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Abstract

This paper develops a random mean square Fourier transform approach to solve random partial differential heat
problems with nonhomogeneous boundary value conditions. Random mean square operational rules for the random
Fourier sine and cosine transforms are stated and illustrative examples are included.
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1. Introduction1

The analysis of heat conduction involves modelling both temperature and heat flow. In practice, these quantities2

depend on a number of physical properties of the materials which often are not known from a deterministic point of3

view. Apart from uncertainties due to measurement errors needed to build physical models, the above comments mo-4

tivate the consideration of random approaches to modelling heat conduction in heterogeneous medium. Differential5

equations have demonstrated to be powerful tools to model heat problems [1]. Hence, the consideration of uncertainty6

leads to random and stochastic differential equations. These kind of equations are distinctly different and they require7

completely different techniques for analysis and approximation. On the one hand, the uncertainty in stochastic dif-8

ferential equations is forced by an irregular stochastic process such a Wiener process or Brownian motion. Solving9

stochastic differential equations requires Itô or Stratonovich calculus [2–4]. On the other hand, random differential10

equations permit to consider other type of randomness in the input data (coefficients, forcing term and initial/boundary11

conditions) including exponential, beta or gaussian distributions, for instance. The so-called Lp-calculus constitutes12

an adequate framework to solve random differential equations [5, 6]. Alternative approaches include the so-called13

dishonest methods [7]; the random perturbation method that considers randomness through the perturbation of de-14

terministic data [8]; Monte Carlo sampling consists of generating numerical values according to the distribution of15

the random inputs, then solving the governing differential equation, which becomes deterministic, and finally, esti-16

mate the required solution statistics, such as the mean and the variance [9]; finite difference methods [10, 11]; finite17

element methods [12]; homotopy transformation method [13, 14]; random transformation method [15]; and Fourier18

transformation methods [16].19

In this paper we develop a random Fourier mean square transform method for solving heat problems which con-20

sider randomness into their formulation. The mean square approach developed for both, the ordinary and partial21

differential problems [6, 17–20], has two desirable properties. First, the mean square solution coincides with the one22

obtained in the deterministic case, that is, when the random data become deterministic. Secondly, if Xn(t) represents23

an approximation of the exact solution, X(t), in the mean square sense, then the expectation, E[Xn(t)], and the variance,24

Var[Xn(t)], will converge to the exact values, E[X(t)] and Var[X(t)], respectively, for each t, i.e.,25

lim
n→∞

E[Xn(t)] = E[X(t)] and lim
n→∞

Var[Xn(t)] = Var[X(t)] , (1)

see Theorems 4.2.1 and 4.3.1. of [5].26

∗Corresponding author. Tel.: +34 (96)3879144.
Email addresses: macabar@imm.upv.es (M.-C. Casabán), jccortes@imm.upv.es (J.-C. Cortés), ljodar@imm.upv.es (L. Jódar)
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This paper, that may be considered as a continuation and generalization of [16], deals with random heat problems27

with nonhomogeneous boundary value conditions of the type28

wt(x, t) = L wxx(x, t) , x > 0, t > 0 , (2)
w(0, t) = A , t > 0, (3)
w(x, 0) = f (x; B) , x > 0, (4)

or

wt(x, t) = L wxx(x, t) , x > 0, t > 0 , (5)
wx(0, t) = g(t; B) , t > 0, (6)
w(x, 0) = f (x; A) , x > 0, (7)

where L is a positive random variable (r.v.) independent of r.v.’s A and B, all of them satisfying additional properties29

to be specified later. In the previous models, f (x; B), g(t; B) and f (x; A) are stochastic processes (s.p.’s) described30

as functions that depend on a single r.v. The same results are available, but with more complicated notation, by31

considering functions with a finite degree of randomness (see comments quoted in [5, p.37]). Unlike to the finite32

medium random heat model, to the best of our knowledge there is a lack of reliable numerical answers to the solution33

of random heat problems in a infinite medium. This paper deals with the construction of reliable solutions of models34

(2)–(4) and (5)–(7) by extending to the random scenario the Fourier sine and cosine transforms.35

This paper is organized as follows. Section 2 is devoted to introduce some preliminaries that will clarify both the36

understanding and reading of the paper as well as the presentation of results of next sections. Section 3 considers37

the random heat problem (2)–(4) with the so called third kind boundary conditions [1]. By using random Fourier38

sine transform and results of [16] a mean square solution of model (2)–(4) is explicitly constructed. In Section 4, the39

random heat problem (5)–(7) with second kind boundary conditions in the sense of [1] is treated. By decomposing40

the problem in two subproblems and considering the results of [16] and the application of the random Fourier cosine41

transform, an explicit mean square solution of model (5)–(7) is obtained. Illustrative numerical examples for both42

problems (2)–(4) and (5)–(7) are included in Sections 3 and 4, respectively. Section 5 is addressed to summarize the43

conclusions of the paper.44

2. Preliminaries about mean square and mean fourth random calculus45

For the sake of clarity, we begin this section by reviewing the main definitions and results belonging to the so-46

called Lp-calculus. In this paper, we are mainly interested in L2 and L4-calculus, which are usually referred to as47

mean square (m.s.) and mean fourth (m.f.) calculus (see [5, 6] for further details). Throughout this paper, the triplet48

(Ω, F , P) will denote a probabilistic space.49

We say that a real r.v. X : Ω −→ R belongs to the set Lp = Lp (Ω, F , P), p ≥ 1, if the expectation of the r.v. |X|p50

is finite, i.e., E[|X|p] < +∞. In such case, we say that X is a p-r.v. The following map51

∥X∥p : Lp −→ [0,∞[,
X ↪→ (E [ |X|p])1/p ,

(8)

defines a norm in Lp, usually referred to as p-norm, in a such way that (Lp, ∥X∥p) is a Banach space, [2, p.9].52

The concept of convergence of a sequence of p-r.v.’s, say, {Xn : n ≥ 0} ∈ Lp, to a r.v. X ∈ Lp, follows straightfor-53

wardly from the above definition of the p-norm54

lim
n→+∞

∥Xn − X∥p = 0.

