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Abstract 

 

We present a theoretical model for the study of cornea heating with radio-

frequency currents. This technique is used to reshape the cornea to correct refractive 

disorders. Our numerical model has allowed the study of the temperature distributions 

in the cornea and to estimate the dimensions of the lesion. The model incorporates a 

fragment of cornea, aqueous humor and the active electrode placed on the cornea 

surface. The finite element method has been used to calculate the temperature 

distribution in the cornea by solving a coupled electric-thermal problem. We analyzed 

by means of computer simulations the effect of: a) temperature influence on the tissue 

electrical conductivity, b) the dispersion of the biological characteristics, c) the 

anisotropy of the cornea thermal conductivity, d) the presence of the tear film, and e) 

the insertion depth of the active electrode in the cornea, and the results suggest that 

these effects have a significant influence on the temperature distributions and thereby on 

the lesion dimensions. However, the cooling of the aqueous humor in the endothelium 

or the realistic value of the cornea curvature did not have a significant effect on the 

temperature distributions. 

An experimental model based on the lesions created in rabbit eyes has been used 

in order to compare the theoretical and experimental results. There is a tendency 

towards the agreement between experimental and theoretical results, although we have 

observed that the theoretical model overestimates the lesion dimension.  

 

Index Terms: Thermokeratoplasty, cornea, numerical model, computer model, radio-

frequency (RF) heating, finite element method, theoretical model. 
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I. INTRODUCTION 

Thermal techniques for changing the shape of the cornea are commonly referred 

to as thermokeratoplasty (TKP) and they are based on the fact that the cornea stroma 

permanently shrinks when temperature is raised to 55-63 ºC 1. These techniques have 

been used to reshape the cornea to correct disorders such as keratoconus 2, hyperopia 

3, and astigmatism 4. They are based on applying energy as thermal conduction from 

pre-heated probes applied to the surface 2 or inserted in the cornea 3, laser 5, 

ultrasound 6, or microwave energy 7. Also radiofrequency (RF) currents have been 

used in TKP 8,9. In 1980, Doss and Albillar 8 proposed a TKP technique by using 

RF currents (RF-TKP). They used a large diameter electrode combined with surface 

cooling in order to correct the keratoconus. In a clinical study using this technique, 

Rowsey observed unpredictability and regression of the shrinkage effect 10. However, 

Mendez-G and Mendez-Noble 9 have recently proposed a RF-TKP technique using a 

smaller diameter electrode without surface cooling. The first clinical results using this 

technique achieve hyperopia correction that was stable and had little regression through 

time. On the other hand, we presented a preliminary study showing thermal lesions 

created by RF currents using a small diameter electrode 11. We showed the geometric 

and histologic characteristics of these lesions on an in vivo model based on rabbit eyes. 

To our knowledge, there are no theoretical or experimental studies about the 

influence of different factors on the lesions characteristics in the cornea heating with RF 

currents. Only Trembly and Keates 7 have presented a numerical model for the 

theoretical analysis of the temperature distribution in the cornea during microwave 

heating combined with surface cooling and studied the effect of changing the applied 

microwave power level and the applicator characteristics on the temperature profiles. 
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In this paper, we present a realistic non-linear numerical model for the 

simulation of tissue temperature distribution during RF-TKP using a surface electrode. 

The first objective of this study has been to construct the theoretical model and to carry 

out computer simulations in order to compare the computer results with the lesions 

created on an in vitro model. The second objective has been to use our model in order to 

study the temperature profiles in the cornea during RF-TKP. The effect of different 

parameters such as the corneal curvature, the thermal transfer in the interfaces of the 

model, the electrical and thermal characteristics of the tissues, and the presence of a tear 

film has been considered.  

 

II. MATERIALS AND METHODS 

 
A. Description of the theoretical model 

In RF-TKP, electrical currents ranging from 500 kHz to 1 MHz flow between an 

active electrode placed on the cornea surface and a dispersive electrode of big 

dimensions placed on the back of the patient’s head. Fig. 1 (top) shows the geometry 

and dimensions of the active electrode considered in this study. It is made of stainless 

steel and has a 200 m diameter in the point placed on the cornea. The length of the 

sharp-edge zone of the active electrode is 5 mm, the diameter of the active electrode 

body is 1.5 mm, and the total length is 100 mm. Fig. 1 (bottom) shows the physical 

situation during RF-TKP considered in this study. The active electrode is situated on the 

center of the cornea. Therefore the model presents axisymmetric characteristics, and a 

two-dimensional approach is possible. The rectangle in Fig.1 (bottom) indicates the 

region where our theoretical model applies. Fig. 2 shows the theoretical model 

proposed. The model represents the active electrode, the cornea and the aqueous humor 

(fluid included in the anterior chamber), and it is similar to the model proposed by 
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Trembly and Keates 7 for microwave heating. Corneal thickness of 600 m was 

considered 7. The value of the model parameters L, R and Z have been calculated by 

sensitivity analysis in order to avoid boundary effects, which will be presented in the 

results and discussion section. 

Although the literature contains scarce data about the electrical and thermal 

characteristics of the cornea and aqueous humor, Table 1 shows a brief review of this 

topic and indicates (in bold) the value of the physical characteristics used in the model 

7,12-17. We have not modeled the several layers of the cornea, due to the fact that 

only average measured values for the whole cornea are available. The interface between 

the cornea and air will be referred to the epithelium, and the interface between the 

cornea and the aqueous humor as the endothelium. In our model, a change of the 

electrical conductivity of the cornea and the aqueous humor with temperature of 

+2%/ºC has been considered 18. The temperature profiles for RF-TKP have been 

calculated using the finite element method (FEM). The ANSYS 5.3 commercial finite 

element package running on an IBM-PC  with a 233-MHz processor has been used for 

computer simulations. The temperature distribution in the tissue was obtained by 

solving the bio-heat equation [19] 

mp QQqTk
t

T
c 



    (1) 

where  is the mass density (kg/m3), c is the specific heat capacity (J/KgK), k is the 

thermal conductivity (W/mK), T is the temperature (ºC), q is the heat source (W/m3), 

Qp is the perfusion heat loss (W/m3), and Qm is the metabolic heat generation (W/m3). 

