.             

         

10 20 30 40 50 60 70 80

0,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

 

 

De
ns

ity
 (g

/cm
3 )

Temperature (K)

 Density

 
                (a) 

         

10 20 30 40 50 60 70 80

1,22

1,24

1,26

1,28

1,30

1,32

1,34

1,36

1,38
 Refractive index

 

 

Re
fra

cti
ve

 in
de

x

Temperature (K)

 
                   (b) 

Fig. 3 Plots [17] of (a) density and (b) refractive index against deposition temperature  
 
 

From these results, we calculated the polarizability using the Lorentz–Lorenz equation. To obtain the results in volume units, we used the 

polarizability volume α′, which is related to the polarizability α by 
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where ε0 is the permittivity of free space. The Lorentz–Lorenz equation then becomes 

      (2) 
 

where n is the refractive index, NA is Avogadro’s number, ρ is density (kg/m3), M is the molar mass (kg/mol), and α' is the polarizability 

volume (m3). Finally, the result of α' in converted to Å3 (1 Å3 = 10−30 m3). 

In the derivation of this equation, two mains assumptions have been made. The first is that the electrical field experienced by a molecule is 

E+P/3, where E is the macroscopic electrical field and P is the dipolar moment per volume unit. The second is that rn ε≈ , where εr 

is the real part of the dielectric permittivity of the ice, because for CO2 at the wavelength of the He–Ne laser (632.8 nm) the 

imaginary part of the refractive index iknn +=ˆ  is 
610−≈k [18] . This is because, from the Maxwell equations [19], the 

dielectric permittivity can be defined as irr ii εεωεσεε +=+= )/( 0


 (σ: conductivity) and its relationship with the 

refractive index is ε̂ˆ2 =n . Using algebraic operations, 
22 knr −=ε  and nki 2=ε .  

Figure 4 shows the results for the polarizability volume (hereinafter referred to as polarizability) that we obtained for the different 

deposition temperatures. From Fig. 4, this parameter remained constant with respect to deposition temperature, so it is not 

temperature dependent over the range studied. We obtained a value of α′ = 2.46 ± 0.06 Å3 for the polarizability. We assume that 

this is the average value of the three diagonal values of the polarizability tensor, i.e., the mean value of the polarizability. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Relationship between polarizability and deposition temperature 
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In Table 1, we compare our results with other published results. All of the previous experiments were performed in the gas 

phase at different temperature and pressure conditions to our experiments, with either a static electric field or a dynamic 

from of an electromagnetic wave. Simulation results are also included. It can be seen that, despite the differences in temperature, 

our results are in agreement with those obtained experimentally and are within the range of those obtained by simulation.  

 
TABLE 1 Comparison between previous experimental and theoretical results, and the results of our own study 
 

Conditions: 
Phase, Temperature (K), Pressure (bar) 

Polarizability 
volume (Å3) 

Electric field 
wavelength (nm) 
 

Notes Origin 

 

Gas, 307.2, 1 
 

 
2.635 

 
546.1 

 [20] R. H. Orcutt et al. 
[2] P. Phillips et al.  

 
Gas, 302.5, 7 
Gas, 322.8, 7 

 
 

 
2.917±0.001 
2.914±0.002 

 
Static 

  
[21] T. K. Bose et al. 

 
Theoretical 

 

 
2.352  

 Mean value for 
different GTF Basis set 

 
[7] G. Maroulis et al. 

 
Theoretical 

 

 
Two range: 
1.630–2.223 
1.926–2.519 
  

 
 

 
 
RHF Level 
Electron correlation 

 
[8] M. Lewis et al. 

 
Solid, 10–90 range, 10−10 

 
2.46±0.06 

 
632.8 
 

  
This study 

 

Figure 5 shows our average value, 2.46±0.06 Å3, along with those of other authors, assigning room temperature to the simulations. 

