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 
Abstract– Studies of rotor asymmetries in squirrel-cage induction 

motors have traditionally focused on analyses of the effects of the 

breakage of adjacent bars on the magnetic field and current 

spectrum. However, major motor manufacturers have reported 

cases where damaged bars are randomly distributed around the 

rotor perimeter of large HV machines. In some of these cases, the 

motors were being monitored under maintenance programs based 

on Motor Current Signature Analysis (MCSA) and the degree of 

degradation found in the rotor was much greater than that 

predicted by analysis of their current spectra. For this reason, a 

complete study was carried out, comprising of a theoretical 

analysis, as well as simulation and tests to investigate the influence 

that the number and location of faulty bars has on the traditional 

MCSA diagnosis procedure. 

   From the theoretical analysis, based on the application of the 

fault-current approach and space-vector theory, a very simple 

method is deduced which enables the left sideband amplitude to be 

calculated for any double bar breakage, per unit of the sideband 

amplitude corresponding to a single breakage. The proposed 

methodology is generalized for the estimation of the sideband 

amplitude in the case of multiple bar breakages and validated by 

simulation using a finite-element (FE) based model, as well as by 

laboratory tests. 

 
Index Terms—Fault diagnosis, induction motors, broken-bar 

rotor faults, non-adjacent broken bars, space vector theory, 

motor current signature analysis (MCSA). 

 

I.  NOMENCLATURE 

Flux density wave generated by the fault field in the 

air-gap 
 f   Frequency of  the supply voltage 

sf   Sampling frequency 

Lsf   Frequency of the left sideband 
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)(tbii   Current in bar bi in the healthy machine 

biFi ,   Fault current in bar bi 

biFpi ,


 Space vector of the pth order component of the fault 

field current density wave caused by the breakage of 

bar bi 

biFpi ,


 Space vector of the pth order inverse component of the 

fault field current density wave caused by the breakage 

of bar bi 

           Fpi


 Space vector of the resultant pth order inverse 

component of the fault field current density wave 

caused by a double or by a multiple bar breakage  

 

fI   rms value of the fundamental component of the current 

current  

doubleLsI ,   rms value of the left sideband caused by a double 

bar breakage 

simpleLsI ,     rms value of the left sideband caused by a single 

bar breakage 

multipleLsI ,  rms value of the left sideband caused by a 

multiple bar breakage 

rI   rms value of the current in the rotor bars (healthy 

machine) 

FpK  Complex factor for calculating the amplitude of the pth 

component of the current density wave caused by the 

fault field 

p  Number of pole pairs 

R  Number of rotor bars 

Rr  Number of broken rotor bars 

s Slip 

 bi  Angular coordinate of bar bi in the rotor reference 

frame; angular distance between the second broken bar 

bi and the first broken bar b0 

αs   Rotor slot pitch 

       Pulsation of supply voltage 

r   Pulsation of rotor bars current (healthy machine) 
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II.  INTRODUCTION 

 

eviews of maintenance reports drawn up by large 

companies, on-site inspections, and personal interviews 

with experts all confirm that failure of non-adjacent bars is 

fairly common in large cage asynchronous motors. Fig. 1 

presents a photograph of one of the inspected motors in which 

the breakage of multiple rotor bars can be clearly seen. 

In a relevant number of cases, the faulty motor was part of a 

predictive maintenance program which included periodical 

monitoring of the rotor using conventional MCSA tests. 

However, the application of current spectral analysis did not 

lead to an accurate diagnosis, since the degree of rotor 

asymmetry was incorrectly evaluated. These diagnostic errors 

indicate that the appearance of a motor’s current spectrum is 

different when the faulty bars are randomly distributed around 

the rotor than when the bars are adjacent. 

The traditional theory regarding the evolution of rotor 

asymmetries (bar breaking or cracking) in squirrel-cage 

asynchronous motors, postulates that the current layer of the 

rotor undergoes two increases in the bars adjacent to a 

breakage. Depending on the distance to the breakage [1-4]  

these increases are smoothly damped. However, previous 

studies carried out by the authors evidenced a different 

behaviour in the rotor current layer after a failure [5]. The 

rotor current layer before and after a bar breakage was 

analysed by applying a finite element model of an 

asynchronous motor. The results revealed an asymmetrical 

distribution of the current on both sides of the failure as well 

as some secondary increases that were at a distance from the 

breakage equal to the machine pole pitch [5]. These transient 

secondary increases appeared cyclically in the rotor current 

layer – and were considered to be a possible cause for the 

progressive degradation of bars that were randomly distributed 

around the rotor perimeter. Fig. 2 shows how the distortion in 

the rotor current layer after the failure is not confined to the 

region of the broken bar, and evolves during the electrical 

cycle. Secondary increases appear in the current of the bars, 

and are located at a distance approximately equal to the 

machine pole pitch [5]. Although the magnitude of these 

secondary effects is lower, and their presence is variable 

during an electrical cycle, they may cause the initiation of new 

bar failures at other points in the cage. 