The concept of random function or stochastic process, say {X(t) : t ∈ T }, where T ⊆ R, in the space Lp is an extension55

of the one corresponding to a sequence of p-r.v.’s. We say that {X(t) : t ∈ T } is a p-s.p. if, and only if, X(t) is a56

p-r.v. for each t ∈ T . The definitions of continuity, differentiability and integrability of p-s.p.’s in the Banach space57
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(Lp, ∥ · ∥p) are the ones inferred by the p-norm. For instance, according to [5, p. 99], [21], a p-s.p. {X(t) : t ∈ R}, is58

said to be Lp-locally integrable in R if, for all finite interval [t1, t2] ⊂ R, the integral
∫ t2

t1
X(t) dt , exits in Lp and, it is59

Lp-absolutely integrable in R, if
∫ +∞
−∞ ∥X(t)∥p dt < +∞ .60

Let X be a r.v. in Lq, i.e., E [ |X|q] < ∞, then by Lyapunov’s inequality one gets (E [ |X|p])1/p ≤ (E [ |X|q])1/q, for61

0 ≤ p ≤ q, [22, p.157]. As a consequence, Lq ⊆ Lp, 0 ≤ p ≤ q and, moreover if {Xn : n ≥ 0} is q-th mean convergent62

to X ∈ Lq, then {Xn : n ≥ 0} is also p-th mean convergent to X ∈ Lp, [2, p.13]. In particular, m.f. convergence entails63

m.s. convergence. The following inequality64

∥X Y∥p ≤ ∥X∥2p ∥Y∥2p , X,Y ∈ L2p, p ≥ 1, (9)

will play an important role in the subsequent development in the particular case that p = 2 which permits to relate65

m.s. and m.f. convergence, [23].66

Next, we introduce a family of r.v.’s that have previously been used to solve some types of random differential67

equations (see [20] and references therein) and which will play an important role in the subsequent development. Let68

L be a r.v. such as its absolute statistical moments, E [ |L|n], behave as O(Hn), i.e., there exist a non-negative integer69

n0 and positive constants M and H such that70

E
[ |L|n] ≤ MHn, ∀n ≥ n0 . (10)

Truncated r.v.’s constitute an important class of r.v.’s satisfying condition (10), see Remark 1 in [16].71

Suppose that apart from (10) we assume that realizations of r.v. L have a positive lower bound ℓ1 > 0 such that72

L(ω) ≥ ℓ1 > 0 , ∀ω ∈ Ω , (11)

then from the definition of expectation, it follows that73

E
[

1
Ln

]
≤ 1

(ℓ1)n , n ≥ 0 , (12)

and from (12)74 (∥∥∥∥∥e−
x2
L

∥∥∥∥∥
2

)2

= E
[
e
−2x2

L

]
=

∑
n≥0

(−2x2)n E
[

1
Ln

]
n!

≤
∑
n≥0

(
− 2x2

ℓ1

)n

n!
= e−

2x2
ℓ1 , ∀ x ∈ R. (13)

Thus75 ∥∥∥∥∥e−
x2
L

∥∥∥∥∥
2
≤ e−

x2
ℓ1 , ∀ x ∈ R. (14)

Note that in (13) the commutation between the expectation operation and the infinite sum is justified because of the76

m.s. convergence of the random series
∑

n≥0
(−2x2/L)n

n! and the application of property (1).77

We close this section by computing the following random integral78 ∫ ∞

0
e−t ξ2L cos(ξ x) dξ =

1
2

√
π

tL
e−x2/4tL , x > 0, t > 0 , (15)

that will be required later. Notice that this result follows from the application of Lemma 2 of [16], condition (10) and79

[21, p. 61].80

2.1. Random Fourier Sine and Cosine Transforms’ and their operational calculus81

We define the random Fourier sine and cosine transforms of a 2-s.p. {u(x) : x > 0} m.s. locally integrable in82

[0,∞[, and m.s. absolutely integrable in [0,∞[, i.e.,83 ∫ ∞

0
∥u(x)∥2 dx < +∞ , (16)
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as the 2-s.p.’s84

Fs [u(x)] (ξ) = Fs(ξ) =
∫ ∞

0
u(x) sin(ξ x) dx , ξ > 0 , (17)

and85

Fc [u(x)] (ξ) = Fc(ξ) =
∫ ∞

0
u(x) cos(ξ x) dx , ξ > 0 , (18)

respectively. Note that from (16) both integrals appearing in (17) and (18) are convergent in L2 and thus they are86

2-s.p.’s well-defined. Analogously, the random Fourier sine and cosine transforms of a 4-s.p. {u(x) : x > 0} m.f.87

locally integrable in [0,∞[, and m.f. absolutely integrable in [0,∞[ can be defined changing ∥ · ∥2 by ∥ · ∥4 in (16).88