The situation has been simplified by ignoring Qp and Qm as they are negligible for RF 

heating [19]. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 6

 At the frequencies (500 kHz) and over the distance of interest (the electrical 

power is deposited in a small radius around the active electrode) the medium can be 

considered resistive, because the displacement currents can be neglected. Therefore, it is 

possible to use a quasi-static approach to the electrical problem 20-21. The distributed 

heat source (Joule loss) is given by 

   q = J  E         (2) 

where J is the current density (A/m2), and E is the electric field intensity (V/m). These 

were evaluated using Laplace’s equation 

      V = 0        (3) 

where V is the root mean squared (r.m.s.) voltage (V) and  is the electrical conductivity 

(S/m). 

 The model presented, as are other models of RF heating, is based on a time 

domain analysis of an electric-thermal coupled problem 17,22-23. The temperature for 

the surfaces away from the active electrode (right and bottom limit of the model in the 

Fig.2) was assumed to be 20 ºC (using Dirichlet boundary conditions). An initial 

temperature of 20 ºC was used in all the model. The electrical potential was fixed on the 

active electrode to a value equal to the total applied voltage (root-mean-square value in 

a experimental set-up), while the potential in the dispersive electrode was fixed to zero 

volts. The effect of heat convection in both the interfaces (epithelium and endothelium) 

of the model have been taken into account using thermal transfer coefficients (h1 for the 

epithelium and h2 for the endothelium). At such interfaces the temperature obeys 

   T  dS = h k-1( Tb - T )     (4) 

where T is the tissue temperature, S is the directed surface, k is the thermal conductivity 

of the tissue, h is the thermal transfer coefficient, and Tb is the temperature far from the 
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interfaces (air temperature for epithelium interface, and tissue quiescent temperature for 

the endothelium interface).  

The value of the maximal temperature achieved in the tissue (Tmax) has been 

used as a control parameter in the sensitivity analysis. In order to assess the effect of 

different factors studied in this work, we will consider an effect to be significant when 

the inclusion of this factor induces a change of  4 ºC in Tmax. This temperature range is 

similar to the dispersion of the shrinkage temperature (55–63 ºC) found by Stringer and 

Parr experimentally 1. The geometry of the temperature profiles has been assessed by 

means of the depth and width of the 40 ºC isothermal line. 

   

B. Description of the experimental model 

An in vitro model based on an isolated rabbit eye was developed in order to 

validate the theoretical model. Fig. 3 shows the components of our experimental model 

which is similar to that used by Doss and Albillar 8. A 200 m diameter stainless steel 

active electrode was placed on the center of the cornea, and a RF generator (model 

RFG-3D, Radionics Inc, Massachusetts, USA) was used to deliver 500 kHz RF currents 

to the tissue. The output voltage (root mean square value without load impedance) was 

programmed from the front panel for each case. All the experiments were carried out on 

enucleated rabbit eyes. The eyes were obtained four to eight hours post mortem and 

stored in a cold saline solution (5-10 ºC) to minimize swelling or autolysis 24.  We 

made one lesion on each eye by programming the output voltage and the time duration. 

After heating, the cornea was excised from the eye, preserved in formalin, sliced at 4 

m thickness through the centre of the lesion, stained with hematoxylin and eosin, and 

mounted in a slide for photographing. The lesions were assessed using the coagulation 

contour observed in the histologic samples. Brickmann et al. 25 have shown that this 
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coagulation contour occurs in a temperature range around 100 ºC using short heating 

times. The depth and width of each lesion were measured on the histologic samples 

under a optical microscope (X100) with a calibrated reticle (1 m divisions). All the 

dimensions are indicated as % of corneal thickness. Finally, to compare the 

experimental and numerical results the experimental dimensions of the lesion are 

compared to the 100 ºC isothermal lines from the computer simulations.  

 

III. RESULTS AND DISCUSSION 

A. Construction of the theoretical model 

The parameters R, Z and L of the model (Fig. 2) can not be inferred from the 

physical dimensions shown in Fig. 1, because only a portion of the physical stage is 

included in the theoretical model. In order to avoid numerical artifacts in the FEM 

model, we tested the model by increasing the value of these parameters. Computer 

simulations were carried out setting the applied voltage to 8 V, time duration to 1 s 

(standard conditions of applied voltage and duration),  h1 to 20 W/m2 ºC, h2 to 500 

W/m2 ºC and the time step to 50 ms. The effect of heat convection at the active 

electrode-air interface has been taken into account using a thermal transfer coefficient of 

20 W/m2 ºC for all the computer simulations. Computer simulations were made by 

increasing equally the values of R and Z from 1 mm to 5 mm in steps of 1 mm. When 

the difference between the maximal temperature achieved in the tissue (Tmax) after 1 s 

and the temperature in the previous simulation was less than 0.5ºC, we considered the 

former values of R and Z to be adequate. A value of 3 mm was obtained for R and L. 

These dimensions are similar to the dimensions of the model used by Trembly and 

Keates 7. A similar method to calculate the dimensions of the model has been used by 

Labonté 22 in a model for cardiac ablation and by Trembly and Keates 7 in a model 
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of TKP using microwave heating. The same method was used to estimate the optimum 

value of L. Values from 0.5 to 2 mm in steps of 0.5 mm were used, and a value of 1 mm 

was found to be sufficient. The time step used for all the transient analysis was set to 50 

ms. The difference between Tmax obtained with this step time and a lower step time (25 

ms) was less than 0.5 ºC. We have used a Cauchy convergence test to determine 

whether the model mesh is of appropriate size. This method has been described by 

Tungjitkusolmun et al. 26 in a RF cardiac ablation model. We have considered the 

maximum temperature in all the tissue as the parameter for the convergence test. A grid 

size of 10 m in the finest zone (cornea–active electrode interface) was found to be 

adequate. Unlike, the spatial resolution was of 0.6 mm near the dispersive electrode. 