 

 
 

Fig 1. Rotor of a 5 MW, 6kV cage motor with multiple broken bars. 

 

IBHEALTHY – IBFAULTY 

BAR 

17 A 

0 

29 A 4 A 

TIME (s) 

BAR NUMBER 7 BROKEN: VALUE 
FORCED TO 0 FOR CLARITY 

 
Fig. 2. Difference between values of the current rotor layers in a healthy 

motor, and a motor with a broken bar- during a complete electric cycle of the 

rotor currents. Results obtained in the simulation of an 11 kW, 4 pole 

asynchronous motor. 

 

Since the cage rotors of asynchronous machines are 

cylindrical, their symmetry and the presence of unavoidable 

manufacturing imperfections mean that there is the same 

likelihood of bar breakage occurring randomly anywhere in 

the cage. Consequently, it is not surprising that progressive 

damage in the rotor could start simultaneously at different 

points of the cage, and then evolve from each point at a 

different speed – depending on the thermal, magnetic and 

dielectric asymmetries of the machine. As a result, a bar 

breakage may be dispersed around the rotor perimeter. 

Although comments regarding the influence of multiple bar 

breakages on fault diagnosis can be found since the beginning 

of MCSA development [6], there are few references in the 

literature about the diagnosis of faults involving two or more 

non-contiguous bars. A proposed  expression for estimating 

the amplitude of the left sideband  from the number of broken 

bars is found in [6], but this is  restricted to the case of 

contiguous broken bars. These authors report that, in the case 

of bars fractured at intervals of /2 electrical radians, no 

significant variation in the current occurs, concluding that 

diagnostics based on speed or current analysis ‘are liable to 

under-estimate the number of bars broken and may, under 

certain rare circumstances, fail to detect a defect’. [7] states 

that ‘if there are broken bars in various parts of the rotor, the 

current analysis is not capable to provide information of the 

configuration of non-contiguous broken bars’, remarking that 

‘the frequency component f ·(1 - 2s) does not exist if broken 

bars are electrically /2 radians away from each other’. 

Models able to analyze the behaviour of the induction motor 

with arbitrary bar breakages have been proposed since the 

1980s, [8-9]. More recently, a model including all the cage 

elements (bars and end ring segments) and enabling the stator 

and rotor currents to be calculated for any rotor asymmetry 

condition was presented in [10]. This model was applied to a 

22 bar, 4-pole machine, and all the possible double bar 

breakages were analyzed. This analysis showed that the 

amplitude of the left sideband harmonic varies strongly with 

the relative position of the broken bars. These authors state 

that ‘for certain relative positions, the sideband amplitude is 

much lower than in the case of a single bar breakage and so, it 

R 
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can lead to an erroneous diagnostic of healthy machine, if 

conventional MCSA is used’. They conclude that a single 

measurement of the amplitude of the sideband ‘is insufficient 

for the exact diagnosis of the rotor cage faults’ and state that 

‘this component should be monitored permanently for a 

healthy cage to detect the beginning of a destruction process in 

the cage’. Some very recent works dealing with the problems 

of diagnosing non-adjacent broken bars can be found in [11]-

[13]. [11] carried out an empirical analysis, based on a circuit-

model and tests, of the experimental detection of rotor faults 

via MCSA, and including several cases with non-adjacent 

broken bars. [12] simulates an induction motor using a time 

stepping finite element  method and perform the MCSA of the 

simulated current for some specific cases in which four broken 

bars are distributed in different modes over the poles of the 

motor.[13] develops a thorough analysis of the induction 

motor with non-contiguous broken bars, including a 

qualitative physical interpretation, simulation and tests. The 

study is focused on three specific fault scenarios: adjacent 

broken bars; non-adjacent broken bars separated by a half-pole 

pitch; and non-adjacent  broken bars separated by one pole 

pitch. 

References [14]-[16] also discuss  the multiple bar breakage 

phenomenon, but assumme that the broken bars are 

contiguous. [14] introduces an analytical approach that 

enables the analysis of the modification introduced by n 

consecutive broken bars in the magnetomotive force, and then 

calculates the spectrum of the stator current, while showing 

the effect of the number of consecutive broken bars  in the 

amplitude of the different fault-related harmonics. [15] 

and[16] compare different approaches for estimating the 

number of broken bars (fault severity), while also assuming 

that faulty bars are contiguous.  

