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ABSTRACT: Electrochemical impedance spectroscopy (EIS) technique has been applied to 

determine the ethanol concentration in pineapple waste samples. To do this, six different 

concentrations of ethanol were added to the pineapple samples and were analyzed using the 

system designed by our research group and consisting of the called Advanced Voltammetry, 

Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) device associated to a 

stainless steel double needle electrode. Results indicated that phase data in frequencies 

between 6.0 × 105 Hz and 8.0 × 105 Hz showed the highest sensitivity to ethanol 

concentrations. A principal component analysis (PCA) confirmed the potential 

discrimination and partial least squares (PLS) regression showed mathematical models able 

to quantify ethanol in samples accurately. In order to implement flexible and precise models 

in programmable equipment, different types of artificial neural networks (ANNs) have been 

studied: Fuzzy ARTMAP and multi-layer feed-forward (MLFF) algorithms. As a result, a 

coefficient of determination (R2) = 0.996 and a root mean square error of prediction (RMSEP) 

= 0.408 have been obtained. Therefore, it allows us to introduce this technique as an 
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alternative method for ethanol quantification along the fermentation of pineapple waste in an 

easy, low-cost, rapid and portable way. 

Keywords: Electrochemical impedance spectroscopy; ethanol; pineapple waste; artificial 

neural networks. 

1. Introduction 

Global energy demand is significantly increasing due to global population growth and 

the industrialization of the emerging countries [1]. The depletion of fossil energy resources 

and the emission of pollutants into the atmosphere [2] have led to the rise of new energy 

policies promoting renewable energies, such as bioethanol [3]. 

In this scenario, second-generation bioethanol, which is produced from the fermentation 

of lignocellulosic biomass such as agricultural, forestry or industrial wastes, deserves special 

attention. Unlike first generation bioethanol (obtained from sugar or starch-rich crops) 

second-generation of this biofuel helps to diversify energy supplies without competing in the 

global food market [4, 5]. Furthermore, the use of waste as a source for bioethanol production 

would also add up value to the whole manufacturing process. This biofuel can be used singly, 

as an additive replacing methyl tert-butyl ether (MTBE), or can be used in mixtures with 

conventional gasoline in a variable percentage from 10% to 85% [6, 7, 8]. As a result, 

bioethanol is the most widely used biofuel in the transport sector [9]. Nowadays, pineapple 

industrial waste is considered as a potential bioethanol source because of its high content of 

fermentable sugars and highly hydrolysable cellulose and hemicellulose [10, 11, 12]. This 

waste represents up to 50% (w/w) of the total processed fruit whose world production has 

reached 24 millions of tons in 2014 [13]. 

Hydrolysis, fermentation, distillation and dehydration are the necessary steps for 

bioethanol production from lignocellulosic biomass [14]. In the specific case of the 

fermentation step, performance depends on the operating conditions (pH, oxygen content and 

temperature), the raw material properties (initial fermentable sugars content) and the used 

microorganisms (yeast strain and the viability of cell populations) [15]. Therefore, a proper 

monitoring of the process is of capital importance. To date, chromatographic and enzymatic 

methods are highlighted among the current techniques to determine ethanol content. 
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Chromatographic methods such as gas-chromatography (G-C) and high-performance liquid 

chromatography (HPLC) are accurate and considered as a reference but they are time-

consuming and complex pretreatments are needed (distillation, pervaporation) [16]. On the 

other hand, enzymatic methods are easier although spectrophotometric techniques are 

generally required to follow the enzyme-catalyzed reactions. As a consequence, they are 

undesirable for complex media due to the presence of interfering substances [17]. In contrast, 

electrochemical methodologies are emerging as an alternative to the traditional ones in order 

to identify chemical compounds in an easy, fast, non-destructive and on-line way. 

Specifically, electrochemical impedance spectroscopy (EIS) is one of the most remarkable 

ones. It consists in analyzing properties of the samples by means of electric alternating signals 

(current or voltage) at different frequencies and measuring the corresponding electric 

response (voltage or current) within an electrochemical cell [18, 19].  