The finite element model had near 2000 nodes and used over 3600 triangular elements. 

 

B. Effect of the thermal transfer coefficients 

The effect of transfer coefficients in the interfaces (h1 and h2) were tested using 

computer simulations using values suggested in the literature 27-28 because no 

experimental study presents measured values. Computer simulations using standard 

conditions (8 V, 1 s) were made with h1 set to 2, 12 and 25 W/m2 ºC. These are typical 

values for thermal free convection between solid (cornea) and air 27-28. While, h2 was 

set to 20, 500 and 1000 W/m2 ºC, these are typical values for thermal free convection 

between solid (cornea) and liquids (aqueous humor) 28. Fig. 4 shows temperature 

profiles obtained on the axis of symmetry in the cornea zone. The temperature profiles 

were not significantly effected by the variation of h1, and the maximal difference of the 

Tmax was of 0.5 ºC (not shown in the Fig. 4). However, temperature profiles were 

slightly effected when h2 changed. Temperature profiles varied near 4 ºC in the 

endothelium. Moreover, this effect was more significant when the time duration was 
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increased (near 2 ºC after 500 ms and 4 ºC after 1 s in the endothelium). To our 

knowledge there are no experimental data of the thermal transfer capability of the 

aqueous humor on the endothelium (h2), but because this fluid is almost static, we have 

considered that the thermal transfer is due to a free convection process. The use of 

convective boundary conditions (h1 and h2) is an approximation often used in the 

thermal modelling of RF heating 22,27. The results suggest that only the thermal 

transfer in the cornea-aqueous humor interface (h2) could be significant in a theoretical 

model for RF-TKP, especially if RF currents are applied for a long time (several 

seconds). If short time durations are used, this effect could be negligible. 

 

C. Linear versus non-linear model 

In order to study the effect of the change of the electrical conductivity of 

biological tissues (cornea and aqueous humor) with the temperature, computer 

simulations were carried out under standard conditions (8 V, 1 s) in two different cases: 

a) linear model (without variation of ) and b) considering a change of +2 %/ºC 18 for 

the electrical conductivity (non-linear model). The parameters h1 and h2 were fixed to 

20 W/m2 ºC and 500 W/m2 ºC respectively. A highest value of Tmax (increase of 15 ºC) 

was obtained when the effect of the temperature was considered. This critical result is in 

agreement with Labonté 22 and Shahidi and Savard 23 using their models for RF 

cardiac ablation. This result indicates that it is necessary to include the effect of 

temperature for all the simulations in order to obtain more realistic temperature profiles 

in the model. The value of +2 %/ºC indicated in this section will be used for the cornea 

and the aqueous humor in all the simulations presented in the following sections, except 

in the section H when a linear model will be again considered. 
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D. Influence of the corneal curvature 

The model in Fig. 2 is similar to the model of Trembly and Keates 7. In order 

to study the effect of considering a more realistic shape of the cornea, the model was 

modified. Fig. 5 (a) shows the modified model with a geometry based on biometry data. 

A cornea curvature radius of 8 mm was used 29. Control simulation (with realistic 

curvature) and simulation using a model with a flat surface were made under standard 

conditions (8 V, 1 s). We observed a difference of near 4 ºC for Tmax between the two 

simulations. The result indicates that this factor could be significant under non standard 

conditions, such as longer time or higher programmed voltage. New computer 

simulations could be used to test this hypothesis. 

 

E. Effect of tear film 

In order to consider a realistic approach of the RF-TKP, we have studied the 

effect of  the presence of a thin tear film on the cornea and around the active electrode. 

Fig. 5(b) shows the location of the tear film in the model. In this study, the electrical 

characteristics of this film were considered to be similar to aqueous humor (table I) 

because we have not found any study reports the thermal or electrical characteristics of 

the tear film. Two different thickness of this film (50 and 100 m) were considered. 

Also two values (500 and 1000 W/m2ºC) of the thermal transfer coefficient between the 

cornea and tear film and between the electrode and tear film (hTEAR) were considered in 

simulations under standard conditions (8 V, 1 s). These values of  coefficients are in the 

range of typical values of the free convection heat transfer coefficient between solids 

(cornea) and liquids (tear film) [28]. The convection coefficient between the tear film 

and air was of 20 W/m2ºC. Table III shows the Tmax, the depth and ½ width of the 40 ºC 

isothermal line after 1 s. The results indicate that as the thickness of the tear was 
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decreased from 100m to 50 m, Tmax increased 3.7 and 3.5 ºC for hTEAR 500 and 1000 

W/m2ºC respectively, the width of the 40 ºC isothermal line increased 5% for hTEAR 500 

and 1000 W/m2ºC, and the depth increased 5 and 15 % for hTEAR 500 and 1000 W/m2ºC 

respectively. Furthermore these three parameters (Tmax, width and depth of the 40 ºC 

isothermal line) increased when hTEAR decreased from 1000 to 500 W/m2ºC. Tmax 

increased 4.2 and 4.0 ºC , width increased 21 and 20%, and depth increased 2 and 12 %, 

for a tear film thickness of 50 and 100 m respectively. Moreover, the largest difference 

was found between the control case and when a tear film was considered: minimal 

difference of Tmáx of 14.7 ºC, and minimal increase of the 40 ºC isothermal line 

dimensions of 16.0 % and 8.3 % for the width and depth respectively. These results 

suggest that the presence of the tear film perfoms like a thermal and electrical leak path 

removing the heat away from the tissue and scattering the electrical current across the 

tear. 