   Unlike previous studies, this paper presents a physical 

analysis of the air-gap magnetic anomaly for the case of any 

double bar breakage. This analysis enables an understanding 

of the influence of the position of the broken bars on the 

diagnostic signals. Moreover, a very simple expression is 

deduced from this analysis, that enables the amplitude of the 

left sideband to be calculated for any double breakage per unit 

of the sideband amplitude corresponding to a single breakage. 

The method is also generalized for the estimation of the 

sideband amplitude for multiple bar breakages in which 

broken bars are placed in any position.  

   The proposed methodology is validated by simulation using 

a finite-element based model; and also by a significant number 

of laboratory tests carried out on a set of commercial cage 

motors. 

 

III.  PHYSICAL ANALYSIS OF DOUBLE BREAKAGES 

WITH AN ARBITRARY RELATIVE POSITION OF THE 

BARS  

 

This section explains a simple method for evaluating the 

amplitude of the left sideband harmonic when a second bar 

breakage occurs as a function of the relative position of the 

broken bars. The method is based on the physical analysis of 

the air-gap anomaly using the fault-current approach [1] and 

the space vector theory [17,18]. 

   The effects of a broken bar can be analysed using the 

concept of fault-current presented by Deleroi [1]. This means 

that a machine with a broken rotor bar may be analysed by 

considering the superposition of two configurations: the 

machine in a healthy state; and the machine with a current 

source placed in the bar that breaks (fault current). The fault 

current is always equal to the current flowing through the 

same bar in the healthy machine but in the opposite direction, 

- so that the total current through the broken bar is null. At 

steady state, the fault current varies sinusoidally with time at 

the slip frequency. Let us assume that bar b0 breaks; selecting 

a suitable time origin, the expression for the fault current is:  

                                                    

)cos(200, tIii rrbbF                      (1) 

  

   where iF,b0 , ib0 denote, respectively, the fault current and 

the current in the healthy machine through the bar b0 ;  ωr , Ir 

are, respectively, the pulsation and rms values of the rotor 

currents for a given slip s, in the healthy machine: 

                                                                                                      

sfsr  2                               (2) 

 

 and f respectively being the pulsation and frequency of the 

supply voltage. 

   The fault current flows through the short-circuit rings and 

the remaining bars, creating a magnetic field in the air-gap 

(fault field). This field, superimposed on the normal field of 

the healthy machine, causes alterations in its behaviour. More 

specifically, it induces the current harmonics in the stator 

windings that are used for the bar breakage diagnosis.  

   The shape of the spatial wave of air-gap flux density 

BF(α,t) caused by the fault field is a stepped bipolar wave, the 

amplitude and spectral composition of which vary with time. 

As stated in [1, 19], the fault field may be decomposed as the 

sum of spatial harmonics with 1, 2, 3..p ..n pole pairs. 

Although these harmonics have fixed positions with respect to 

the rotor, their amplitudes oscillate proportionally to the fault 

current. From this point onwards, the analysis will focus on 

the component of the fault field with p pole pairs, since this 

component generates the left sideband harmonic. Using the 

formulation of space vector theory [17-18], the space vector of 

the pth component of the current density wave generated by 

the fault field (pth current space vector) is deduced in [20], 

obtaining:    

 

 

 

            

(3) 

 

 

 

The expression within brackets is the magnitude of the 

vector, which varies in time proportionally to the fault current. 

Its argument is constant, and it coincides with the coordinate 
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of b0 (in electrical radians), which was selected as the origin of 

angular coordinates (b0=0). KFp is a complex factor deduced 

in [20] which depends on the characteristics and slip of the 

machine. 

   As clearly shown by (3), the pth order current density 

wave may be decomposed as the sum of two rotating 

components, direct and inverse, with constant amplitude and 

slip (Leblanc’s theorem). The left sideband harmonic is caused 

by the inverse component, the space vector of which is: 

              (4) 

   When a second bar bi breaks, a new fault field appears. If 

αbi is the geometric angle between both broken bars, the pth 

current space vector generated by the second broken bar is 

given by: 
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  Equation (5) is directly deduced from (3), taking into 

account the following comments: 

   As in the previously mentioned case of bar b0, the 

amplitude of this vector (within brackets) is proportional to the 

fault current running through the bar bi, and the fault current is 

equal to the current through this bar in the healthy machine but 

with the opposite sign. Since the currents running through b0 

and bi are induced by the same rotating field (the main 

sinusoidal air-gap rotating field of the machine), the current in 

bi has the same amplitude than as b0 but is delayed by an angle  

pαbi. This is equal to the angular distance between both bars, 

expressed in electrical radians. As deduced in [17], the 

argument of the space vector of current density generated by a 

simple conductor (bar bi) coincides with the angular 

coordinate of the conductor in electrical radians.    