In previous studies, identifying and quantifying fermentable sugars in pineapple waste as 

well as monitoring its enzymatic saccharification has been possible by using a device called 

Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) that 

combines EIS with a double needle stainless steel sensor [20, 21]. Furthermore, it has been 

necessary to use artificial neural networks (ANNs) for a proper statistical treatment of the 

EIS data. ANNs are mapping structures simulating the neural system of the human brain. 

These structures are able to solve problems involving complex and non-linear data even in 

case of imprecise and noisy data sets. Among the different ANNs, Fuzzy ARTMAP and 

multi-layer feed-forward (MLFF) algorithms are able to be implemented in portable 

equipment [22]. These algorithms are characterized by a high accuracy, fast calculation, ease 

to use and low memory requirements that facilitate their application in programmable 

components such as microcontrollers, Digital Signal Processors (DSP) or Field 

Programmable Gate Arrays (FPGA).  

Consequently, the aim of the present study was to validate the designed EIS-based system 

to quantify added ethanol in real pineapple waste samples and create reliable ANNs-based 

models able to be implemented into programmable devices.  

2. Material and methods 

2.1.Electrochemical impedance spectroscopy equipment 
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The EIS measuring system has been designed by the Group of Electronic Development 

and Printed Sensors (GED+PS) belonging to the Instituto Interuniversitario de Investigación 

de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) at the Universitat Politècnica 

de València (UPV). It consists of three parts: the AVISPA device, the sensor and the specific 

software. The AVISPA device is able to run tests for potentiometry, pulse and cyclic 

voltammetry and impedance spectroscopy. It includes a Field Programmable Gate Array 

(FPGA), a 12-bit Digital-to-Analog Converter (DAC), two 12-bit Analog-to-Digital 

Converters (ADC) and different analog blocks [20]. The software application was developed 

using Visual Basic® 6.0 (Microsoft, Redmond, WA, USA) to be run in a PC. It includes a 

section for EIS that allows the selection of the frequency sweep (from 0.01 Hz to 10 MHz), 

the current scale (up to 32 current scales) and the amplitude of the variable sinusoidal voltage 

signals (amplitude up to 1 Vpp). Finally, a double needle electrode (working and counter 

electrodes) made of stainless steel was designed. The needles dimensions were 1.5 cm long 

and 1 mm in diameter and they were separated by 1 cm in order to create a stable electric 

field. 

2.2.Laboratory analyses 

Pineapple fruits (Ananas comosus L. cv. “MD-2”) were selected avoiding external 

defects. Once the fruits were washed in a NaClO (0.1%) solution and the pulp and the crown 

were removed, peel and core (waste) were mashed in a blender (Avance Collection Blender 

HR2097/00 800W, Philips, Amsterdam, The Netherlands). Finally, the pH was adjusted to 5 

by adding NaOH 1N (Panreac Química, S.L.U., Barcelona, Spain). The use of the same raw 

material along the laboratory analyses prevented any effect of potential interfering 

compounds in the laboratory analyses. 

Preliminary assays in this research line established the expected ethanol concentrations 

after alcoholic fermentation of pineapple waste [23]. Attending to these results, EIS measures 

were conducted to ethanol (purity = 96%, Panreac-Química, S.L.U.) dissolved in pineapple 

waste at six different concentrations: 0% v/v (0 g/l), 2.5% v/v (19.725 g/l), 5% v/v (39.45 

g/l), 7.5% v/v (59.175 g/l), 10% v/v (78.9 g/l) and 20% v/v (157.8 g/l). Analyses were 

conducted in triplicate at 25 ºC in a thermostatic bath (PolyScience®, Niles, IL, USA). 

Consequently, a total of 54 EIS measurements (6 x 3 x 3) were performed. 
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Once the sensor was completely introduced into each sample, the AVISPA device applied 

sinusoidal signals at 100 different frequencies (between 1 and 106 Hz). Then, the electronic 

device sent the data to the PC and the software program calculated the modulus and phase 

values for each frequency. Finally, the corresponding plots were generated. 