Note that if the m.f. random Fourier sine and cosine transforms exist then the m.s. random Fourier sine and cosine89

transforms do and both coincide.90

91

Although the random Fourier exponential transform is not going to be used here directly because the two problems92

under study (2)–(4) and (5)–(7) are stated in the positive real line x > 0, for the sake of convenience in the use of93

convolution properties, we introduce the definition of the Fourier exponential transform of a 2-s.p. u(x), for x ∈ R,94

m.s. locally and m.s. absolutely integrable by the formula95

F[u(x)](ξ) =
1
√

2 π

∫ ∞

−∞
u(x) e−i ξ x dx , ξ ∈ R , (19)

where i =
√
−1 denotes the imaginary unit. Given a 2-s.p. ℓ(x) m.s. locally and m.s. absolutely integrable in [0,∞[96

and let us denote by ℓp(x) its even extension to the real line, i.e., ℓp(−x) = ℓ(x) for x > 0. Then, from definitions (18)97

and (19) it follows that98

F[ℓp(x)](ξ) =

√
2
π
Fc[ℓ(x)](ξ) , ξ > 0 . (20)

Let r(x) and s(x) be m.s. integrable s.p.’s defined in the real line, and note that the m.s. absolute integrability of99 ∫ ∞
−∞ r(x − κ) s(κ) dκ is guaranteed if r(x) and s(x) are s.p. m.f. absolutely integrable in R, see (9) for p = 2. Hence, let100

r(x) and s(x) be s.p.’s m.f. locally and m.f. absolutely integrable in R, then the convolution s.p. of r and s, denoted by101

r ∗ s, is defined by the m.s. integral102

(r ∗ s)(x) =
1
√

2π

∫ ∞

−∞
r(x − κ) s(κ) dκ , x, κ ∈ R. (21)

Assume that r(x), s(x) satisfy103 ∫ ∞

−∞
(∥r(x)∥4)2 dx < +∞ ;

∫ ∞

−∞
(∥s(x)∥4)2 dx < +∞ . (22)

Under hypothesis (22) and property (9) for p = 2 together with Cauchy-Schwarz inequality for deterministic real104

functions one gets105 ∫ ∞

−∞
∥r(x − κ) s(κ)∥2 dκ ≤

∫ ∞

−∞
∥r(x − κ)∥4 ∥s(κ)∥4 dκ ≤

(∫ ∞

−∞
(∥r(x − κ)∥4)2 dκ

)1/2 (∫ ∞

−∞
(∥s(κ)∥4)2 dκ

)1/2

< +∞ .

Thus the convolution of two 4-s.p.’s r(x) and s(x) satisfying (22) is well-defined by a m.s. convergent integral. Taking106

into account the Fubini theorem in abstract normed spaces [24, p. 175], [21, sec. 1.85] and the proof of the Fourier107

exponential transform of convolution of real functions [25, chap. 7] it follows that if r(x), s(x) are m.f. continuous108

s.p.’s satisfying (22) and
∫ ∞
−∞

∫ ∞
−∞ ∥r(x − κ) s(κ)∥2 dx dκ < +∞ , then109

F[r ∗ s] = F[r]F[s] . (23)

Now we are going to give a convolution formula for the random Fourier cosine transform based on (23) and (20).110

Let m(x) and n(x) be m.f. continuous s.p.’s defined on [0,∞[ and let mp(x), np(x) be, respectively, their even extension111

s.p.’s on the real line. Assume that112 ∫ ∞

0
(∥m(x)∥4)2 dx < +∞ ;

∫ ∞

0
(∥n(x)∥4)2 dx < +∞ .
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From (23) and (20), it follows that113

F[(mp ∗ np)(x)](ξ) = F[mp(x)](ξ) F[np(x)](ξ) =
2
π
Fc[m(x)](ξ) Fc[n(x)](ξ) , ξ > 0 . (24)

On the other hand, applying (20) on the even s.p. (mp ∗ np)(x), one gets114

F[(mp ∗ np)(x)](ξ) =

√
2
π
Fc[(mp ∗ np)(x)](ξ) , ξ > 0 . (25)

Then, taking into account (24) and (25) it follows that115

Fc[m(x)](ξ) Fc[n(x)](ξ) =
√
π

2
Fc[(mp ∗ np)(x)](ξ) , ξ > 0 , (26)

where, it is easy to show (see [25, sec. 7.4] for the corresponding deterministic result) that116 (
mp ∗ np

)
(x) =

1
√

2π

∫ ∞

0
m(κ) {n(x + κ) + n(|x − κ|)} dκ , x ≥ 0 . (27)

Following the ideas of the deterministic inverse Fourier sine and cosine transforms, see [26, chap.2], we define the117

random inverse Fourier sine (and cosine) transforms of a 2-s.p. Fs(ξ) (and Fc(ξ)) m.s. locally and m.s. absolutely118

integrable by the formulae119

Fs
−1 [

Fs(ξ)
]
(x) =

2
π

∫ ∞

0
Fs(ξ) sin(ξ x) dξ , x > 0 , (28)

Fc
−1 [

Fc(ξ)
]
(x) =

2
π

∫ ∞

0
Fc(ξ) cos(ξ x) dξ , x > 0 ,

respectively. This definition follows straighforwardly for 4-s.p. in the m.f. sense and, in this case, it coincides with120

the m.s. inverse Fourier sine and cosine transforms.121

The following result contains some m.s. operational rules that will be used in Sections 3 and 4 to solve the random122

heat problems (2)–(4) and (5)–(7), see Theorem 3 of [16] for rules (i)–(iv). Note that (v) follows directly from a123

change of variable.124

Theorem 1. Let {u(x) : x > 0} be a 2-stochastic process twice mean square differentiable with u′′(x) mean square125

locally integrable, and with u(x), u′(x) and u′′(x) mean square absolutely integrable in [0,∞[. Then126

(i) Fs [u′(x)] (ξ) = −ξ Fc [u(x)] (ξ), ξ > 0 .