Fig. 3 (a) shows a cross-section of the rotor after the second 

breakage, in which the pth order current density wave 

components of the fault fields created by both broken bars at a 

given time are indicated. Fig.3 (b) shows the corresponding 

space vector diagram. The space vectors corresponding to both 

broken bars keep their relative position constant; their 

amplitudes oscillate with time with the same pulsation sω, but 

with different time phases (reaching their maxima at different 

times). 

 In the case of double bar breakages, the left sideband 

harmonic is produced by the resultant pth order inverse 

component of the fault field. The current space vector of the 

pth inverse component of the fault field produced by the 

second broken bar is given by (6): 
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Fig. 3. The pth current density component of the fault field in a double bar 

breakage: (a) rotor cross-section, (b) space vector diagram. (c) vector 

representation of (7). 

 

  The space vector of the resultant pth order inverse current 

density wave component of the fault field is the sum of (4) and 

(6): 

)1(
2

0,,0,
bipj

bFpbiFpbFpFp eiiii
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   Fig. 3 (c) shows the vector representation of (7). The space 

vectors corresponding to both broken bars have constant and 

identical amplitudes. Their relative position is also constant, 

since all the vectors of the diagram rotate with respect to the 

rotor at the constant speed -sω. Their arguments differ in an 

angle equal to twice the electrical angle between both bars.                     

This double displacement is caused by the  combination of the 

spatial angular separation of the bars (pαbi electrical radians) 

and the time delay between the fault currents that circulate 

through them (ωt =  pαbi). 

   The ratio between the amplitudes of the left sideband 

harmonics in the cases of double and single bar breakages 

coincides with the ratio between the amplitudes of the pth 

inverse flux density components of the fault field. From an 

approximate analysis, if saturation is neglected, this ratio is in 

agreement with that between the current density components, 

and finally resulting in: 

 

   

 

 

                        (8) 
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   This expression enables the variation of the left sideband 

to be estimated when a second bar breaks, as a function of the 

relative position of the two broken bars. Fig. 4 shows the 

evolution of iLs,double,pu as a function of bi deduced from (8). 

The sideband amplitude is given per unit of its amplitude for a 

single breakage; and the graphic is particularized for a four-

pole machine. 

   Observation of Fig. 4 leads to the following conclusions: 

 

 If the positions of the broken bars differ by exactly an 

entire number of pole pitches (bi =k /p   k=1,2,3….), 

the amplitude of the left sideband doubles that 

corresponding to a single breakage (relative amplitude 

iLs,double = 2).  

 

 If bi is small (as in the case of consecutive bar 

breakages) or the position of the broken bars differs 

slightly from an entire number of pole pitches (bi  k/p 

k=0,1,2,3…), then the relative amplitude between left 

sidebands is slightly lower than 2. 

 

 

 If bi approximates /3p or 2/3p, or the distance between 

both broken bars is approximately equal to these angles 

plus an entire number of pole pitches (bi /3p+ k/p or 

bi 2/3p+ k/p; k=0,1,2,3…), then the amplitude of the 

left sideband is practically the same as that for the single 

breakage. Hence, the second bar breakage cannot be 

detected by analyzing the left sideband. 

 

 If bi approximates /2p (half a pole pitch) or the distance 

between both broken bars is approximately equal to this 

angle plus an entire number of pole pitches (bi  /2p + 

k/p; k=0,1,2,3…), then the second breakage reduces the 

amplitude of the left sideband to below that corresponding 

to a single breakage - and so a machine with two broken 

bars could be erroneously diagnosed as a healthy 

machine. This result, already reported by [6, 8, 10, 11, 

13], is due to the fact that the inverse components of the 

fault fields provoked by both bars are practically opposed. 

 

 
 

Fig. 4. Evolution of the amplitude of the left sideband harmonic in a double 

bar breakage as a function of the relative position of the bars (four-pole 

machine). 

 

   The previous remarks are applicable to machines with 

any number of poles and rotor bars. They are consistent with 

the results reported in [10] and [13]; in [10] the variation of 

the left sideband amplitude is obtained as a function of the 

position of the second broken bar, for a 4-pole machine with 

22 rotor bars, using a numerical model. In [13] the amplitude 

of the left sideband is obtained by testing a 6-pole machine 

with 45 rotor bars and with two broken bars spaced at 4 slots.  

