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Abstract – The aim of this paper is to present a new approach 

for rotor bar failure diagnosis in induction machines. The 

method focuses on the study of an approximation signal 

resulting from the wavelet decomposition of the startup stator 

current. 

   The presence of the left sideband harmonic is used as evidence 

of the rotor failure in most diagnosis methods based on the 

analysis of the stator current. Thus, a detailed description of the 

evolution of the left sideband harmonic during the startup 

transient is given in this paper; for this purpose, a method for 

calculating the evolution of the left sideband during the startup 

is developed and its results are physically explained. 

   This paper also shows that the approximation signal of a 

particular level, obtained from the Discrete Wavelet Transform 

(DWT) of the startup stator current, practically reproduces the 

time evolution of the left sideband harmonic during the startup. 

The diagnosis method proposed here consists of checking if the 

selected approximation signal fits well the characteristic shape 

of the left sideband harmonic evolution described in the paper. 

   The method is validated through laboratory tests. The results 

prove that it can constitute a useful tool for the diagnosis of 

rotor bar breakages. 

 
Index Terms—Broken rotor bars, fault diagnosis, startup 

transient, wavelet analysis. 
 

I. INTRODUCTION 

 

The diagnosis of rotor asymmetries in asynchronous 

machines has been deeply studied by many authors; a review 

of relevant papers in the field of rotor asymmetry diagnosis 

using steady state approaches can be found in [1]. According 

to the physical magnitude analysed for monitoring the rotor 

condition, different diagnosis methods have been proposed; 

there are approaches based on  the frequency domain analysis 

of stator currents [2-3], fluxes on search coils [4], axial flux 

on coils concentric with the shaft [5], vibrations [6] or rotor 

speed [7]. Methods based on the analysis of the spectrum of  

the stator current (Motor Current Signature Analysis, MCSA) 

have drawn most of the attention in the industrial 

environment, since this signal can be obtained directly from 

the usually already existing current transformers, avoiding 

the installation of any specific probe or the necessity for any 

intervention on the machine.  

The basis of the MCSA methods can be found in [2]. The 

rotor asymmetry introduces harmonics with characteristic 

frequencies in the spectrum of the stator current. The most 

important is known as the Left sideband harmonic, whose 

frequency is given by (1). 
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Where f is the supply frequency, s is the slip,  is the rotor 

speed and s is the synchronous speed. 

The breakage diagnosis approach consists of checking if 

the ratio between the amplitude of the fundamental harmonic 

and that of the sideband component is lower than certain 

values [8,9]. The main disadvantages of this method are the 

load-dependence of the results (the approach is not valid for 

unloaded or light-loaded machines), as well as the possibility 

of an erroneous diagnostic when harmonics with frequencies 

similar to those of the sideband harmonics are present due to  

other causes (such as voltage or load fluctuations or ball-

bearing faults) [10]. 

Moreover, all the approaches based on steady-state 

analysis have some inherent constraints, such as: 

- the impossibility of detecting broken bars in the outer cage 

of double cage machines [11] 

- poor frequency resolution and so, poor reliability in 

applications in which the load or supply conditions are not 

strictly uniform [12] 

   To avoid these disadvantages, some new methods based on 

the detection of the sideband components during the startup 

transient have been proposed. It is interesting to remark that, 

when using approaches based on the transient analysis, the 

load condition of the induction motor is unimportant [13]; the 

frequency of the sideband varies within a wide range during 

the startup process and its amplitude reaches values several 

times higher than in a stationary regime; and this is true for 

any load condition. This fact makes the detection of these 

components easier. On the other hand, these methods need a 

minimum inertia factor of the system or a minimum startup 

time [14]. This is necessary to avoid the influence of the 

electromagnetic transient current which completely masks the 

sideband component during the earliest stages of the startup. 

Another limitation of these methods is due to the fact that 

they are unsuitable for diagnosing machines fed through 

inverters; in these cases, in comparison with the direct on line 

startup, the slip remains low during the machine acceleration 

process and so, the frequency of the sideband remains very 

close to the main frequency, whereas its amplitude remains 
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low. Therefore, approaches based on transient analysis are 

especially suitable in applications with heavy direct on line 

startup processes (high inertia factor, long startup time). In 

fact, these are the cases in which a bar breakage is more 

likely to occur. Anyway, the limitations and application 

scope of transient and steady-state approaches are clearly 

different and, in certain way, complementary.  