(ii) Fc [u′(x)] (ξ) = −u(0) + ξ Fs [u(x)] (ξ), ξ > 0 .

(iii) Fs [u′′(x)] (ξ) = ξ u(0) − ξ2 Fs [u(x)] (ξ), ξ > 0 .

(iv) Fc [u′′(x)] (ξ) = −u′(0) − ξ2 Fc [u(x)] (ξ), ξ > 0 .

(v) Fc [u(ax)] (ξ) = 1
a Fc [u(x)]

(
ξ
a

)
, ξ > 0 , a > 0 .

For the sake of convenience for the subsequence development, we introduce the following examples.127

Example 1. Let t > 0 and assume that r.v. L has a positive lower bound satisfying condition (11). Then128

Fc

[
1
√
π t L

e−x2/4tL
]

(ξ) = e−L t ξ2 . (29)

By linearity and applying Theorem 1-(v) with u(x) = e−x2/L and the constant a = 1
2
√

t
, we have129

Fc

[
1
√
π t L

e−x2/4tL
]

(ξ) =
1
√
π t L

Fc

[
e−x2/4tL

]
(ξ) =

2
√

t
√
π t L

Fc

[
e−x2/L

]
(2
√

t ξ) =
2
√
π L

Fc

[
e−x2/L

]
(2
√

t ξ) . (30)
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Note that Fc

[
e−x2/L

]
(ξ) is a m.s. convergent s.p. because from (14) it follows that130 ∫ ∞

0
∥e−x2/L cos(ξ x)∥2 dx ≤

∫ ∞

0
∥e−x2/L∥2 dx ≤

∫ ∞

0
e−x2/ℓ1 dx < ∞ .

Thus Fc

[
e−x2/L

]
(ξ) is a well-defined 2-s.p. Now, we compute Fc

[
e−x2/L

]
(ξ) by using the exact value of its realizations131

Fc

[
e−x2/L(ω)

]
(ξ), ω ∈ Ω. Given ω ∈ Ω, we wish to evaluate132

Fc

[
e−x2/L(ω)

]
(ξ) =

∫ ∞

0
e−x2/L(ω) cos(ξ x) dx . (31)

By [21, p. 61] the real integral appearing in (31) takes the value133 ∫ ∞

0
e−x2/L(ω) cos(ξ x) dx =

1
2

√
π L(ω) e−ξ

2L(ω)/4 , ω ∈ Ω . (32)

From (30), and using (31)–(32) with 2
√

t ξ in place of ξ one gets (29).134

Example 2. Let us assume that L is a positive 4-r.v. satisfying condition (11). Let t > 0 and x > 0 and let us consider
the s.p.

q(x; L) =
1
√
πtL

e−x2/4tL .

Next, we show that q(x; L) is m.f. continuos and135 ∫ ∞

0
(∥q(x; L)∥4)2 dx < +∞ . (33)

Let x ∈ (x0 − δ, x0 + δ), x0 and δ > 0 such as x0 − δ > 0. Then, taking K = x0 + δ > 0 and using condition (11), one136

gets137 ∑
n≥0

1
n!

∥∥∥∥∥∥
(
−x2

4tL

)n∥∥∥∥∥∥
4
≤

∑
n≥0

K2n

n!
1

(4t)n

∥∥∥∥∥ 1
Ln

∥∥∥∥∥
4
≤

∑
n≥0

K2n

n!
1

(4t)n

1
(ℓ1)n . (34)

Then, using D’Alembert test q(x; L) is a well-defined 4-s.p. and the m.f. locally uniform convergence guarantees the138

m.f. continuity of q(x; L) because of the M-Weierstrass criterion. In order to prove (33), note that139

(∥q(x; L)∥4
)4
=

1
√
π t

E
e−x2/t L

L2

 = 1
√
π t

E

∑
n≥0

1
Ln+2

(
−x2

t

)n 1
n!

 = 1
√
π t

∑
n≥0

E
[

1
Ln+2

] (
−x2

t

)n 1
n!

≤ 1
√
π t

∑
n≥0

1
(ℓ1)n+2

(
−x2

t

)n 1
n!

=
1

(ℓ1)2
√
π t

e−x2/ℓ1 t,

(35)

where condition (11) has been applied. Notice that following an analogous reasoning as it was shown in (34), it is140

straightforward to prove the m.f. convergence, and hence the m.s. convergence, of the above random infinite series.141

Then, according to (1) the commutation between the expectation operator and the random infinite sum in (35) is142

legitimated. Therefore,143 ∫ ∞

0

(∥q(x; L)∥4
)2 dx ≤ 1

ℓ1
4
√
π t

∫ ∞

0
e−x2/2ℓ1 t dx < +∞ .
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3. Random heat problem with third kind boundary condition144