 

F. Insertion depth of the active electrode   

When a small diameter active electrode is placed on the surface of the cornea a 

slight strain occurs in the tissue. This makes a small portion of the active electrode (tip 

zone) to remain inserted in the cornea. The influence of this effect on the temperature 

profiles has been studied using the modified model of the Fig. 5(c). Table IV shows the 

40 ºC isothermal line dimensions and Tmax for several studied depth of insertion (ID) of 

the active electrode in the cornea under standard conditions (8 V, 1s) after 1 s. As we 

increased ID (from 0 to 100 m), we found that the 40 ºC isothermal line dimensions 

increased from 350 to 460 m in depth and from 375 to 460 m in ½ width. Plots of 

temperature profiles were obtained for each ID. We observed that the location of the 

point with maximal temperature was always found around the perimeter of the active 
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electrode. Since an increase of ID placed the points of maximal temperature in deeper 

locations, the lesion can be deeper, and this fact could justify these results. On the 

contrary, Tmax decreased from of 85.6 to 72.4 ºC when ID increased from 0 to 100 m. 

When ID decreased, the value of maximal density current in the tissue (not shown) 

increased due to the well known “edge effect” studied by other authors 17,33. This 

increase of the current density involved an increase of the temperature achieved. In 

summary, the results indicate that the depth of insertion of the active electrode has a 

significant effect on the temperature profiles.  

The current RF heating theoretical models have often considered a good quality 

contact between the electrode and the tissue 22-23. However, it is known that this 

parameter has an important effect on lesion characteristics 34-35 and sometimes, for 

example in RF-TKP, it is difficult to predict its behaviour in a clinical situation. Only 

Jain and Wolf 36 have studied the effect of ID using a theoretical model for RF 

cardiac ablation, and they obtained results similar to ours. They found that when ID 

increased, depth and width of the temperature profiles increased because the location of 

the hot spot shifted deeper into the tissue. However, their results are not directly 

comparable to ours since they used a constant temperature protocol, and our study set a 

constant applied voltage.  

 

G. Anisotropy of the corneal thermal conductivity  

In the study of Trembly and Keates 7 for microwave heating of the cornea, the 

agreement  between the theoretical and experimental studies was only approximate. The 

width of the lesion was roughly twice as high in experiment as in theory. They indicated 

that this disagreement might be due to the anisotropy of cornea thermal conductivity. 

Their work also suggests that conductivity is larger in the longitudinal direction 
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(parallel to the corneal surface) than transverse direction. In order to study the influence 

of this thermal anisotropy, we have carried out computer simulations under standard 

conditions (8 V, 1 s) including this effect. To our knowledge, there are no experimental 

values of this kind of anisotropy. With kx, the longitudinal thermal conductivity of the 

cornea, and ky, the transverse thermal conductivity, (see Fig. 6), we fixed ky to 0.556 

W/mk 7, kx was set to three values: kx=ky (control, non-anisotropy), kx=2ky, and 

kx=3ky. Fig. 6 shows the obtained temperature profiles and indicates the situation of the 

40 ºC isothermal line for each studied case. The results (shown in Table II) suggest that 

an increase of the longitudinal thermal conductivity (kx=2ky) involves lower values of 

Tmax (a difference near 17 ºC), and the reduction of 21 % of depth and 4 % of width in 

40 ºC isothermal lines. Also the temperature profiles shown in Fig. 6 suggest that an 

increase of this anisotropy in thermal conductivity involves temperature profile 

geometry with a more ellipsoidal shape (width/depth ratio of 1.3). A similar effect was 

observed when kx was set to 3ky but with major differences (see Table II). The value of 

Tmax decreased near 25 ºC, depth and width in 40 ºC isothermal line reduced in 42 % 

and 15% respectively, and the width/depth ratio was 1.6.  Our results suggest that wider 

lesions could be created if a condition of thermal anisotropy is considered. Thereby this 

effect could explain the discrepancy between experimental and theoretical results 

observed by Trembly and Keates 7. On the other hand, our results suggest also that 

there is a direct relation between Tmax and the temperature profile dimensions and they 

agree with the observations of Labonté 22 in a theoretical model for RF cardiac 

ablation.  

 

H. Electrical conductivity dispersion 
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We have studied the effect of changes in electrical conductivity (of cornea 

and aqueous humor due to biological dispersion. Computer simulations under standard 

conditions (8 V, 1 s) were carried out considering values of dispersion  of 50 % of  at 

the beginning of the simulation. We have also considered two models: a) linear model, 

and b) non-linear model including the effect of the temperature on the electrical 

conductivity (+2 %/ºC). Fig. 7 shows the temperature profiles after 0.5 s and 1 s for the 

linear model (a) and the non-linear model (b). Since we increased  (+50%), significant 

differences between the two models were found. Tmax was maximal for the non-linear 

model and long time durations (differences of 25 ºC after 0.5 s and near of 45 ºC after 1 

s). This discrepancy between the two models and durations is due to the so called 

thermal feedback in electrosurgical heating 30. When the tissue is heated and a 

electrical protocol based on a constant applied voltage is used, the tissue electrical 

resistance declines. Then, more current is delivered from the generator, the temperature 

in the tissue increases, creating a positive feedback loop. Fig. 7 also shows that when 

we decreased  by -50% at the beginning of the simulation, a minor difference of Tmax 

between models and time durations was found (4 ºC after 0.5 s and 7 ºC after 1 s). 

Moreover, Fig. 7 shows that the effect of the time duration is less significant when 

decreased. Panescu and Webster 30  have studied the influence of the dispersion of 

 (50 %) on the temperature distributions in RF heating using a linear model, 

achieving similar results to our linear model (Fig. 7(a)). However, our results suggest 

that the studies about biological characteristic dispersion should include the dependence 

with temperature (non-linear model) especially when positive changes of and long 

time durations are considered. Recently, Tungjitkusolmun et al. 26 have studied the 

effects of changes in electrical conductivity () of the cardiac tissue (50 %) on the 

temperature profiles in a RF cardiac ablation model. They have considered a change in 
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 of 2 %/ºC (non-linear model), but they have not studied the differences between using 

a linear model and non-linear model when the dispersion in  is considered. 