 

The main concepts of the diagnosis methods based on the 

characteristic frequency evolution of the left sideband during 

the start up were described by Elder et al. [15]:  For not too 

fast startups, once the electromagnetic transient finishes, it 

can be assumed that the machine accelerates following a 

succession of stationary regimes with increasing speeds. 

Under such conditions, the left sideband harmonic 

continuously evolves, changing its frequency and amplitude. 

Its frequency evolves in a particular way: it starts being equal 

to the supply frequency when the machine is switched on. As 

the rotor accelerates, the frequency drops, reaching 0 Hz 

when the slip equals 0.5. Then, it increases again and nearly 

reaches the supply frequency, when the steady-state regime is 

reached. 

Toliyat [16] and Penman [17] introduced models of the 

induction machine which enable transient analysis  including 

the effect of broken bars. Qiu [18] proposed a time-varying 

frequency spectrum for the study of current during the 

transient. This spectrum enables observing the spectral 

components during the startup – in order to detect a possible 

pattern in their evolution. However, the frequency resolution 

was not high enough, and this made analysis of the resulting 

pattern difficult. 

The suitability of diagnostic methods based on transient 

analysis was substantially enhanced with the use of the 

Wavelet transform, a mathematical tool which is more 

suitable for analysing transient signals than the Fourier 

transform. In recent years, some methods based on the 

wavelet transform have been proposed for the detection of the 

left sideband component evolution within the startup current.  

 

 Burnet, Watson et al. [19,20] evaluated the ability  of 

different signal processing strategies for detecting the non-

stationary components due to the rotor asymmetry in the 

startup current, concluding that the best results are obtained 

with the Wavelet decomposition. They introduced a 

simplified approach for detecting the left sideband by 

analyzing the output of a single pass-band filter, based on the 

convolution of the current signal with a Gaussian wavelet. In 

[21], the increase of certain wavelet coefficients resulting 

from the DWT of the startup current is employed as an 

indicator of the presence of the left sideband; this method 

requires a pre-treatment of the current signal to suppress the 

fundamental component. The method proposed in [22] is 

based on the use of the Continuous Wavelet Transform 

combined with the wavelet ridge method, in order to reveal 

this characteristic frequency component. References [14, 23] 

describe a characteristic pattern in the low-frequency signals 

resulting from the DWT of the startup current as evidence of 

the existence of the left sideband component during this 

transient; and this pattern is physically explained. 

 

   In this paper, a method for the diagnosis of rotor bar 

breakages based on the application of DWT to the startup 

current is proposed. The diagnostic is based on comparing the 

time-evolution of the left sideband component, extracted 

from the experimental startup current, with its theoretical 

evolution, which has been previously deduced. It has to be 

remarked that the method allows the direct observation of the 

evolution of the left sideband harmonic during startup. This 

method differs from the approaches commented before, 

where the left sideband harmonic is detected indirectly by 

means of the alterations that it produces on different 

parameters or signals associated with the start up process.   

 

This paper is organized as follows: Section II presents a 

theoretical analysis of the left sideband harmonic evolution 

during the startup transient. A detailed description of the 

harmonic evolution during this transient is given, based not 

only on the frequency variations (already performed in the 

literature [15]) but also on the evolution of its amplitude. This 

section also explains a method for calculating the evolution 

of the left sideband in a given machine for specific startup 

conditions.  Section III describes a new method, based on the 

DWT, which enables the extraction of the left sideband 

harmonic from the primary startup current signal. In Section 

IV, the proposed method is validated by means of laboratory 

tests; the approach is applied to different startup currents, 

obtained from healthy and faulty machines. Finally, Section 

V introduces and validates a non-dimensional parameter 

which enables the quantification of the fault severity and 

automatic detection. The paper also includes three appendices 

where some expressions and concepts used in Section II are 

explained.  

 

II. EVOLUTION OF THE LEFT SIDEBAND 

HARMONIC DURING THE STARTUP 

 

   The aim of this section is to explain a method for 

approximately calculating the evolution of the left sideband 

harmonic during the startup in a cage motor with a broken 

bar. To avoid unnecessary complexity, an ideal magnetic 

circuit (no saturation, no magnetic losses, infinite iron 

permeability, uniform air-gap) and a uniform current density 

at the rotor bars are assumed.  