In this section we deal with the random heat problem for the temperature distribution u(x, t) in a semi-infinite bar145

with zero temperature at the left-end x = 0 and random initial temperature:146

ut(x, t) = L uxx(x, t) , x > 0, t > 0 , (36)
u(0, t) = 0 , t > 0, (37)
u(x, 0) = f (x; B) , x > 0, (38)

where L is a positive 4-r.v. satisfying certain properties to be specified later, and f (x; B) is a m.s. locally and m.s.147

absolutely integrable s.p. We will suppose that L and B are independent r.v.’s. Assume that problem (36)–(38) admits148

a solution s.p. u(x, t) m.s. locally and m.s. absolutely integrable, and let us denote149

Fs [u(·, t)] (ξ) = U(t)(ξ) , ξ > 0 , (39)

the random Fourier sine transform of u(x, t) regarded as a s.p. of the active variable x > 0, for fixed t > 0. By applying150

the random Fourier sine transform to both members of (36) and using Theorem 1-(iii), condition (37), the notation151

introduced in (39) and Lemma 2 of [16] it follows that152

Fs [uxx(·, t)] (ξ) = ξ u(0, t) − ξ2 Fs [u(·, t)] (ξ) = −ξ2U(t)(ξ) ,

Fs [ut(·, t)] (ξ) =
d
dt

(U(t)(ξ)) .

By applying the random Fourier sine transform to (38) one gets

Fs [u(·, 0)] (ξ) = U(0)(ξ) = Fs
[
f (· ; B)

]
(ξ) = Fs(ξ; B) .

Hence, the problem (36)–(38) is transformed into the random initial value problem for the variable t153

d
dt

(U(t)(ξ)) = −L ξ2U(t)(ξ) , t > 0,

U(0)(ξ) = Fs(ξ; B) .

 (40)

Let us assume that Fs(ξ; B) is a 4-s.p., and the moment generating function of r.v. −L, denoted by Φ−L(t), verifies154

Φ−L(t) = E[e−tL] is locally bounded about t = 0 . (41)

Then by Theorem 8 of [19], the solution s.p. of problem (40) is given by155

U(t)(ξ) = Fs(ξ; B) e−tξ2L . (42)

By applying the random inverse Fourier sine transform, defined by (28), to both members of (42) one gets156

u(x, t) =
2
π

∫ ∞

0
Fs(ξ; B) e−tξ2L sin (ξ x) dξ =

2
π

∫ ∞

0

{∫ ∞

0
f (s; B) sin(ξ s) ds

}
e−tξ2L sin(ξ x) dξ

=
2
π

∫ ∞

0

∫ ∞

0
f (s; B) e−tξ2L sin(ξ s) sin(ξ x) dξ ds . (43)

Using the well-known trigonometric formula157

sin a sin b =
1
2
{cos(a − b) − cos(a + b)} ,

with a = ξ s, b = ξ x, we can rewrite (43) in the form158

u(x, t) =
1
π

∫ ∞

0

∫ ∞

0
f (s; B) e−tξ2L {cos(ξ(x − s)) − cos(ξ(x + s))} dξ ds . (44)
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From (15) one gets159 ∫ ∞

0
e−t ξ2L cos(ξ(x − s)) dξ =

1
2

√
π

tL
e−(x−s)2/4tL , x > 0, t > 0 , (45)∫ ∞

0
e−t ξ2L cos(ξ(x + s)) dξ =

1
2

√
π

tL
e−(x+s)2/4tL , x > 0, t > 0 . (46)

Using Fubini theorem in abstract normed spaces [24, p. 175] and expressions (44)–(46), it follows that160

u(x, t) =
1
π

∫ ∞

0
f (s; B)

{∫ ∞

0
e−tξ2L {cos(ξ(x − s)) − cos(ξ(x + s))} dξ

}
ds

=
1
2

1
√
πtL

∫ ∞

0
f (s; B)

(
e−(x−s)2/4tL − e−(x+s)2/4tL

)
ds , x > 0, t > 0 . (47)

Summarizing, the following result has been established161

Theorem 2. Let us consider the random heat problem given by (36)–(38) where L is a positive 4-random variable162

satisfying (10) and (41), and let f (x; B) be mean fourth locally and mean fourth absolutely integrable stochastic163

process depending on random variable B. Let us assume that L and B are independent random variables. Then, the164

solution 2-stochastic process u(x, t) of problem (36)–(38) is given by (47).165

Now, let us consider the problem treated in [16]:166

vt(x, t) = L vxx(x, t) , x > 0, t > 0 , (48)
v(0, t) = A , t > 0, (49)
v(x, 0) = 0 , x > 0, (50)

where A is a positive 4-r.v. independent of r.v. L which is assumed to satisfy properties of Theorem 2. By [16], a167

solution 2-s.p. of problem (48)–(50) is given by168

v(x, t) = A
(
1 − 1
√
πtL

∫ x

0
e−r2/4tL dr

)
.

Note that if u(x, t) is a solution 2-s.p. of problem (36)–(38) and v(x, t) is a solution 2-s.p. of problem (48)–(50), then169

by linearity,170

w(x, t) = u(x, t) + v(x, t) ,

is a solution 2-s.p. of problem (2)–(4). Thus the following result is proved.171

Corollary 1. Let A be a positive 4-random variable, and let L and f (x; B) be a random variable and a stochastic172

process, respectively, both satisfying the conditions of Theorem 2. Suppose that A, B and L are mutually independent173

random variables. Then, a solution 2-stochastic process of problem (2)–(4) is given by174

w(x, t) = A +
1
√
πtL

{
1
2

∫ ∞

0
f (s; B)

(
e−(x−s)2/4tL − e−(x+s)2/4tL

)
ds − A

∫ x

0
e−r2/4tL dr

}
, x > 0, t > 0 . (51)