 

I. Comparison between computer simulations and in vitro experiments 

A realistic theoretical model has been considered for the comparison between 

computer simulations and the in vitro experimental results. This theoretical model 

includes the cornea curvature, an insertion depth of the active electrode of 50 m, a 

value for the anisotropy of the corneal thermal conductivity (kx=2ky), and a 100 m 

thickness tear film. The thermal transfer condition of the tear film (hTEAR) in the 

computer simulations was considered using three values: 20, 100 and 500 W/m2 ºC, 

because of the lack of experimental data. Moreover, the value of the electrical 

conductivity of the cornea in the theoretical model was varied from 2.56 S/m (proposed 

initial model, see table I) to 1 S/m in order to achieve a good agreement with the 

experimental electrical impedance of 1 k measured between the active and dispersive 

electrode. Computer simulations and in vitro experiments were made setting the applied 

electrical voltage to 16 and 21 V, and the time duration to 1 s. These values of voltage 

are higher than the standard condition (8 V) in order to obtain temperatures in the 

cornea, high enough to create a observable thermal lesion. Three lesions were created 

for each voltage in rabbit eyes. Only one lesion was made in the centre of each eye. 

Table V shows the lesion dimensions in depth and width obtained using in vitro model 

and the dimensions of the 100 ºC isothermal line in the computer results. Fig. 8 and 9 

also show the computer simulations and the experimental lesions respectively in the two 

studied cases. Table V indicates that an increase of the applied voltage from 16 to 21 V 

produced in the experimental model an increase of the lesion depth from 211 to 303 

% of corneal thickness. Using the theoretical model, the depth of the 100 ºC isothermal 
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line changed from 39 to 70 % of corneal thickness for hTEAR of 100 W/m2 ºC. This 

increase of the applied voltage involved an increase of the lesion width from 1065 to 

1089 % of corneal thickness in the experimental model, and from 95 to 190 % of 

corneal thickness for hTEAR of 100 W/m2 ºC in the theoretical model. The results indicate 

that the value of the applied voltage has a significant effect on the temperature 

distributions theoretically, but experimentally the applied voltage has a significant effect 

only on the lesion depth. The best agreement between the 100 ºC isothermal line depth 

in the theoretical model and the lesion depth in the experimental model was found when 

the value of hTEAR was set to 100 W/m2 ºC. A value of 100 W/m2 ºC for hTEAR has been 

stated for the temperature profiles showed in Fig. 8 and 9. The significant effect of the 

applied voltage on the temperature profiles observed in our computer results has also 

been indicated by Labonté for a theoretical model for RF cardiac ablation 22. Our 

results (see table V, Fig. 8 and 9) show that the theoretical model predicts greater 

lesions than the experimental model. In general, there is a tendency towards agreement 

between experimental and theoretical results, although the numerical model 

overestimates the lesion dimension, especially the width. We think that these 

differences could be due to several causes. First, the variation of tissue characteristics in 

the vicinity of the active electrode during heating, because the experimental heating was 

associated in all the cases with a strong desiccation, detachment of tissue and adhesion 

to the active electrode around its perimeter. For this reason, this zone of the tissue tends 

to have a low value of electrical conductivity, and that could be the cause of less 

increase of the lesion width in the experimental model. Second, the thermal and 

mechanic characteristics of the cornea change strongly during the heating 1, and this 

aspect has not been considered in the numerical model. Other possible causes of this 

disagreement could be: a) the difference between the corneal thickness in the numerical 
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model (600 m) and the actual thickness in the experimental model; and b) the lack of 

more precise experimental data about the thermal and electrical characteristics of the 

biological tissues used in this study (including the different membranes of the cornea). 

In spite of the limitations, the proposed numerical model qualitatively predicts the 

process of the heating of the cornea using RF currents, and it could be used in order to 

study the effect of different electrode shape or applied voltage values and time duration 

conditions on the temperature distributions. 

On the other hand, in order to compare the results of the theoretical model with 

the in vitro experiments, only the isothermal line (100 ºC) and the coagulation contour 

observed in the histology samples were used. It would be necessary to carry out further 

studies in order to describe a thermal damage function more specific to the heating of 

the cornea. To our knowledge, only the study of Brickmann et al. 25 offers these 

experimental data on thermal damage of the cornea heated with lasers. Moreover, 

different techniques proposed for the experimental validation of numerical models in 

RF heating like the use of a tissue phantom 22 or the recording of point temperatures 

with sensors inserted in the tissue 8 have not been considered in this study. Future 

studies should include experiments in order to describe a thermal damage function more 

specific for the heating of the cornea, and to measure the thermal and electrical 

characteristics of the cornea under several heating conditions. Also, future studies 

should investigate more realistic models including the behaviour of the interface tissue-

electrode under high temperature conditions and strong tissue desiccation.  

In order to interpret the results of computer simulations presented in this study, it 

is important to take into account that our model only represents a limited zone of the 

physical situation in RF-TKP (Fig.1 and 2). However, to our knowledge, the majority of 

the numerical models of RF heating using an active electrode include only a limited 
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fragment of biological tissue and active electrode [17,19,22,26,36-39]. Computer 

simulations have been carried out in all these cases in order to determine the appropriate 

model dimensions. The objective of these numerical models was to study the effect of 

different factors on the temperature distributions in the lesion zone. Due to the lesion is 

created in the vicinity of the active electrode, it was not necessary to model all the 

physical situation, but only a limited zone of the tissue and active electrode. Under this 

approach, the conclusions obtained were useful. 

 

IV. CONCLUSION 

This paper presents a theoretical model for the study of RF-TKP using a small 

active electrode for surface application. We have studied the influence of different 

factors. Each factor was considered significant when its inclusion induces a change of 

maximum temperature in the tissue in 4 ºC. Based on this criterion, the dependence of 

electrical conductivity with the temperature, the dispersion of this parameter, the 

thermal anisotropy of the cornea, the presence of the tear film, and the depth insertion of 

the active electrode in the cornea have a significant effect on the maximal temperature 

achieved in the tissue. However, the cooling of aqueous humor on the cornea, as well as 

the cornea curvature, do not have a significant effect. 

