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1. Introduction

Mycotoxins are metabolites produced by fungi species that are
capable of causing disease and death in both humans and ani-

mals. They appear when food and feedstuff are stored or pro-
cessed under environmental conditions that are favorable for

fungi proliferation. The most common mycotoxins are ochra-
toxins, aflatoxins, fumonisins, trichothecenes, and zearalenone

(Scheme 1).[1] Of these examples, ochratoxin A (OTA), produced

by the Aspergillus and Penicillium strains, has been labeled as a
carcinogen and nephrotoxic agent and is the most predomi-
nant contaminant in a wide variety of food commodities, such
as cereals,[2, 3] beverages, and dried fruits.[4] The European Com-

mission’s Scientific Committee on Food has established the
maximum permitted content of OTA as 5 mg kg@1 for raw
cereal grains, 3 mg kg@1 for all cereal-derived products, and

10 mg kg@1 for soluble coffee.[5] A number of different tech-
niques have been developed in recent years for the detection

of OTA, most of which are based on gas chromatography/mass
spectrometry (GC/MS)[6] and liquid chromatography (HPLC).[7, 8]

However, although these methods can correctly determine the

presence of OTA, they require expensive equipment and com-
plicated operator training.[9–11] In this scenario, the design of

simple, yet selective and sensitive, probes for the detection of
this carcinogenic agent is a field of interest.

From another point of view, nanomaterials for sensing appli-
cations have played a great role in recent years due to their ca-

Aptamers have been used as recognition elements for several
molecules due to their great affinity and selectivity. Additional-

ly, mesoporous nanomaterials have demonstrated great poten-
tial in sensing applications. Based on these concepts, we
report herein the use of two aptamer-capped mesoporous
silica materials for the selective detection of ochratoxin A
(OTA). A specific aptamer for OTA was used to block the pores

of rhodamine B-loaded mesoporous silica nanoparticles. Two
solids were prepared in which the aptamer capped the porous

scaffolds by using a covalent or electrostatic approach. Where-
as the prepared materials remained capped in water, dye deliv-
ery was selectively observed in the presence of OTA. The pro-

tocol showed excellent analytical performance in terms of sen-
sitivity (limit of detection: 0.5–0.05 nm), reproducibility, and se-

lectivity. Moreover, the aptasensors were tested for OTA detec-
tion in commercial foodstuff matrices, which demonstrated

their potential applicability in real samples.

Scheme 1. Chemical structures of the most common micotoxins: a) ochra-
toxin A, b) aflatoxin B1, c) fumonisin B.
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pacity to provide rapid, simple, and sensitive responses to
target analytes.[12–15] Moreover, of the nanomaterials used in

sensing protocols, mesoporous silica nanoparticles (MSNs)
have been widely employed due to some of their remarkable

properties, such as large load capacity and the possibility to
modify their surface easily with several groups due to the pres-

ence of silanol groups (SiOH), which have excellent reactivi-
ty.[16–24] Moreover, MSNs can be functionalized with different
(bio)molecules that can act as “molecular gates” to obtain

hybrid gated organic–inorganic capped supports for the
design of systems able to release an entrapped payload upon
the application of specific stimuli.[25] These gated supports
have been widely used in the design of drug delivery carriers

and to a lesser extent in sensing protocols.[26–30]

Additionally, the development of sensing materials by using

aptamers as potential systems able to detect trace amounts of

target substances has also attracted the attention of the re-
search community.[31–36] Aptamers are stable DNA sequences

with high affinity and selectivity for target biomolecules, small
neutral molecules, or ions, and their use in the design of sever-

al sensors and probes has resulted in the development of
highly sensitive systems for different analytes.[37–40] Recently,

some aptasensors to detect OTA have been described.[41] How-

ever, to the best of our knowledge, the use of aptamer-based
gated materials with MSNs for the fluorogenic detection of

OTA has not yet been reported.
Based on these ideas, we report herein the development of

two new gated materials based on MSNs loaded with a fluoro-
phore (rhodamine B) and capped with an aptamer that is se-

lective for OTA. It was also our aim to study different modes in

which the aptamer can be used as a cap and its effect on the
performance of the aptasensors. The materials were fully char-

acterized and used for the selective and sensitive detection of
OTA in spiked wheat samples.