Using the independence of r.v.’s A, B and L, one computes the expectation and the variance functions of the solution175

2-s.p. w(x, t), given by (51), as closed expressions:176

E [w(x, t)] = E[A]
{

1 − 1
√
π t

∫ x

0
E

[
1
√

L
e−r2/4tL

]
dr

}
+

1
2
√
π t

∫ ∞

0
E

[
f (s; B)

]
E

[
1
√

L

(
e−(x−s)2/4tL − e−(x+s)2/4tL

)]
ds,

(52)
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Var [w(x, t)] = E[(w(x, t))2] − (E[w(x, t)])2 , (53)

where177

E
[
(w(x, t))2

]
=

1
4 π t

∫ ∞

0

∫ ∞

0
E

[
f (s1; B) f (s2; B)

]
E

[
1
L

(
e−(x−s1)2/4tL − e−(x+s1)2/4tL

) (
e−(x−s2)2/4tL − e(x+s2)2/4tL

)]
ds1 ds2

+ E [A]
{

1
√
π t

∫ ∞

0
E

[
f (s; B)

]
E

[
1
√

L

(
e−(x−s)2/4tL − e−(x+s)2/4tL

)]
ds

− 1
π t

∫ x

0

∫ ∞

0
E

[
f (s; B)

]
E

[
1
L

(
e−((x−s)2+r2)/4tL − e−((x+s)2+r2)/4tL

)]
ds dr

}
+ E

[
A2

] {
1 +

1
π t

∫ x

0

∫ x

0
E

[
1
L

e−(r2
1+r2

2)/4tL
]

dr1 dr2 −
2
√
π t

∫ x

0
E

[
1
√

L
e−r2/4tL

]
dr

}
.

(54)

Example 3. Consider the problem (2)–(4):

wt(x, t) = L wxx(x, t) , x > 0, t > 0 ,
w(0, t) = A , t > 0,

w(x, 0) = 100 e−Bx , x > 0,

where the diffusion coefficient L has a beta distribution of parameters α = 2 and β = 1, i.e., L ∼ Be (2, 1); the178

temperature at the left-end x = 0 is described by the exponential r.v. A ∼ Exp (1), which is a positive 4-r.v.; and the179

initial temperature is modelled by the s.p. f (x; B) = 100e−Bx being B a uniform r.v., B ∼ Un (0.5, 1). We assume that180

all r.v.’s, A, B and L are mutually independent.181

Note that L is a positive 4-r.v. that satisfies (10), because it is a bounded r.v. and it also satisfies condition (41)182

since the moment generating function of r.v. −L:183

Φ−L(t) = E[e−tL] =
2 e−t(−1 + et − t)

t2

t→0−→ 1,

is locally bounded about t = 0.184

For each x ∈]x0 − δ, x0 + δ[, x0 and δ > 0 such as x0 − δ > 0, taking K = x0 + δ > 0 and using condition (10)185

because B is a bounded r.v. (see Remark 1 in [16]), one gets186

100
∑
n≥0

1
n!
∥(−Bx)n∥4 ≤ 100

∑
n≥0

Kn

n!
∥Bn∥4 ≤ 100 4

√
M

∑
n≥0

(KH)n

n!
= 100 4

√
MeKH . (55)

Then, on account of the reasoning showed in the first part of Example 2 the m.f. continuity of 4-s.p. f (x; B) is187

guaranteed and, as a consequence, f (x; B) is m.f. locally integrable. Now, we need to show that f (x; B) is m.f.188

absolutely integrable. For that, we also apply condition (10)189

(∥ f (x; B)∥4
)4
= 100 E

[
e−4xB

]
= 100 E

∑
n≥0

(−4xB)n

n!

 = 100
∑
n≥0

E [Bn] (−4x)n

n!
≤ 100 M

∑
n≥0

(−4xH)n

n!
= 100Me−4xH .

(56)
Following the same reasoning showed in (55), it is easy to prove the m.f. convergence, and hence the m.s. convergence,190

of the above random infinite series. Then, by property (1) one justifies the commutation between the expectation191

operator and the random infinite sum in (56). Therefore192 ∫ ∞

0
∥ f (x; B)∥4 dx ≤ 4

√
100 M

∫ ∞

0
e−xH dx < +∞. (57)
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Hence, the hypotheses of Corollary 1 are satisfied and expression given by (51) is a solution 2-s.p. w(x, t) of problem193

(2)–(4). In Figures 1 and 2, we have plotted the values of the expectation and the standard deviation of temperature194

w(x, t) on the spatial-time domain (x, t) ∈]0, 15] × [0, 20], respectively. These plots have been performed taking195

into account expression (52) for the expectation, and expressions (53)–(54) for the standard deviation. Since these196

expressions involve improper integrals which, in general, cannot be computed exactly, the truncation of the intervals197

of integration has been required to keep feasible the computational burden. Notice that the m.s. convergence of the198

solution s.p. (51) together with properties given by (1) guarantee that these approximations will converge to the199

corresponding exact values of its expectation and its variance. For the sake of clarity, both plots have been made in200

two and three dimensions (2D and 3D). From these representations, we observe that the average temperature of the201

bar tends to stabilize at the value E[A] = 1 as time goes on (see expression (52)) and, as a consequence, its variation,202

measured through standard deviation, decreases as time increases.203

4. Random heat problem with second kind boundary condition204

Let us consider the auxiliary problem205

ut(x, t) = L uxx(x, t) , x > 0, t > 0 , (58)
ux(0, t) = 0 , t > 0, (59)
u(x, 0) = f (x; A) , x > 0, (60)

and note that if u(x, t) is a solution 2-s.p. of (58)–(60), and v(x, t) is a solution 2-s.p. of the problem206

vt(x, t) = L vxx(x, t) , x > 0, t > 0 , (61)
vx(0, t) = g(t; B) , t > 0, (62)
v(x, 0) = 0 , x > 0, (63)

then, by linearity207

w(x, t) = u(x, t) + v(x, t) , (64)

is a solution 2-s.p. of problem (5)–(7). As problem (61)–(63) was solved in [16], we focus our attention on problem208