Finally, an in vitro model based on a rabbit eye has been used in order to 

compare the theoretical and experimental results. There is a tendency towards the 

agreement between experimental and theoretical results, although the theoretical model 

overestimates the lesion dimension (especially width). We have proposed and discussed 

several causes of this fact. Nevertheless, the proposed theoretical model allows one to 

study qualitatively the heating of the cornea with RF currents. 

 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 20

Acknowledgments 

 
The authors would like to thank Professor Albert Lozano-Nieto for the suggestions he 

provided, and the reviewers for their helpful comments. This work was supported in 

part by IMPIVA–Generalitat Valenciana (Ref: 971701003827) and Mercé V. 

Electromedicina S.L. (Valencia, Spain). The authors thank Instituto Oftalmológico de 

Alicante (Alicante, Spain) for his scientific and technical assistance. 

 

REFERENCES 

 

1 H. Stringer and J. Parr, “Shrinkage temperature of eye collagen,” Nature, vol. 

204, no. 4965, p. 1307, Dec. 26, 1964. 

2  A. R. Gasset and H. E. Kaufman, “Thermokeratoplasty in the treatment of 

keratoconus,” Am. J. Ophthalmol., vol. 79, pp. 226-232, Feb 1975. 

3  A.C. Neumann, S. Fyodorov, D.R. Sanders, “Radial thermokeratoplasty for the 

correction of hyperopia,” Refrac. Corneal Surg., vol. 6, pp. 404-412, 1990. 

4  L. J. Lans, “Experimentelle untersuchugen uber enstsehung von astismatismus 

durch nicht-perforirende corneawuden,” Graefes Arch. Ophthalmol, vol. 44, pp. 

117-154, 1898. 

5  T. Seiler, M. Matallana, T. Bende, “Laser thermokeratoplasty by means of a 

pulsed Holmium:YAG Laser for the hyperopic correction,” Refrac. Corneal 

Surg., vol. 6, pp. 335-339, 1990. 

6 A. R. Rutzen, C. W. Roberts, J. Driller, D. Gomez, B. C. Lucas, F. L. Lizzi, and 

D. J. Coleman, “Production of corneal lesions using high-intensity focused 

ultrasound,” Cornea, vol. 9, no. 4, pp. 324-330, 1990. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 21

7 B. S. Trembly and R. H. Keates, “Combined microwave heating and surface 

cooling of the cornea,” IEEE Trans.  Biomed. Eng., vol. 38, no. 1, pp. 85-91, 

Jan. 1991. 

8 J. D. Doss, and J. I. Albillar, “ A technique for the selective heating of corneal 

stroma,” Contact Intraocular Lens Med, vol. 6, pp. 13-17, Jan-March 1980. 

9  A. Méndez-G, and A. Méndez-Noble, “Conductive keratoplasty of the correction 

of hyperopia” in Surgery for Hyperopia and Presbyopia. N.A. Sher (Ed.). 

Williams & Wilkins. 1997. 

10  J.J. Rowsey, “Electrosurgical keratoplasty: Update and retraction,” Invest. 

Ophthalmol. Vis. Sci., vol. 28, pp. 224, 1987. 

11 E. Mulet, E. J. Berjano, J. L. Alió, and T. Salem “Corneal thermal lesions by 

radiofrequency currents for thermokeratoplasty” Invest. Ophthalmol. Vis. Sci., 

vol. 41, p. S919, March 15, 2000. 

12  M. Watanabe, Y. Mokudai, H. Ueno, M. Ando, and A. Irimajiri, “Dielectric 

measurements on the rabbit cornea using a surface electrode,” J. Jpn. 

Ophthalmol. Soc., vol. 97, pp. 569-574, May 1993. 

13 Jürgens, J. Rosell, and P. J. Riu, “Electrical impedance tomography of the eye: 

in vitro measurements of the cornea and the lens,” Physiol. Meas., vol. 17, pp. 1-

9, 1996. 

14 C. Gabriel, R. J. Sheppard, and E. H. Grant, “Dielectric properties of ocular 

tissues at 37 ºC,” Phys. Med. Biol., vol. 28, no. 1, pp. 43-49, 1983. 

15 H. F. Bowman, E. G. Cravalho, and M. Woods, “Theory, measurement, and 

application of thermal properties of biomaterials,” Annu. Rev. Biophys. Bioeng., 

vol. 4, pp. 43-80, 1975. 

16  Poppendiek, H.F. 1964-1966. Tech. Rep. ASTIA AD 608 768; 613 560; 624 897. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 22

17 D. Panescu, J.G. Whayne, S.D. Fleischman, M. S. Mirotznik, D. K. Swanson, 

and J. G. Webster. “Three-dimensional finite element analysis of current density 

and temperature distributions during radio-frequency ablation,” IEEE Trans 

Biomed Eng. vol. 42, no. 9, pp. 879-890, Sep. 1995. 

18 H. P. Schwan, and K. R. Foster, “RF-fields interactions with biological systems: 

electrical properties and biophysical mechanism,” Proc. IEEE, vol. 68, no. 1, pp. 

104-113, Jan. 1980. 

19 M. K. Jain, and P. D. Wolf, "Temperature controlled and constant power 

radiofrequency ablation: what´s affects lesion growth?," IEEE Trans. Biomed. 

Eng., vol 46, no. 12, pp. 1405-1412, Dec. 1999. 

20 R. Plonsey, and D. B. Heppner, “Considerations of quasi-stationarity in 

electrophysiological systems,” Bull Mathematical Biophysics, vol. 29, pp. 657-

664, 1967. 

21 J. D. Doss, “Calculation of electric fields in conductive media,” Med. Phys., vol. 

9, no. 4, pp. 566-573, Jul-Aug. 1982. 

22  S. Labonté, “A Theoretical study of radio-frequency ablation of the 

myocardium,” Ph.D. dissertation, Dep. Elec. Eng, Univ. Ottawa, Canada, 1992. 

23  A. V. Sahidi, and P. Savard, “A finite element model for radiofrequency ablation 

of the myocardium,” IEEE Trans. Biomed. Eng., vol. 41, no. 10, pp. 963-968, 

Oct. 1994.  