2.3.Multivariate analyses of data 

Specific multivariate analyses, such as principal component analysis (PCA) and partial 

least squares analysis (PLS), have been successfully applied to process complex data sets 

obtained using EIS techniques [24]. The SOLO© software program (Eigenvector Research, 

Inc., Manson, WA. USA) was used for these analyses. Specifically, PCA was conducted to 

reduce dimensionality of data variables and to detect structures in the relationships between 

variables [25]and PLS analysis was performed in order to find a robust linear relationship 

between two matrices, X (the obtained EIS measurements) and Y (the added ethanol 

concentrations) and check its statistical validity [26, 27]. Finally, the coefficient of 

determination (R2) and the root mean square error of prediction (RMSEP) are used to test the 

predictive significance of the obtained PLS-models as they are reference parameters for this 

purpose [26]. 

2.4.Training the Fuzzy ARTMAP neural network 

Fuzzy ARTMAP networks use the so-called adaptive resonance theory (ART) and it is 

based on the use of prior actions to predict subsequent steps [28, 29]. The method of operation 

is based on finding similarity between the input data and those previously classified. If 

similarity is found, the network associates the input data to the corresponding previously 

established category and if not, a new output category is created for this data. The element 

determining similarity between input data and those previously existing is a vigilance 

parameter called ρ. On the other hand, another parameter called learning parameter (β) 

determines the learning rate of the network when new data are introduced as well as the 

robustness of the model. Fuzzy ARTMAP can be used to create supervised classification 

systems by using 66% of the data for the training phase and the remaining 33% of the data 

for the test phase. A diferencia de la red MLFF, en este tipo de red no se utiliza la fase 

verificación, con la fase de entrenamiento la red queda plenamente configurada y, 
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posteriormente, se realiza el test de la red neuronal utilizando datos que no han participado 

en la fase previa de entrenamiento. The relationship between output nodes from both 

networks is performed by a specific module called mapfield connection. The module is a 

memory register whose data vary and increase as new data are incorporated. 

Fuzzy ARTMAP networks have been used in many applications such as electronic nose 

systems [30, 31] and electronic tongues [32, 33], showing good and reliable results even with 

a limited number of samples [34]. Despite their wide range of successful uses, algorithms 

can be complex and may present difficulties on computer applications particularly if there is 

a memory restriction. In most cases, the algorithm is implemented on a PC and the memory 

is usually large enough for the algorithm to work properly. The problem may arise when the 

Fuzzy ARTMAP is implemented on portable devices using low-cost microcontrollers with a 

limited memory. In these cases, low memory demand algorithms are needed. 

In order to satisfy this requirement, Simplified Fuzzy ARTMAP (SFAM) was 

developed achieving lower computational requirements and easier network architectures 

[35]. This simplified network was used by Garrett [36] to develop a MATLAB (MathWorks, 

Natick, MA, USA) toolbox. Using this toolbox functions, our research group has developed 

a specific MATLAB® graphical user interface. This application is focused on optimizing the 

algorithm by both getting the best classification rate and the minimum mapfield size [37]. 

Thus, we can achieve an accurate classification with low memory requirements. The 

designed application scans  and β parameters in a value range and steps that can be set by 

the user. For each combination of  and β, the application determines the mapfield size and 

the classification rate so that the optimal values for  and β can be selected. In this way, the 

memory requirements can be controlled as they are directly related to the amount of data for 

the training phase. This application has been successfully used in several food classifications 

[38]. 

2.5.Training the MLFF neural network 

MLFF algorithm is one of the most popular ANN and it has been applied to a wide range 

of chemistry-related problems [39]. MLFF consists of neurons that are arranged into layers. 

The first one is called the input layer, the last one is called output layer, and those between 
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them are the hidden layers. Moreover, each neuron in a particular layer is connected with all 

neurons in the next one. MLFF algorithms always require a training stage, where the weights 

of each neuron are set and reflect the degree of importance of the given connection, followed 

by a validation step [40].  