2. Results and Discussion

2.1. Preparation and Characterization of the Sensing
Support

For the preparation of the sensing materials, two different ap-

proaches have been followed that involved two different
methods to cap the pores with the OTA aptamer (Scheme 2).
In both cases, MSNs of approximately 100 nm were selected as

inorganic scaffolds and the pores were loaded with a fluoro-
phore (rhodamine B).

In the first approach (referred to hereafter as the covalent
approach; Scheme 2A), the external surface of the MSNs was
functionalized with (3-isocyanatopropyl)triethoxysilane to give
solid S1. In a subsequent step, a short DNA sequence, func-
tionalized with an aminohexyl moiety at the 5’-end position

(i.e. NH2-(CH2)6-5’-AAA AAA CCC CCC-3’, O1) was covalently at-
tached to S1 through the formation of urea bonds to obtain

solid S2. Then, a single-stranded oligonucleotide (i.e. 5’-TTT
TGG GGG GGC ATC TGA TCG GGT GTG GGT GGC GTA AAG

GGG GGG GTT TT-3’, O2), which contains the specific sequence
of the OTA aptamer, was hybridized to the attached O1 to

obtain capped solid S3. In the second approach (referred to

hereafter as the electrostatic approach; Scheme 2B), MSNs
were functionalized with (3-aminopropyl)triethoxysilane to
give solid S4. Aminopropyl moieties are partially charged at a
neutral pH and are known to display electrostatic interactions

with negatively charged aptamers. Based on this, addition of
O2 to suspensions of solid S4 gave gated probe S5.

MSNs S1, S2, S3, S4, and S5 were characterized by using
standard techniques, such as powder X-ray diffraction (PXRD),
transmission electron microscopy (TEM), N2 adsorption–desorp-

tion isotherms, thermogravimetric analysis (TGA), dynamic light
scattering (DLS), and Fourier transform infrared spectroscopy

(FTIR).
The PXRD pattern of the as-synthesized MSNs (Figure 1,

curve a) showed four low-angle reflections typical of a hexago-

nal array, indexed as (100), (110), (200), and (210) Bragg peaks.
A significant displacement in the (100) peak in the PXRD pat-

tern of the calcined MSNs was evident in Figure 1, curve b, and
is related to a cell contraction (5 a) due to the condensation of

silanol groups during calcination. Figure 1, curves c–g, corre-
spond to the XRD patterns of S1, S2, S3, S4, and S5. A de-

Scheme 2. Performance of gated materials A) S3 capped with an aptamer in
covalent approach and B) S5 capped with an aptamer in electrostatic ap-
proach. Delivery of dye (rhodamine B) entrapped in S3 and S5 is selectively
accomplished in the presence of OTA.
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crease in intensity of the (100) peak and a broadening of the

(110) and (200) reflections was observed and are related to a
loss of contrast due to filling the solid with the dye and cap-

ping the pores. Moreover, the presence of a mesoporous struc-
ture in calcined MSNs and final functionalized solids was con-

firmed by TEM analysis, in which the typical channels of a mes-
oporous silica matrix were clearly visualized (Figure 1h and i).