24 R. Brickmann, N. Koop, K. Kamm, G. Geerling, J. Kampmeier, and R. 

Birngruber, “Laser termokeratoplasty: an in vitro and in vivo study by means of 

continuos wave mid-IR laser diode,” Lasermedizin, vol. 12, pp. 179-186, 1996. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 23

25 R. Brickmann, J. Kampmeier, U. Grotehusmann, A. Vogel, N. Koop, M. Asiyo-

Vogel, K. Kamm, and R. Birngruber, “Corneal collagen denaturation in 

laserthermokeratoplasty, ” SPIE Proc, vol. 2681, pp. 56-63, 1996. 

26  S. Tungjitkusolmun, E. J. Woo, H. Cao, J. Z. Tsai, V. R. Vorperian, and J. G. 

Webster, “Thermal-electrical finite element modeling for radio-frequency 

cardiac ablation: effects of changes in myocardial properties,” Med. Biol. Eng. 

Comput., vol. 38, pp. 562-568, 2000. 

27 J. J. W. Lagendijk, “A mathematical model to calculate tempeerature 

distributions in human and rabbit eyes during hyperthermic treatment,” Phys. 

Med. Biol., vol. 27, no. 11. pp. 1301-1311, 1982. 

28 F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat Transfer. New York: 

Wiley, 1991. 

29  R. P. Vito, T. J. Shin, and B. E. McCarey, “A mechanical model of the cornea: 

the effects of physiological and surgical factors on radial keratotomy surgery,” 

Refract. Corneal Surg., vol. 5, pp. 82-88, March-April 1989. 

30 D. Panescu, and J.G. Webster, “Effects of changes in electrical ans thermal 

conductivities of radiofrequency lesion dimensions,” in Proc. 19th Annu. Int. 

Conf. IEEE Eng. Med. Biol. Soc., Chicago, 1997. 

31 D. J. Curcie, and W. Craelius, “The role of thermal feedback in electrosurgical 

tissue heating,” Tech. & Health Care. vol 3, pp. 111-116, 1995. 

32 R. Shitzer, “Temperature fields and lesion size in electrosurgery and induction  

thermocoagulation” in Heat transfer in medicine and Biology. A. Shitzer and R. 

C. Eberhart (Eds.) Plenum Press. 1985. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 24

33  J. D. Wiley and J. G. Webster, “Analysis and control of the current distribution 

under circular dispersive electrodes,” IEEE Trans.  Biomed. Eng., vol. 29, no. 5, 

pp. 381-385, May. 1982. 

34 D. E. Haines, “Determinants of lesion size during radiofrequency catheter 

ablation: the role of electrode-tissue contact pressure and duration of energy 

delivery,” J. Cardiovasc. Electrophysiol., vol. 2, pp. 509-515, Dec. 1991. 

35 B. Avitall, K. Mughal, J. Hare, R. Helms, and D. Krum, “The effects of 

electrode-tissue contact on radiofrequency lesion generation,” PACE, vol. 20 

(pt.1), no. 12, pp. 2899-2910, Dec. 1997. 

36 M. K. Jain, and P. D. Wolf, "Effect of electrode contact on lesion growth during 

temperature controlled radiofrequency ablation," in Proceedings 20th Annual 

IEEE-EMBS conference, Hong Kong, Oct.29-Nov.1 1998. 

[37] S. Labonté, “Numerical model for radio-frequency ablation of the endocardium 

and its experimental validation,” IEEE Trans. Biomed. Eng., vol 41, no. 2, pp. 

108-115, Feb. 1994. 

[38] E. J. Woo, S. Tungjitkusolmun, H. Cao, J. Z. Tsai,, J. G. Webster, V. R. 

Vorperian, and J. A. Will “A new catheter design using needle electrode for 

subendocardial RF ablation of ventricular muscles: finite element analysis and in 

vitro experiments,” IEEE Trans. Biomed. Eng., vol 47, no. 1, pp. 23-31, Jan. 

2000. 

[39] S. Tungjitkusolmun, E. J. Woo , H. Cao, J. Z. Tsai,, V. R. Vorperian, and J. G. 

Webster, “Finite element analysis of uniform current density electrodes for 

radio-frequency cardiac ablation,” IEEE Trans. Biomed. Eng., vol 47, no. 1, pp. 

32-40, Jan. 2000. 



IEEE TBME MS#01041, Final manuscript. Berjano et al. 25

 

 

 

 

Figure 1.  Top: Active electrode used in this study (not to scale) and its dimensions. 

Bottom: Physical situation considered in the study of the 

thermokeratoplasty with radio-frequency currents. 
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Figure 2.  Theoretical model proposed (out of scale). Z and R: outer dimensions of 

the model; s: active electrode radius in contact zone (100 m); and L: 

length of the active electrode included in the model. Corneal thickness of 

600 m. 

 

 

Figure 3.  In vitro model used in the experiments. 
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Figure 4.  Left: Temperature profiles on the cornea symmetry axis for different 

conditions of thermal transfer in the endothelium - aqueous humor 

interface (h2). Values for h2 set to 20, 500 and 1000 W/m2 ºC. Right: 

Zoom of the endothelium and epithelium zone. Applied voltage set to 8 

V during 1 s. 
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Figure 5.  Modifications in the proposed theoretical model (out of scale) in order to 

study the effect of the realistic shape of the cornea (a), the presence of a 

tear film on the cornea surface (b), and the insertion depth of the active 

electrode in the cornea (c). 
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Figure 6.  Temperature profiles (ºC) in the cornea for different anisotropy 

conditions in the cornea thermal conductivity: (a) kx=ky (control, non-

anisotropy), (b) kx=2ky, and (c) kx=3ky. kx is the longitudinal thermal 

conductivity, and ky the transverse thermal conductivity. The 40ºC 

isothermal line is indicated in order to compare the geometry of the 

temperature profiles for each case studied. 
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Figure 7.  Temperature profiles on the cornea symmetry axis for a change of the 

electrical conductivity () of the cornea and aqueous humor (50 %) 

after 0.5 and 1 s, applied voltage set to 8 V. Two different models are 

shown: (a) linear and (b) non-linear (including a change of  with 

temperature of +2%/ºC). 
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Figure 8.  Temperature profiles in the cornea for two conditions of applied voltage 