(58)–(60). Assume L is a positive 4-r.v. with some additional properties to be specified later and f (x; A) is a 2-s.p.209

depending on a single r.v. A. Let us assume that problem (58)–(60) admits a solution 2-s.p. u(x, t) m.s. locally and210

m.s. absolutely integrable, and let us denote211

Fc [u(·, t)] (ξ) = U(t)(ξ) , ξ > 0 , (65)

what means that u(x, t) is regarded as a s.p. of the active variable x, for fixed t > 0. By applying the random Fourier212

cosine transform to the right-hand side of equation (58) and using Theorem 1-(iv) together with condition (59) and213

(65), it follows that214

Fc [uxx(·, t)] (ξ) = −ux(0, t) − ξ2Fc [u(·, t)] (ξ) = −ξ2U(t)(ξ) . (66)

Applying the random Fourier cosine transform to the left-hand side of (58) and by Lemma 2 of [16], it follows that215

Fc [ut(·, t)] (ξ) =
d
dt

(U(t)(ξ)) . (67)

Also from (60) one gets216

Fc [u(·, 0)] (ξ) = U(0)(ξ) = Fc
[
f (· ; A)

]
(ξ) = Fc(ξ; A) . (68)

By linearity and (66)–(68) one gets the transformed random ordinary differential problem217

d
dt

(U(t)(ξ)) = −L ξ2U(t)(ξ) , t > 0,

U(0)(ξ) = Fc(ξ; A)

 . (69)
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Assuming that r.v. L satisfies (41) and Fc(ξ; A) is a 4-s.p., by Theorem 8 of [19] the solution 2-s.p. of problem (69) is218

given by219

U(t)(ξ) = Fc(ξ; A) e−tξ2L . (70)

Note that by Example 1, for each fixed t > 0,220

e−tξ2L = Fc
[
q(x; L)

]
(ξ) ; q(x; L) =

1
√
πtL

e−x2/4tL . (71)

Now in order to use the convolution property for the random Fourier cosine transform (see (19)–(27)) applied to the221

4-s.p.’s f (x; A) and q(x; L), it is sufficient to assume that222

f (x; A) is a m.f. continuous s.p. and
∫ ∞

0
(∥ f (x; A)∥4)2 dx < +∞ . (72)

Note that from Example 2 the 4-s.p. q(x; L), defined by (71), also verifies conditions given by (72). Taking into223

account the previous exposition, from expressions (26)–(27) and (70)–(71) it follows that a solution 2-s.p of problem224

(58)–(60) is given by225

u(x, t) = Fc
−1 [U(t)(ξ)

]
(x) = Fc

−1
[
Fc(ξ; A) e−tξ2L

]
(x) = Fc

−1 [
Fc

[
f (x; A)

]
(ξ) Fc

[
q(x; L)

]
(ξ)

]
(x)

= Fc
−1

[√
π

2
Fc

[
( f ∗ q)(x; A, L)

]
(ξ)

]
(x) =

√
π

2
( f ∗ q)(x; A, L)

=
1
2

∫ ∞

0
f (κ; A) {q(x + κ; L) + q(|x − κ|; L)} dκ

=
1

2
√
πtL

∫ ∞

0
f (κ; A)

(
e−(x+κ)2/4tL + e−(x−κ)2/4tL

)
dκ , x > 0 , t > 0 . (73)

Summarizing, the following result has been established226

Theorem 3. Let us consider the random heat problem given by (58)–(60) where L is a positive 4-random variable227

satisfying (10)–(11) and (41). Let f (x; A) be mean fourth absolutely integrable stochastic process which depends on228

one single random variable A and verifies conditions given by (72). Suppose that A and L are independent random229

variables. Then, the solution 2-stochastic process u(x, t) of problem (58)–(60) is given by (73).230

Finally, taking into account the solution 2-s.p. found in [16] for the subproblem (61)–(63) and by (64), one gets a231

solution 2-s.p. for the problem (5)–(7). Thus the following result is proved.232

Corollary 2. Let g(t; B) be a mean fourth continuous stochastic process depending on random variable B, and let L233

be a random variable and f (x; A) be a stochastic process both satisfying the conditions of Theorem 3. Suppose that234

random variables A, B and L are mutually independent. Then, a solution 2-stochastic process of problem (5)–(7) is235

given by236

w(x, t) =
1

2
√
πtL

∫ ∞

0
f (κ; A)

(
e−(x+κ)2/4tL + e−(x−κ)2/4tL

)
dκ + 2

√
L
π

∫ √
t

0
g(t − ν2; B) e−(x/2ν

√
L)2

dν , x > 0, t > 0 .