In addition, mesoporosity was analyzed by N2 adsorption–

desorption isotherms. For the starting calcined MSNs, a Bruna-
uer–Emmett–Teller (BET) specific surface area of 908.6 m2 g@1

was obtained, whereas a decrease in the specific surface was
observed for S1 and S4 and BET values of 112.7 and

414.7 m2 g@1 were found respectively (see Figure S1 and
Table S1 in the Supporting Information). This is in agreement
with the presence of the rhodamine B dye inside the pores

and the surface functionalization. Moreover, the content of 3-
isocyanatopropyl and 3-aminopropyl moieties, rhodamine B,
O1 and O2 in the different prepared solids was calculated
from thermogravimetric data (Table 1). By taking into account

that the typical external surface of MSNs is 70 m2 g@1, an esti-
mated capping density of 0.0029 mmolO2 m@2 and

0.0014 mmolO2 m@2 was calculated for solids S3 and S5, respec-
tively. The size of the nanoparticles was determined by using

DLS studies. Diameters of 152, 162, 194, 379, 164, and 190 nm
were found for starting calcined MSNs S1, S2, S3, S4 and S5,
respectively (see Figure S2 and Table S2 in the Supporting In-
formation). Moreover, the presence of DNA in the prepared
nanoparticles was confirmed by using FTIR spectroscopy (see
Figure S3 and Table S3).

2.2. Release Experiments

Figure 2A shows the delivery kinetics profile of the dye from

solid S3 (covalent approach). In the absence of OTA (curve a), a
poor rhodamine B release was observed, which indicated tight

pore closure. However, payload delivery was clearly found
when OTA was added to the solution (curve b).

Dye delivery was attributed to the displacement of aptamer

O2 induced when OTA was present in the solution due to
aptamer–OTA binding (Scheme 2). A similar selective delivery

in the presence of OTA was observed for solid S5 (electrostatic
approach). As depicted in Figure 2, dye delivery from solid S3
reached 80 % of the total amount of dye delivered after 10 min
(Figure 2A), whereas a payload delivery of approximately 60 %

was observed from solid S5 after the same time (Figure 2B).

Figure 1. Powder X-ray diffraction patterns of a) as-formed MSNs, b) calcined
MSNs, c) solid S1, d) solid S2, e) solid S3, f) solid S4, and g) solid S5. TEM
images of h) calcined MSNs and i) S3.

Table 1. Contents of 3-isocyanatopropyl, 3-aminopropyl, rhodamine B, O1
and O2 in the different prepared solids.

Rhodamine B
[mmol mg@1]

3-Isocyanato-
propyl
[mmol mg@1]

3-Amino-
propyl
[mmol mg@1]

O1
[mmol mg@1]

O2
[mmol mg@1]

S1 0.024 0.024 – – –
S2 0.011 0.024 – 0.00009 –
S3 0.003 0.024 – 0.00009 0.0002
S4 0.003 – 0.020 – –
S5 0.0008 – 0.020 – 0.0001 Figure 2. Release profile of rhodamine B from A) solid S3 and B) solid S5 in

the absence (a) and presence (b) of OTA (5 mm) in hybridization buffer.
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This difference in release rate should be ascribed to the differ-
ent methods used to cap S3 and S5 (see below).

2.3. Sensitivity and Selectivity Studies

To assess the sensitivity of the method, the response of S3 and

S5 to different concentrations of OTA was studied. It was
found that the amount of rhodamine B delivered was propor-

tional to OTA concentration, which is in agreement with the
uncapping protocol detailed above. A limit of detection (LOD)

of 0.5 nm was determined for S3 (see Figure S4A), whereas for
solid S5, a LOD as low as 0.05 nm was found (see Figure S4B).

This difference in LOD is tentatively attributed to the weaker

interaction of aptamer O2 to the silica surface in the electro-
static approach (solid S5) compared with the covalent ap-

proach (solid S3). This weaker attachment of the aptamer to
the surface favors the aptamer–OTA interaction, the displace-

ment of the aptamer, and cargo delivery. However, both LOD
values comply with those established by the legislation and

are similar to or better than most published techniques for the

detection of OTA (see Table S4).[42–54]

Additionally, the selectivity of S3 (Figure 3 in black) and S5
(Figure 3 in grey) to OTA was also studied. With this aim, cargo
release from S3 and S5 was tested in presence of OTA, fumoni-

sin B1 and aflatoxin B1. As shown in Figure 3, OTA was the
only mycotoxin able to induce a notable dye delivery, whereas

fumonisin B1 and aflatoxin induced negligible pore opening

and poor payload release. This observation corroborates the
selective OTA–aptamer interaction as the mechanism of the

observed optical response.