 

 

 

 

 

 

 

 

 

 

 
 
 

                        Fig. 5 Plot of polarizability against temperature. For clarity, the results of Maroulis  
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It is necessary to discuss the differences and similarities of the results. Concerning the different states of CO2 in the experiments, there is 

controversy about the validity of using the Lorentz–Lorenz equation with solids. While some authors believe that it is not applicable 

[22] or not always applicable to solids [23], others believe that it is valid [24–26]. Because our results agree with those of 

simulations and experiments in the gas phase, we conclude that the Lorentz–Lorenz equation is applicable for CO2 under the 

conditions in this study: the solid state, and low temperature and pressure. Concerning the agreement of our result (for λ=632.8 

nm) with the static polarizability values, it is necessary to review the different types of polarization. There are three types of 

polarization: orientational, electronic, and distortional. Because CO2 is a linear molecule and symmetric, it has no permanent dipole 

moment and does not have orientational polarization. The frequency of the external electrical field from the laser is about 1014 Hz 

in the visible part of the electromagnetic spectrum. Electronic polarization is caused by distortion of the electronic cloud of the 

electrons that form the molecule. The frequency of this cloud in the part of the ultraviolet region near the visible region is around 

1015 Hz [19]. This frequency is higher than that of the electric field of the laser, and thus the cloud is not affected by changes in the 

electric field. Therefore, our polarizability value matches the static value. 

Distortional polarization arises from distortion of the nuclei by the applied field. The molecule is bent and stretched by the applied 

field, and the molecular dipole moment changes accordingly. For the typical mass and dimensions of atoms of molecules, the mid-

infrared region [27] (~1013 Hz) encompasses the features of the fundamental molecular vibrational modes. It is too slow to follow 

the external field, and so for this part of the spectrum the polarizability can be assumed to be zero. Regarding the constant 

polarizability with changing deposition temperature, it is known that the polarizability is proportional to the size of the molecule, 

and that it depends on the rovibrational state [28]. Because this state does not change in the temperature range considered, the 

polarizability also does not change.  

 

IV. CONCLUSIONS 
 
The validity of our measurements of density and refractive index is supported by the results of previous experiments [25] [29]. Our 

laboratory has the advantage of being able to simultaneously obtain the density and refractive index under the same conditions. The 

agreement between our value and the polarizability values obtained by experiments performed for different states and under 

different conditions of temperature and pressure, and with the simulation results, confirms the validity of the application of the 

Lorentz–Lorenz equation for CO2 under our experimental conditions. The maximum differences of around 20% between the 

different values of polarizability may be caused by inherent errors of the experimental methods. 

Furthermore, the polarizability of CO2 remained constant for different temperatures of the formation of the ice. It is 

interesting to try to understand the relationship between the structure of the solid and the polarizability. There is only one 



 8 

reference [30] about the type of structure of solid CO2 at our temperature range, face-centered cubic, but it is at 

atmospheric pressure. In our temperature range and similar conditions of vacuum, there are two ways to describe the 

evolution of the structure. By one side, infrared spectroscopy evidences [31] show that when deposition is below 30 K, the 

structure is amorphous, and when deposition is over 50 K,  it is crystalline; once the ice is produced at lower temperatures, 

the effect of annealing is the production of a more ordered amorphous structure [32] or indeed the crystallization of the 

solid [31] [33]. The other way to explain the structure is by means the growth of the ice by nucleation [25], with the 

grains forming little islands of crystal randomly oriented whose size depends directly of temperature; and similarly, the 

annealing produce the crystallization of the solid, being the source of the energy for this process the increase of 

temperature or the energy delivered for the molecule gas when impact with the solid. In our laboratory we have observed 

these structure changes in Thermal Programming Desorption (TPD) experiments [34], where the CH4 from a CO2-CH4 

mixture desorbed at three different temperatures: 35 K as usual for pure CH4, 50 K when probably the structural change of CO2 

occurs, and 90 K together with the CO2. From our results, we can deduce that polarizability is not affected by this structural change 

because it is a property associated with the molecule. However, it should also be taken into account that changes in the 

polarizability tensor cannot be reflected by an experimental value that is assumed to be the mean value of the main diagonal 

elements of the tensor.  

The results presented here have encouraged us to continue this line of work. Future research by our group will center on other 

molecules in similar conditions and binary mixtures of these molecules. 
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