   For a specific machine, with a given number R of rotor 

bars and p pole pairs, the angular distance between the broken 

bars may be calculated as:  

   
R

ii sbi



2
                           (9) 

 where αs is the slot pitch in radians and i is the number of slot 

pitches between both broken bars. 

   In the following sections, (8) is validated using numerical 

simulations and laboratory tests. 

IV.    NUMERICAL SIMULATION OF AN  INDUCTION 

MOTOR WITH DIFFERENT DOUBLE BAR BREAKAGES. 

 

In this section, a bi-dimensional finite-element based model 

of the cross-section of an 11 kW industrial motor is used to 

simulate the behaviour of the machine with double bar 

breakages in different relative positions. This model, 

developed in previous studies by the authors [5], is able to 

reproduce the transient operation of the machine by means of 

a rotating finite element mesh, and taking into account the 

saturation of the magnetic circuit, thus enabling the analysis of 

broken rotor bars and inter-turn short-circuits, [21]. Table I 

presents the main characteristics of the induction motor used 

for the simulations. A set of simulations of double bar 

breakages were developed that cover all the relative positions 

between both broken bars in a pole pitch, as well as two cases 

in which the distance between broken bars was greater than a 

pole pitch. To serve as a reference, the case of a single 

breakage is also analyzed. 

 
TABLE I. MOTOR CHARACTERISTICS 

Number of poles 4 

Rated power 11 kW 

Rated voltage 400 V 

Rated current 22.5 A 

Full-load speed 1460 rpm 

Number of rotor bars 28 

Number of stator slots 36 

Type of rotor Die cast-Al 

Type of magnetic sheet AISI- code M-36 

   

   The first step for developing each simulation consists of 

‘breaking’ the selected bars in the model by increasing their 

resistance to Rbroken = 10 M. The machine is then started up 

direct on-line, driving a load with a torque characteristic 

proportional to the speed. This characteristic was arranged so 

that when steady state is reached, the machine works 

1 pole pitch
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practically at full load (s  0.027). Each simulation lasted six 

seconds of motor operation; the time increment used for the 

numeric integration was t = 0.0005 s. Fig. 5 (a) shows the 

evolution of the phase A stator current and  speed during the 

first second after the connection, for the case of a single 

breakage. 

  Fig. 5 (b) shows the spectrum of the simulated current. 

This spectrum was calculated by applying FFT with a Hanning 

window to the stationary portion of the simulated current (last 

five seconds of the register). The left sideband can be clearly 

observed with a frequency fLs  47.5 Hz.  

Table II summarizes the results of the simulations carried 

out. Column 4 shows that the amplitude of the fundamental 

component is practically unaffected by the position of the 

broken bars. Column 6 gives the amplitude of the left sideband 

obtained for the different faults specified in  Column 1, per 

unit of the corresponding amplitude for a single breakage. The 

last column also gives this value, though calculated 

theoretically using (8). It has to be remarked that since a 

perfect symmetry is assumed in the healthy machine, the 

double breakage (b0-bi) is equivalent to the breakage (b0-b28-i). 

   Fig. 6 compares Column 6 of Table II with the values of 

ILs calculated from (8). The figure clearly shows that the 

variation of the left sideband amplitude versus the relative 

position of both broken bars, calculated using the FE model, 

fits well the variation predicted by the simplified equation (8) 

deduced in  Section II. 

 
Fig. 5. (a) phase A stator current and speed (simulated), (b) Spectrum of the 

simulated phase A current. 

TABLE II 

RESULTS OF THE SIMULATIONS 

 

Broken bars

Geometric

Distance

 bi

(degrees)

Electrical

Distance

p bi

(electrical
degrees)

Fundamental
harmonic 
amplitude

If (A)

Left 
sideband

Amplitude

ILs (A)

FEM
simulation

Theoretical

Eq(8)

Healthy - - 15.26 0.053 0.25 0

b0 - - 15.32 0.215 1.00 1.00

(b0-b1)  (b0-b27) 12.85 25.71 15.63 0.409 1.90 1.80

(b0-b2)  (b0-b26) 25.71 51.43 15.50 0.274 1.28 1.25

(b0-b3)  (b0-b25) 38.57 77.14 15.38 0.099 0.46 0.45

(b0-b4)  (b0-b24) 51.42 102.86 15.56 0.081 0.37 0.45

(b0-b5)  (b0-b23) 64.28 128.57 15.48 0.332 1.54 1.25

(b0-b6)  (b0-b22) 77.14 154.29 15.56 0.381 1.77 1.80

(b0-b7)  (b0-b21) 90 180.00 15.41 0.390 1.81 2.00

(b0-b11)  (b0-b17) 192.85 385.71 15.55 0.411 1.91 1.80

(b0-b13)  (b0-b15) 218.57 437.14 15.72 0.093 0.43 0.44

singleLs,

Ls

I

I

singleLs,

Ls

I

I

 
 

 

V.  EXPERIMENTAL STUDY OF DOUBLE BAR 

BREAKAGES 

 

A series of laboratory tests were subsequently carried out 

using commercial motors in order to confirm the validity of 

the preceding theoretical analysis for industrial machines. 