2.4. OTA Detection in Realistic Samples

Encouraged by these results, the potential use of S3 to detect
OTA in more competitive realistic samples was studied.[55] With

this aim, the detection of OTA in wheat samples was evaluated
by using an addition standard method. After OTA extraction,

aliquots (100 mL) were spiked with different known amounts of
a standard OTA solution (0, 10, 15, 20, 30, 50, 75 nm). In a fol-

lowing step, solid S3 (100 mg) was added to each fraction and
the volume was made up to a final value of 1000 mL with hy-

bridization buffer. After 30 min at 25 8C, the release of rhod-
amine B from solid S3 in the different aliquots was measured

and a curve that followed the linear equation y = 81.791 x +

24870 was obtained (see Figure S5 A). From the intercept of

the curve with the x axis, a concentration of OTA in the spiked
sample of 372 nm was determined (93.05 % recovery). A similar

procedure was followed by using solid S5. In this case, a recov-
ery of 96.28 % was calculated (see Figure S5 B). Use of the pro-
posed aptasensor for the quantitative determination of OTA

may provide a simple approach for food safety applications
through the use of this simple, rapid, and sensitive assay.

Moreover, as a preliminary study towards possible simple in
situ applications, we have confirmed that S3 and S5 materials
can be stored for weeks and then used without any changes
in their sensing features.

3. Conclusions

We have developed two new fluorogenic aptasensors for the
detection of OTA by using MSNs loaded with a dye and

capped with an OTA-selective aptamer. Two approaches, based

on an electrostatic or covalent protocol, were used to cap the
pores. The response of both probes is related to the interac-

tion between the capping aptamer and OTA, which induces
displacement of the aptamer from the solid, opens the pores,

and releases the dye. Although solid S3 displayed dye delivery
in a shorter time than S5, a lower LOD was observed for the

latter. Specifically, a LOD as low as 0.5 nm for S3 and 0.05 for

S5 were calculated. In addition, the capped nanomaterial al-
lowed an accurate determination of OTA in realistic wheat

samples. To the best of our knowledge, this is the first time
that aptamer-capped mesoporous supports have been devel-

oped for the detection of OTA mycotoxin. Moreover, the
method is simple, portable, can be easily tuned through the

use of different reporting molecules (e.g. , dyes, fluorophores,

or electroactive species) and may allow the development of a
simple test for the detection of OTA in food samples.

Experimental Section

General Techniques

PXRD, TEM, N2 adsorption–desorption, TGA, DLS, FTIR, and fluores-
cence spectroscopy were employed to characterize the synthesized
materials. PXRD measurements were performed by using a D8 Ad-
vance diffractometer with CuKa radiation (Philips, Amsterdam, The
Netherlands). TGA was carried out by using a TGA/SDTA 851e bal-
ance (Mettler Toledo, Columbus, OH, USA) under an oxidizing at-
mosphere (air, 80 mL min@1) with a heating gradient from 393–
1273 K at 10 8C min@1, followed by an isothermal heating step at
1273 8C for 30 min. TEM images were obtained by using a 100 kV
CM10 microscope (Philips). N2 adsorption–desorption isotherms
were recorded by using an ASAP2010 automated adsorption ana-
lyzer (Micromeritics, Norcross, GA, USA). The samples were de-
gassed at 120 8C under vacuum overnight. The specific surface
areas were calculated from the adsorption data in the low pressure
range by using the BET model.[56] Pore size was determined by
using the Barret–Joyner–Halenda (BJH) method.[57] DLS was used
to obtain the particle size distribution of the different solids by