In the present work, the commercial ANN software program Alyuda Neurointelligence 

2.2© (Alyuda Research Inc., Los Altos, CA, USA) was used to design the MLFF. First, the 

experimental data was randomly divided into three sets: training (70%), that build model 

weights and bias of the neurons; validation (15%), used for tuning the parameters of the 

model; and test (15%) for check the network with new data that have not participated in the 

training and validation tasks. This random division of data is done by the software program 

itself [41, 22]. Cross validation, early stopping in the training phase and a proportional 

number of nodes in the architecture of the network were used to avoid overfitting [42]. 

On the one hand, on-line back propagation training algorithms, hyperbolic tangent-type 

function for the hidden nodes and logistic-type transfer functions for the output layer neurons 

were chosen to fit the network for ethanol classification. The optimal network topologies 

(architecture and number of neurons in the hidden layer) were selected by testing several 

MLFF network structures and functions. Finally, the accuracy of the model was given by the 

correct classification rate (CCR%) and the confusion matrix.  

On the other hand, a single hidden layer and quick propagation training algorithms (a 

modified version of the back propagation algorithms) showed the best results to predict 

ethanol concentrations in pineapple waste [43]. Logistic-type transfer functions for both 

output layer neurons and hidden nodes were selected by testing several artificial neural 

network structures and functions. Finally, the accuracy of the obtained model was also given 

by the RMSEP and R2. 

 

3. Results and discussion 

3.1.Multivariate analysis of the obtained EIS response 
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For each analyzed sample, the AVISPA device generated 200 data corresponding to the 

modulus and phase of the 100 applied frequencies (between 1 and 106 Hz, in linear steps of 

approximately 10100 Hz). The modulus graph did not reveal important information whereas 

the representation of the average phase values demonstrated that frequencies between 6.0 × 

105 Hz and 8.0 × 105 Hz (21 frequency data) showed the highest sensitivity to ethanol 

concentration (Figure 1). In fact, the phase of EIS in pineapple waste samples for this 

frequency range decreased as the added ethanol concentration increased. This decrease is 

observed in all the selected frequencies. Therefore, we obtain parallel plots, with a clear 

separation among them except for those corresponding to concentrations 2.5% and 5% 

(nearly overlapped). As a consequence, phase values between 6.0 × 105 Hz and 8.0 × 105 Hz 

were selected for further data treatment. 

 

[Please, insert Figure 1] 

 

PCA analysis was conducted in order to check the ability of EIS-based technique to 

quantify the amount of added ethanol in pineapple waste. As shown in the biplot (Figure 2), 

a clear discrimination of all the samples according to their corresponding ethanol 

concentration is obtained and they are allocated in ascending order from right to left in the 

graph. It is also noteworthy that the 99.65% of the total variability can be explained with only 

two principal components. The first principal component (PC1) and the second principal 

component (PC2) explained 99.14% and 0.51% of the total variability, respectively. 

Consequently, ethanol content can be discriminated with only one principal component in 

the analyzed frequency range. 

 

[Please, insert Figure 2] 
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Subsequently, PLS analysis was conducted in order to create predictive models to quantify 

ethanol concentrations from the selected values of phase from EIS analysis in an easy and 

reliable way. Thus, Figure 3 shows the correlation between experimental values and those 

obtained by the PLS prediction model using only one latent variable. In this specific case, 

the model is created by just one latent variable with R2 = 0.974 and RMSEP = 1.0588. 

Therefore, the designed model is considered statistically valid to predict ethanol content in 

pineapple waste from electrochemical signals. 