 Seven identical cage motors rated 1.1 kW, 400 V (star), 

with 4 poles and 28 rotor bars were used for the tests. The 

motors were disassembled; one of the stators was mounted on 

the test bed (see Fig. 7), and then a series of tests were 

performed by mounting the various rotors under different fault 

conditions. 

   For the initial series of tests, all the seven rotors in 

healthy condition were successively mounted and tested. The 

motor was loaded using a D.C. machine so that the rated 

regime (n = 1410 rpm, s = 0.06) was reached. Subsequently, a 

register of a stator phase current was obtained by means of a 

digital oscilloscope through a shunt (6A, 60 mV) connected to 

the secondary of a current transformer (15/5). The current 

signal was captured during fifty seconds, using a sampling 

frequency fs = 5000 samples/s. The aim of these tests was to 

confirm that there were no significant differences between the 

tested rotors. 

After the first series of tests, a bar was broken in each of 

the rotors (b0 bar). This was achieved by drilling at the 

junction between the  short circuit ring and the bar.  

A second series of tests was then carried out following the 

same procedure, and  using the rotors with a broken bar. These 

tests enabled the calculation of the amplitude of the left 

sideband ILs,single using the fast Fourier transform, for the case 

of a single breakage in every rotor. 

Subsequently, a second bar was broken in each rotor. In 

order to study all the possible relative positions of both broken 

bars in a pole pitch, the second drilled bar was in a different 

position in each rotor,   

   Finally, a third series of tests was performed by testing 

the rotors with double bar breakages and calculating the 

corresponding left sideband amplitude (ILs,double). Table III 

summarizes the FFT analysis of the tested currents. To reduce 

 

(a) 

   

ILs 

(b) 

Speed 

Current 



 7 

  

Elec.Degrees

0

50

100

150

200

250

300

350

400

broken bars - Distance between broken bars (Electrical Degrees)

IL
s
(p

u
) 

  
. 

Elec.Degrees 360 334 309 283 257 231 206 180 154 129 103 77 51 26 0 26 51 77 103 129 154 180 206 231 257 283 309 334

b0-

b14

b0-

b15

b0-

b16

b0-

b17

b0-

b18

b0-

b19

b0-

b20

b0-

b21

b0-

b22

b0-

b23

b0-

b24

b0-

b25

b0-

b26

b0-

b27  
b0

b0-

b1  

b0-

b2  

b0-

b3  

b0-

b4  

b0-

b5  

b0-

b6  

b0-

b7  

b0-

b8  

b0-

b9  

b0-

b10  

b0-

b11  

b0-

b12  

b0-

b13  

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch
Broken

bar1 pole pitch ½ pole pitch

0

Broken bars

Elec.Degrees

0

50

100

150

200

250

300

350

400

broken bars - Distance between broken bars (Electrical Degrees)

IL
s
(p

u
) 

  
. 

Elec.Degrees 360 334 309 283 257 231 206 180 154 129 103 77 51 26 0 26 51 77 103 129 154 180 206 231 257 283 309 334

b0-

b14

b0-

b15

b0-

b16

b0-

b17

b0-

b18

b0-

b19

b0-

b20

b0-

b21

b0-

b22

b0-

b23

b0-

b24

b0-

b25

b0-

b26

b0-

b27  
b0

b0-

b1  

b0-

b2  

b0-

b3  

b0-

b4  

b0-

b5  

b0-

b6  

b0-

b7  

b0-

b8  

b0-

b9  

b0-

b10  

b0-

b11  

b0-

b12  

b0-

b13  

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch
Broken

bar1 pole pitch ½ pole pitch

0

Elec.Degrees

0

50

100

150

200

250

300

350

400

broken bars - Distance between broken bars (Electrical Degrees)

IL
s
(p

u
) 

  
. 