Figure 3. Release of rhodamine B from solid S3 (in black) and S5 (in grey) in
the presence of OTA, aflatoxin B1, and fumonisin B1.
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using a Zetasizer Nano (Malvern Instruments, Malvern, UK). For the
measurements, samples were dispersed in distilled water. Data
analysis was based on the Mie theory by using refractive indexes
of 1.33 and 1.45 for the dispersant and mesoporous silica nanopar-
ticles, respectively. An adsorption value of 0.001 was used for all
samples. Variation in this adsorption value did not significantly
alter the obtained distributions. Measurements were performed in
triplicate. FTIR spectra were acquired by using a Bruker Tensor II
Platinum ATR spectrometer. Fluorescence spectroscopy measure-
ments were carried out by using a Felix 32 Analysis version 1.2
(Build 56, Photon Technology International, Birmingham, NJ, USA).

Chemicals

Tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium bromide
(CTABr), sodium hydroxide (NaOH), triethylamine (TEA), (3-isocyana-
topropyl)triethoxysilane, (3-aminopropyl)triethoxysilane, rhodami-
ne B, tris(hydroxymethyl)aminomethane (TRIS), hydrochloric acid,
ochratoxin A, fumonisin B1, and aflatoxin B1 were purchased from
Sigma–Aldrich Qu&mica (Madrid, Spain). Oligonucleotides O1 (NH2-
(CH2)6-5’-AAA AAA CCC CCC-3’) and O2 (5’- TTT TGG GGG GGC ATC
TGA TCG GGT GTG GGT GGC GTA AAG GGG GGG GTT TT-3’) were
purchased from Isogen-Lifesciences (Barcelona, Spain). All products
were used as received.

Synthesis of Mesoporous Silica Nanoparticles (MSNs)

CTABr (1.00 g, 2.74 mmol) was first dissolved in deionized water
(480 mL). Then, NaOH (2.00 m, 3.5 mL) in deionized water was
added, then the solution temperature was adjusted to 80 8C. TEOS
(5 mL, 25.7 mmol) was then added dropwise to the solution of
CTABr. The mixture was stirred for 2 h to give a white precipitate.
Finally the solid product was centrifuged, washed with deionized
water, and dried at 60 8C (as-synthesized MSNs). To prepare the
final starting material, the as-synthesized solid was calcined at
550 8C under an oxidant atmosphere for 5 h to remove the tem-
plate phase (calcined MSNs).

Synthesis of S1

Calcined MSNs (200 mg) and rhodamine B (766.4 mg, 0.16 mmol)
were suspended in CH3CN (10 mL), and the suspension was stirred
at RT for 24 h. Then (3-isocyanatopropyl)triethoxysilane (247.6 mL,
1.0 mmol) was added, and the final mixture was stirred at RT for
5.5 h. The resulting pink solid (S1) was isolated by filtration,
washed with CH3CN (5 mL), and dried at 38 8C for 18 h.

Synthesis of S2

Oligonucleotide O1 (10 mm, 100 mL) were added to a suspension
that contained solid S1 (1 mg), CH3CN with rhodamine B (1 mm,
700 mL), and TEA (2 mL). The mixture was stirred for 3 h. The result-
ing material was isolated by centrifugation, washed with hybridiza-
tion buffer to eliminate residual dye and free oligonucleotide, and
dried under vacuum.

Synthesis of S3

Solid S2 (100 mg) was suspended in hybridization buffer (297.5 mL)
and O2 (100 mm, 2.5 mL) was added to the reaction, then the mix-
ture was stirred 2 h at RT. The resulting material was isolated by

centrifugation, washed with hybridization buffer and dried under
vacuum.