(74)

Using the independence of r.v.’s A, B and L, one computes the expectation and the variance functions of the237

solution 2-s.p. w(x, t), given by (74), as closed expressions by238

E [w(x, t)] =
1

2
√
π t

∫ ∞

0
E

[
f (κ; A)

]
E

[
1
√

L

(
e−(x+κ)2/4tL + e−(x−κ)2/4tL

)]
dκ

+
2
√
π

∫ √
t

0
E

[
g(t − ν2; B)

]
E

[√
L e−(x/2ν

√
L)2

]
dν , x > 0, t > 0 ,

(75)
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and (53) being239

E
[
(w(x, t))2

]
=

1
4 π t

∫ ∞

0

∫ ∞

0
E

[
f (κ1; A) f (κ2; A)

]
E

[
1
L

(
e−(x+κ1)2/4tL + e−(x−κ1)2/4tL

) (
e−(x+κ2)2/4tL + e(x−κ2)2/4tL

)]
dκ1 dκ2

+
4
π

∫ √
t

0

∫ √
t

0
E

[
g(t − ν21; B) g(t − ν22; B)

]
E

[
L e−(x/2ν1ν2

√
L)2(ν21+ν22)

]
dν1 dν2

+
2

π
√

t

∫ ∞

0

∫ √
t

0
E

[
f (κ; A)

]
E

[
g(t − ν2; B)

]
E

[
e−((x+κ)2ν2+x2t)/4tν2L + e−((x−κ)2ν2+x2t)/4tν2L

]
dν dκ .

(76)

Example 4. Consider the problem (5)–(7):

wt(x, t) = L wxx(x, t) , x > 0, t > 0 ,
wx(0, t) = tB , t > 0,

w(x, 0) = 50 e−x A , x > 0,

where the diffusion coefficient L follows a gamma distribution of parameters α = 2 and β = 1 truncated on the interval240

[0.5, 1], i.e., L ∼ Trunc[Ga(2, 1)] ; the spatial variation of the temperature at the left-end x = 0 is described by the241

s.p. g(t; B) = t B where B is a gaussian r.v. of mean µ = 4 and standard deviation σ = 0.5, i.e. B ∼ N(4; 0.5); the242

initial temperature is modelled by the s.p. f (x; A) = 50 e−x A being A a beta r.v. of parameters α = 3 and β = 2, that243

is, A ∼ Be (3, 2). We assume that all r.v.’s, A, B and L are mutually independent.244

Note that L is a positive 4-r.v. verifying conditions (10)–(11) and condition (41) since the moment generating245

function of r.v. −L:246

Φ−L(t) = E[e−tL] =
2.87295 e−(1+t)(−4 + 3 e0.5(1+t) − 2 t + t e0.5(1+t))

(1 + t)2

t→0−→ 1,

is locally bounded about t = 0.247

Since E
[
B4

]
= 3(0.5)4 < ∞ (see [5, p.26]), ∥g(t; B) − g(s; B)∥4 = ∥B∥4 |t − s| t→s−→ 0, then the 4-s.p. g(t; B) is m.f.248

continuous.249

Reasoning analogously as in Example 3 (see (56)–(57)) taking the s.p. f (x; A) = 50 e−x A and using condition
(10) because A is a bounded r.v., it is proved that f (x; A) is m.f. absolutely integrable. Furthermore, f (x; A) verifies
conditions given by (72), that is, f (x; A) is m.f. continuous (see the reasoning (55)) and∫ ∞

0

(∥ f (x; A)∥4
)2 dx ≤

√
50 M̃

∫ ∞

0
e−2xH̃ dx < +∞.

Hence, the hypotheses of Corollary 2 are satisfied and expression given by (74) is a solution 2-s.p. w(x, t) of problem250

(5)–(7). Figure 1 shows a two-dimensional plot of the expectation (plot (a)) and standard deviation (plot (b)) of251

w(x, t) on the spatial-time domain (x, t) ∈]0, 3] × [0, 30]. As it was pointed out in the Example 3, again truncation of252

the intervals of integration for the computation of the expectation and variance has been required (see expressions253

(75)–(76)). For the sake of clarity, we also provide three-dimensional plots for these statistical moments in Figure 4.254

5. Conclusions255

In this paper we have solved heat problems (2)–(4) and (5)–(7) which are formulated through random partial256

differential equations set in semi-infinite medium. To conduct the study we have extended the well-known deter-257

ministic sine and cosine Fourier integral transforms to the random scenario by taking advantage of mean square and258

mean fourth calculus. The provided examples illustrate the capability of the method to deal with other random partial259

equations formulated on unbounded domains to the positive spatial variable.260
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Figure 1: Approximations for the expectation E [w(x, t)] in 2D (plot (a)) and in 3D (plot (b)), on the spatial domain x ∈ ]0, 15] for some selected
values in the time interval t ∈ [0, 20] in the context of Example 3.
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Figure 2: Approximations for the standard deviation
√

Var [w(x, t)] (plot (a)) in 2D and in 3D (plot (b)), on the spatial domain x ∈ ]0, 15] for some
selected values in the time interval t ∈ [0, 20] in the context of Example 3.
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Figure 3: Two-dimensional approximations for the expectation E [w(x, t)] (plot (a)), and, the standard deviation
√

Var [w(x, t)] (plot (b)), on the
spatial domain x ∈ ]0, 3] for some selected values in the time interval t ∈ [0, 5] in the context of Example 4.
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Figure 4: Three-dimensional approximations for the expectation E [w(x, t)] (plot (a)), and, the standard deviation
√

Var [w(x, t)] (plot (b)) on the
spatial domain x ∈ ]0, 3] in the time interval t ∈ [0, 30] in the context of Example 4.
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