Elec.Degrees 360 334 309 283 257 231 206 180 154 129 103 77 51 26 0 26 51 77 103 129 154 180 206 231 257 283 309 334

b0-

b14

b0-

b15

b0-

b16

b0-

b17

b0-

b18

b0-

b19

b0-

b20

b0-

b21

b0-

b22

b0-

b23

b0-

b24

b0-

b25

b0-

b26

b0-

b27  
b0

b0-

b1  

b0-

b2  

b0-

b3  

b0-

b4  

b0-

b5  

b0-

b6  

b0-

b7  

b0-

b8  

b0-

b9  

b0-

b10  

b0-

b11  

b0-

b12  

b0-

b13  

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch
Broken

bar1 pole pitch ½ pole pitch

00

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch

0

0,5

1

1,5

2

2,5

b
0
-b

1
4

b
0
-b

1
5

b
0
-b

1
6

b
0
-b

1
7

b
0
-b

1
8

b
0
-b

1
9

b
0
-b

2
0

b
0
-b

2
1

b
0
-b

2
2

b
0
-b

2
3

b
0
-b

2
4

b
0
-b

2
5

b
0
-b

2
6

b
0
-b

2
7
  

b
0

b
0
-b

1
  

b
0
-b

2
  

b
0
-b

3
  

b
0
-b

4
  

b
0
-b

5
  

b
0
-b

6
  

b
0
-b

7
  

b
0
-b

8
  

b
0
-b

9
  

b
0
-b

1
0
  

b
0
-b

1
1
  

b
0
-b

1
2
  

b
0
-b

1
3
  

broken bars

IL
s
(p

u
) 

  
. 

Simulation

Theoretical

Broken

bar1 pole pitch ½ pole pitch
Broken

bar1 pole pitch ½ pole pitch

000

Broken bars

  
Fig. 6. Variation of the left sideband amplitude in a double bar breakage with the relative position of the broken bars (simulation and theoretical). 

   

 

the influence of using seven different rotors, the amplitudes of 

the left sidebands were normalized by dividing them by the 

amplitude of the corresponding fundamental harmonic (If ) as 

measured in the same test. Column 7 gives the experimental 

amplitude of the normalized left sideband component for 

different double breakages p.u. of the sideband amplitude 

corresponding to the same rotor with one broken  bar.   

Column 8   shows    the theoretical values expected for these 

cases, calculated from (8). Fig. 8 graphically compares the 

tested values (Column 7 of Table III) with the theoretical 

values predicted by (8) and with the values obtained from the 

numerical simulation (Column 6 of Table II). 

   As expected, Table III and Fig. 8 show greater discrepancies 

between  tested  and  theoretical   amplitudes  of  the  sideband 

 

 

 

 
 

Fig. 7. Test bed and rotors used in the tests. 

 

 
TABLE III. 

  RESULTS OF THE TESTS 

 

Rotor 

Number

Broken bars

Geometric

Distance

 bi

(degrees)

Electrical

Distance

p bi

(electric.
degrees)

1 (b0-b1)  (b0-b27) 12.85 25.71 0,0143 0,0217 1,5198 1.80

2 (b0-b2)  (b0-b26) 25.71 51.43 0,0213 0,0234 1,0980 1.25

3 (b0-b3)  (b0-b25) 38.57 77.14 0,0115 0,0087 0,7527 0.45

4 (b0-b4)  (b0-b24) 51.42 102.86 0,0081 0,0035 0,4358 0.45

5 (b0-b5)  (b0-b23) 64.28 128.57 0,0131 0,0128 0,9827 1.25

6 (b0-b6)  (b0-b22) 77.14 154.29 0,0087 0,0124 1,4245 1.80

7 (b0-b7)  (b0-b21) 90 180.00 0,0201 0,0348 1,7372 2.00

)( fIofpu 

doubleLs,I

)( fIofpu 

singleLs,I

)(test

singleLs,I

doubleLs,I

))8(( ltheoretica

singleLs,I

LsI
1 broken

bar

2 broken

bars

2 broken

bars

 
 

 

component than those observed for the simulations. This is 

due to the constructive and assembly tolerances of the 

different rotors; as well as the unavoidable variations in test 

conditions (source voltage, winding temperatures, measuring 

errors, etc.) during the series of tests. Nonetheless, the results 

of the tests clearly follow the theoretical trend. The sideband 

amplitude decreases as the second broken bar moves away 

from the first; reaching a minimum when both bars are 

separated by approximately half the pole pitch.  

The amplitude increases from this point until reaching a 

maximum, when the bars are separated a pole pitch. For this 

case, the amplitude of the sideband practically doubles its 

amplitude for the single breakage. As predicted by (8), when 

both broken bars are separated by approximately half the pole     

pitch, the sideband amplitude is clearly lower than that 

corresponding to a single bar breakage; and the machine in 

this faulty condition might be wrongly diagnosed as healthy. 