Synthesis of S4

Calcined MSNs (200 mg) and rhodamine B (766.4 mg, 0.16 mmol)
were suspended in CH3CN (10 mL). The suspension was stirred at
RT for 24 h, then excess (3-aminopropyl)triethoxysilane (292.5 mL,
1 mmol) was added and the final mixture was stirred at RT for
5.5 h. The resulting pink solid (S4) was isolated by filtration,
washed with CH3CN (5 mL), and dried at 38 8C for 18 h.

Synthesis of S5

Solid S4 (500 mg) were suspended in hybridization buffer (495 mL)
and O2 (100 mm, 5 mL) was added to the reaction, then the mixture
was stirred for 30 min at 37 8C. The resulting material was isolated
by centrifugation, washed with hybridization buffer, and dried
under vacuum.

Assay Protocol

The response of solids S3 and S5 was tested in the presence of
OTA by measuring the emission of rhodamine B delivered from the
capped materials.

Solid S3

The material (100 mg) was suspended with hybridization buffer
(400 mL; 20 mm Tris-HCl, 37.5 MgCl2, pH 7.5) and divided into two
aliquots (200 mL each). Then, aqueous OTA (500 mm, 10 mL) was
added to one of the aliquots, whereas water (10 mL) were added to
the other. In both cases, the volume was made up to 1000 mL with
hybridization buffer. Suspensions were maintained at 25 8C and at
certain times fractions were taken and centrifuged to separate the
solid.

Solid S5

The material (500 mg) was suspended in hybridization buffer
(1000 mL) and then separated into two aliquots (500 mL). The fol-
lowing steps were the same as for solid S3, described above, but
the suspensions were maintained at 37 8C. Cargo release from the
solids was measured by the rhodamine B fluorescence in the su-
pernatants at l= 585 nm (lex = 555 nm).

Calibration Curve

Solid S3

The material (1 mg) was suspended in hybridization buffer
(1000 mL) and separated into 10 aliquots (100 mL each). Different
amounts of OTA standard solution were added to each aliquot and
the volume was made up to 1000 mL with hybridization buffer. All
samples were stirred at 25 8C for 30 min, and then centrifuged for
2 min at 12000 rpm to separate the solid. Finally, the fluorescence
of the released rhodamine B was measured in the supernatants at
l= 575 nm (lex = 555 nm).
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Solid S5

The material (500 mg) was suspended in hybridization buffer
(1000 mL) and separated into 10 aliquots (100 mL each). Different
amounts of OTA standard solution were added to each aliquot and
the volume was made up to 1000 mL with hybridization buffer. All
samples were stirred at 37 8C for 30 min and centrifuged for 2 min
at 12000 rpm to remove the solid. Finally, the fluorescence of the
released rhodamine B was measured in the supernatants at l=
575 nm (lex = 555 nm).

Selectivity Studies with S3 and S5

To carry out these experiments, S3 (400 mg) was suspended in hy-
bridization buffer (400 mL) and separated into four aliquots (100 mL
each). The suspensions of S3 were spiked with OTA, fumonisin B1,
or aflatoxin B1 (final concentration: 100 nm). In all cases, the
volume was made up to 1000 mL with hybridization buffer. All sam-
ples were stirred at 25 8C for 30 min and centrifuged for 2 min at
12000 rpm to separate the solid. The fluorescence of the released
rhodamine B was then measured in the supernatants at l=
575 nm (lex = 555 nm). The same protocol was carried out for solid
S5, however, in this case the samples were stirred at 37 8C.

OTA Detection in Realistic Samples

For these experiments, OTA solution (10000 nm, 1000 mL) was
added to wheat (0.05 g). The mixture was homogenized by using a
vortex, then MeOH/H2O (5 mL, 6:4 v/v) was added and the mixture
was stirred for 30 min. Then solid was separated by centrifugation
and the liquid phase was completely evaporated. The expected
mycotoxin concentration (400 nm) was then determined by the
standard addition method[55] by using solids S3 and S5.
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