 

 

[Please, insert Figure 3] 

 

3.2.Modeling by Fuzzy ARTMAP neural networks 

ANNs usually outperform multivariate methods in electrochemical applications [44] such 

as for fermentable sugar identification and quantification [20] and saccharification 

monitoring [21]. Moreover, ANNs can be implemented in programmable components to 

build portable devices as stated before. Therefore, data classification was performed by using 

Fuzzy ARTMAP neural networks. In order to reach a compromise between a high rate and a 

minimum mapfield, the ρ and β values have been changed in the range of [0.1-1.0]. For each 

combination, the mapfield size and the recognition rate were calculated (Tables 1 and 2, 

respectively). Therefore, a small sized mapfield has been obtained with ρ values in the range 

of [0.1-0.6] and β = 0.8 with a maximum recognition rate of 94.4%, getting a mapfield of 10.  

 

Table 1. Mapfield for EIS phase data from 6.0 × 105 Hz to 8.0 × 105 Hz. 

 Mapfield 

β 

ρ 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 17 13 100 12 10 11 10 

0.2 17 13 100 12 10 11 10 
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0.3 17 13 100 12 10 11 10 

0.4 17 13 100 12 10 11 10 

0.5 17 13 100 12 10 11 10 

0.6 17 13 100 12 10 11 10 

0.7 17 13 100 12 11 11 10 

0.8 18 14 100 13 11 11 12 

0.9 100 16 100 100 17 17 16 

 

 

 

Table 2. Recognition rates for EIS phase data from 6.0 × 105 Hz to 8.0 × 105 Hz. 

 Recognition rate 

β 

ρ 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.2 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.3 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.4 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.5 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.6 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.7 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.8 83.33 77.77 88.88 88.88 94.44 88.88 88.88 

0.9 72.22 61.11 72.22 77.77 77.77 77.77 72.22 

 

As a result, β = 0.8 and ρ = 0.6 values were chosen and the obtained confusion matrix is 

shown in Table 3. The diagonal cells (in green) indicate the number of residue positions that 

were correctly classified for each of the 6 ethanol concentrations. The off-diagonal cells (in 

orange) represent the number of residue positions that were misclassified. The grey cells 

show the total percentage of correctly predicted residues (top number in green color) and the 

total percentage of incorrectly predicted residues (bottom number in red color). As seen in 

Table 3, the designed Fuzzy ARTMAP neural network successfully matched 17 (94.4%) in 

18 test measurements and failed in only one of them (5.6%). The prediction failure 

corresponds to a 2-type measurement (ethanol concentration of 2.5%) that has been classified 
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as a 3-type (ethanol concentration of 5%). These results are consistent with those obtained in 

the PCA analysis (Figure 2), where samples with 2.5% and 5% of ethanol content were 

clearly and only separated according to PC2 parameter. Finally, it is important to note that 

PC1 explained 99.14% of the total variability whereas PC2, 0.51%. 

 

 

Table 3. Confusion matrix obtained with the Fuzzy Artmap ANN for EIS phase data from 

6.0 × 105 Hz to 8.0 × 105 Hz. Target Class: 1: (0% v/v), 2: (2.5% v/v), 3: (5% v/v), 4: (7.5% 

v/v), 5: (10% v/v), 6: (20% v/v) 

 
 Target Class  

 
 1 2 3 4 5 6  

O
u

tp
u

t 
C

la
ss

 

1 
3 

16.7% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

100% 

0.0% 

2 
0 

0.0% 

2 

11.1% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

100% 

0.0% 

3 
0 

0.0% 

1 

5.6% 

3 

16.7% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

75.0% 

25.0% 

4 
0 

0.0% 

0 

0.0% 

0 

0.0% 

3 

16.7% 

0 

0.0% 

0 

0.0% 

100% 

0.0% 

5 
0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

3 

16.7% 

0 

0.0% 

100% 

0.0% 

6 
0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

3 

16.7% 

100% 

0.0% 

 
 

100% 

0.0% 

66.7% 

33.3% 

100% 

0.0% 

100% 

0.0% 

100% 

0.0% 

100% 

0.0% 

94.4% 

5.6% 

 

 

3.3.Modeling by MLFF neural networks 

Different MLFF network architectures were tested in order to determine the number of 

neurons in the hidden-layer and optimize the fitting between the ethanol content and the EIS 

data set. As a consequence, a 21-6-6 architecture was designed that means 21 input nodes 
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(corresponding to the 21 analyzed frequencies) connected to a 6-node hidden layer and a final 