Therefore, the simplified analysis developed in Section III 

proves to be useful for predicting and understanding the effect 

of a second bar breakage in the tested commercial motor. 
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Fig. 8. Variation of the left sideband amplitude in a double bar breakage with the relative position of the broken bars (experimental, theoretical and simulated). 

 

VI.  APPROXIMATE STUDY OF MULTIPLE BAR 

BREAKAGES 

 

The simplified analysis based on the current density vectors 

given in Section III may be easily extended to a greater 

number of broken bars. The resultant vector of current density 

for the fault field component that creates the left sideband can 

be obtained by applying the superposition principle, and 

adding the individual components generated by each broken 

bar.  

   If bars ba , bb , bc …, placed at coordinates αba , αbb , αbc 

…, are broken, the pth current space vector of the inverse 

component of the fault field produced by all the broken bars is 

given by: 

...)(

...

222
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,,,
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            (10) 

 

   Thus, if saturation is neglected, the ratio between the 

amplitudes of the left sideband harmonics in the cases of 

multiple and single bar breakages is approximately given by: 
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                (11) 

To validate (11), a new series of tests were carried out, using 

the rotor named as 7 in Table III. Bars b0, b7, b3, b11, b14, b17, 

b19, b20, b23 were successively broken and, after every 

breakage, the rotor was reassembled and the stator current 

analyzed. Fig. 9 compares the theoretical evolution of the left 

sideband amplitude calculated from (11), with the test results. 

The evolution of the sideband with the successive breakages is 

correctly predicted, even for a high number of broken bars. 

Obviously,  when  the  number of   broken  bars increases,  the 

 

 

 

hypothesis of the fault current proposed by Deleroi fits less 

well to the phenomena taking place in the machine and the 

analysis error increases. Fig. 10 represents the vector diagram 

of (11) corresponding to the first four cases of multiple  

breakages - and explains the evolution of the sideband 

amplitude when bars b0, b3, b7 and b11 are successively broken. 

 Finally, the experimental results reported in [13] enabled us 

to make a confirmation of (11) on a machine that was very 

different from the machine used for the tests. In [13], the 

authors tested a 5-hp machine (p=3 pole-pairs, R=45 rotor 

bars) at rated load, under six different fault conditions:  

 Healthy 

 One broken bar 

 Two adjacent broken bars 

 Two broken bars separated by half pole-pitch 

 Three broken bars each separated  one half pole-pitch  

 Two broken bars separated by one pole-pitch.  

Equation (11) was applied (with p=3, bi= i·2/45), to the last 

four cases, and the corresponding normalized values of the 

theoretical LSH in dB, was calculated. Fig.11 compares these 

theoretical values with the corresponding experimental values 

measured in [13], showing a good agreement.  
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Fig. 9. Evolution of the left sideband amplitude after the successive 

breakages of bars b0, b7, b3, b11, b14, b17, b19, b20, b23 (not adjacent bars).   



 9 

0,bFpi 


7,bFpi 



3,bFpi 



Fpi
 11bFpi ,



(a) (b)

(c) (d)

0,bFpi 



0,bFpi 



0,bFpi 



Fpi


7,bFpi 



7,bFpi 



3,bFpi 



 
Fig. 10. Evolution of resultant current density space vector when bars b0, 

b3, b7 and b11 are successively broken: (a) b0 broken, (b) b0, b7 broken, (c) b0, 

b7, b3 broken, (d) b0, b7, b3, b11 broken. 
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Fig. 11. Comparison of the theoretical LSH calculated through (11) with  

the corresponding experimental ones tested in [13] for four different cases of 

adjacent and nonadjacent breakages 

 

VII.  CONCLUSIONS 

     An analysis of double and multiple bar breakages valid for 

cage motor faults involving non-consecutive broken bars has 

been presented. This analysis is based on the application of the 

fault-current approach and space vector theory. It provides a 

physical interpretation of the appearance of the left sideband 

component under any double or multiple bar breakage 

condition, as well as the deduction of very simple expressions 

for the approximate calculation of the left sideband amplitude 

- as a function of the relative position of the broken bars. The 

theoretical analysis is validated using a finite-element model 

of an induction motor and also by laboratory tests using 

commercial cage motors.  

Good agreement was obtained between theoretical analysis, 

simulation and experimental results, proving that the proposed 

approach constitutes a useful tool for the study and diagnostics 

of double and multiple bar breakages. 
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