(computer simulations based on the proposed theoretical model). Top: 16 

V after 1 s. Bottom: 21 V after 1 s. The assessment of the lesion 

dimensions (central depth and surface width) are stated as % of corneal 

thickness using the 100ºC isothermal line. Temperature scale is in ºC. 
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Figure 9.  Cross-section of corneas heated with an electrode of 200 m diameter 

(hematoxylin and eosin, X 40). Top: 16 V after 1 s. Bottom: 21 V after 1 

s. The lesion dimensions (central depth and surface width) are given as % 

of cornea thickness.  
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TABLE I 

CHARACTERISTICS OF THE MATERIALS. IN BOLD TYPE THE DATA USED IN OUR 

THEORETICAL MODEL. : ELECTRICAL CONDUCTIVITY; : MAS DENSITY; c: SPECIFIC 

HEAT CAPACITY; AND k: THERMAL CONDUCTIVITY. 

 
MATERIAL  

(S/m) 
 

(Kg/m3)
c 

(J/KgK)
k 

(W/mK)
 

Reference 
CORNEA 

* Steer 
* Rabbit 
* Pig 
* Rabbit 

 
 

0.54 1 
2.08-2.56 2 

1.2 3 

 
1000  

 
 
 

 
3830 

 
 
 

 
0.556 

 
Trembly, 1991 [7] 
Watanabe, 1993 [12] 
Jürgens, 1996 [13] 
Gabriel, 1983 [14] 

AQUEOUS HUMOR 
    * Sheep 
    * Sheep 
    * Pig 

 
 
 

1.6 2 

 
1000 

 

 
4180 

 
0.578 
0.578 

 
Bowman, 1975 [15] 
Poppendiek, 1966[16]
Jürgens, 1996 [13] 

ELECTRODE  
    *Stainless steel 

 
7.4E+6 

 
8E+3 

 
480 

 
15 

 
Panescu, 1995 [17] 

Frequencies of measurement: 

(1) 10 kHz-100 MHz; (2) 10 kHz -10 MHz; and (3) 500 kHz (extrapolated) 
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TABLE II 

EFFECT OF THE ANISOTROPY IN CORNEAL THERMAL CONDUCTIVITY ON MAXIMUM 

TEMPERATURE REACHED IN THE TISSUE (Tmax) AND ON THE DEPTH AND 1/2 WIDTH OF 

THE 40 ºC ISOTHERMAL LINE. SIMULATIONS UNDER STANDARD CONDITIONS (8 V, 1 s). 

KX IS THE LONGITUDINAL THERMAL CONDUCTIVITY, AND KY THE TRANSVERSE 

THERMAL CONDUCTIVITY. 

 

Thermal anisotropy Tmax (ºC) ½ Width (m) Depth (m) Width/depth 

Non-anisotropy, kx=ky 85.65 375 350 1.07 

kx=2ky 68.53 360 275 1.31 

kx=3ky 61.61 320 200 1.6 
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TABLE III 

EFFECT OF THE TEAR FILM CHARACTERISTICS ON MAXIMUM TEMPERATURE REACHED 

IN THE TISSUE (Tmax) AND ON THE DEPTH AND 1/2 WIDTH OF THE 40 ºC ISOTHERMAL LINE. 

SIMULATIONS UNDER STANDARD CONDITIONS (8 V, 1 s). 

 

Tear characteristics  

Tmax 

(ºC) 

 

½ Width 

(m) 

 

Depth 

(m) 
THICKNESS THERMAL TRANSFER 

COEFFICIENT  (hTEAR) 

 

No tear (control case) 85.6 375 350 

 

100 m  500 W/m2ºC  67.2 307 307 

1000 W/m2ºC 63.2 253 273 

 

50 m 500 W/m2ºC 70.9 323 323 

1000 W/m2ºC 66.7 266 316 
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TABLE IV 

EFFECT OF THE INSERTION DEPTH (ID) OF THE ACTIVE ELECTRODE IN THE CORNEA ON 

MAXIMUM TEMPERATURE REACHED IN THE TISSUE (Tmax) AND ON THE DEPTH AND 1/2 

WIDTH OF THE 40 ºC ISOTHERMAL LINE. 

SIMULATIONS UNDER STANDARD CONDITIONS (8 V, 1 s). 

 

ID (m) Tmax (ºC) ½ Width (m) Depth (m) 

0 (Control) 85.6 375 350 

25 m 80.0 425 400 

50 m 76.9 430 430 

75 m 74.5 450 440 

100 m 72.4 460 460 
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TABLE V 

COMPARISON BETWEEN COMPUTER SIMULATIONS AND IN VITRO EXPERIMENTS FOR 

DIFFERENT CONDITIONS OF APPLIED VOLTAGE AND THERMAL TRANSFER COEFFICIENT  

OF THE TEAR FILM (hTEAR). LESION WIDTH AND DEPTH ASSESSED USING THE 

COAGULATION CONTOURS IN THE CORNEA CROSS-SECTION FOR THE EXPERIMENTAL 

MODEL, AND THE 100 ºC ISOTHERMAL LINE IN THE COMPUTER SIMULATIONS. ALL THE 

DIMENSIONS STATED AS % OF CORNEAL THICKNESS 

 
 EXPERIMENTAL RESULTS 

Mean (Standard deviation). n=3 

Computer simulations 

 Depth (%) Width (%) Depth (%) Width (%) 
hTEAR (W/m2 ºC) - - 20 100 500 20 100 500

 

16 V, 1s 21 (1) 106 (6.5) 40 39 32 106 95 50 
21 V, 1s 30 (3.6) 108.3 (8.9) 74 70 68 194 190 149

 
 

 

 