6-output layer (representing the 6 different concentrations of ethanol in to which the data has 

to be classified). The confusion matrices generated by the MLFF model for the corresponding 

training, validation and test phases are shown in Table 4. In the confusion matrices, diagonal 

cells (in green) show the number of data that were correctly classified for each ethanol 

concentration. The off-diagonal cells (in orange) indicate the number of data that were 

misclassified. Therefore, these results demonstrate that the designed MLFF is an accurate 

and reliable model for determining ethanol concentrations depending on EIS measurements 

(CCR% = 96.15%). Similarly, errors in the range of 2.5% and 5% were observed with that 

method as a consequence of the overlapped data set for the above mentioned concentrations. 

 

Table 4. Confusion matrices for the added ethanol concentrations (%) for EIS phase data 

from 6.0 × 105 Hz to 8.0 × 105 Hz (CCR%: correct classification rate). 

 Mean CCR% = 96.15% 

 Training Validation Test Overall 

Target 

(%) 

Output 

(%) 

0 2.5 5 7.5 10 20 0 2.5 5 7.5 10 20 0 2.5 5 7.5 10 20 0 2.5 5 7.5 10 20 

0 7      1      1      9      

2.5  6      0 1     1 1     7 2    

5   7      1      1      9    

7.5    6      2      0      8   

10     6      2      1      9  

20       5      1      2      8 

 

Finally, a 21-10-1 architecture was designed to quantify ethanol in pineapple waste 

samples that means 21 input nodes connected to a 10-node hidden layer and a final output 

layer. The obtained statistics for the corresponding training, validation and test phase and the 
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scatter plot showing the correlation between predicted and added ethanol concentrations are 

shown in table 5 and figure 4 respectively. Consequently, accurate and reliable ANN-based 

models were designed to quantify ethanol in pineapple waste. Particularly, the best fit was 

obtained by MLFF as it can be seen by comparing R2 and RMSEP parameters for both PLS 

and ANN models.  

 

Table 5. Artificial neural network (ANN) results for the studied ethanol concentrations for 

EIS phase data from 6.0 × 105 Hz to 8.0 × 105 Hz (R2: coefficient of determination; RMSE: 

Root Mean Square Error). 

 R2 RMSEP 

Training 0.996 0.399 

Validation 0.997 0.308 

Test 0.996 0.408 

 

 

[Please, insert Figure 4] 

 

 

4. Conclusions 

The use of the AVISPA device associated to a stainless steel double needle electrode has 

allowed the application of a specific EIS frequency sweep [0.01 Hz - 10 MHz] for ethanol 

quantification in real pineapple waste samples. The tests performed with this technique and 

PCA analyses have shown that is possible to discriminate different concentrations of ethanol 

using the phase data in frequencies from 6.0 × 105 Hz to 8.0 × 105 Hz. Further PLS analyses 

have accurately correlated EIS data to ethanol concentrations in the samples (R2=0.974 and 

RMSEP = 1.0588). Therefore, it is shown that ethanol concentration in pineapple waste 

samples can be quantified by EIS. 

Moreover, different ANNs (Fuzzy ARTMAP and MLFF) have been studied in order to 

generate mathematical models able to be implemented into programmable systems. Results 
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show that the appropriate combination of EIS assays and ANN (MLFF) analyses of the data 

is able to quantify ethanol content in pineapple waste samples in an accurate and reliable way 

(R2 = 0.996 and RMSEP = 0.408). 

Finally, the obtained results are very promissory in the field of monitoring bioethanol 

production from lignocellulosic wastes due to a twofold reason: a) the obtained results allow 

us to suggest the implementation of ANN-based mathematical models on portable, easy and 

low cost EIS-based measurement systems to quantify ethanol production along the 

fermentation processes and b) this technique can be successfully applied not just in 

monitoring the pineapple waste fermentation process but in managing bioethanol production 

from many other similar lignocellulosic wastes. 
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