 

A. Determination of the Amplitude of the Left Sideband 

Harmonic in Stationary Regime 

The effects of broken bars can be analysed using the 

concept of “fault current” introduced by Deleroi [24]. 

Analysis of a machine with a broken rotor bar can be made 

considering the superposition of two configurations: the 

machine in healthy state, and the machine with a current 

source in the bar that breaks (fault current). The fault current 



is always equal to the current flowing through the same bar in 

the healthy machine but in the opposite direction, in such a 

way that the total current through the bar is null. The fault 

current flows through the short-circuit rings and the 

remaining bars, originating a magnetic field in the air-gap 

(fault field, BF); this field, superposed on the normal field of 

the healthy machine, causes alterations in its behaviour; more 

specifically, it induces the current harmonics in the stator 

windings that are used for the bar breakage diagnosis. 
At steady state, the fault current varies sinusoidally with 

time at the slip frequency. If f is the supply frequency, and fr 

is the frequency of the rotor current, then the frequency of the 

fault current (fF) is given by:                                                            
fsff rF                              (2) 

 

The shape of the spatial wave of air gap flux density BF 

(,t), produced by the fault field is a stepped bipolar wave, 

whose amplitude and spectral composition changes cyclically 

with time.                         
As stated in [2, 24], the spatial wave BF(,t) can be 

decomposed as the sum of spatial harmonics with 1, 2, 3..p 

..n pole pairs; these harmonics have a fixed position with 

respect to the rotor, but their amplitudes oscillate 

proportionally with the fault (or rotor) current. By applying 

Leblanc’s theorem to every harmonic field, two series of 

rotating components with constant amplitude and speed are 

obtained: a series with the same rotating direction as the rotor 

(+), and another series with the opposite direction (). The 

electrical speed related to the rotor has the same absolute 

value for all these components. This speed is given by (3): 

fsfF
r
Fn   22                         (3) 

Where 
r
Fn denotes the electrical speed related to the rotor 

of the rotating component of the fault field with n pole pairs 

with positive or negative rotating direction. 

    For analyzing the left sideband harmonic, only the wave 

with the same number of pole pairs as the machine (n = p), 

which rotates in the opposite direction to the rotor, has to be 

considered, since this is the harmonic inducing in the stator 

windings the voltages  with the frequencies given by (1). The 

amplitude of this rotating wave, for a given slip, is deduced in 

Appendix I, (AI-16) resulting: 
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where, 0 is the permeability of free space,   the radial air-

gap length, KFp is a complex factor defined by (AI-12), which 

depends on the slip and the constructive characteristics of the 

machine; this factor, deduced in appendix I, takes into 

account the distribution of the bars through the air-gap as 

well as the way in which the fault current is distributed 

among the rotor bars (rms value and time phase). Ir is the rms 

value of the current in a phase of the rotor, in the healthy 

machine. The rotating speed of the spatial wave BFp-, related 

to the rotor, is given by: 

pfspr

Fp

r

Fp /2/                (5)       

and its electrical speed, related to the stator (
Fp ) is given 

by: 

L

r
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The rotating field BFp- generates a three-phase emf system 

(eLs) in the stator winding, with a frequency fL  f. Since the 

stator can be considered short-circuited for any frequency 

other than the supply frequency [24], a three-phase system of 

currents with frequency fL (left sideband harmonics) flows 

through the stator windings, generating a sinusoidal field, 

with constant amplitude, which rotates synchronously with 

BFp- .  Similarly, the field BFp-  induces in the rotor bars a poly-

phase emf system (eLr) which produces the corresponding 

poly-phase system of currents and sinusoidal field, rotating 

also synchronously with BFp-  . 

The phenomena described above show that with regards to 

the analysis of the left sideband components of the stator 

current, the induction motor can be considered as a double 

short-circuited machine (rotor and stator phases in short-

circuit), which rotates at a given and fixed speed (assuming 

steady-state), and with an imposed rotating field  BFp- in the 

air-gap. 

Under these conditions, since saturation is not considered, 

the superposition principle can be applied and the left 

sideband components can be calculated as the stator phase 

currents of the double short-circuited machine with a 

imposed rotating field BFp- in the airgap , solving the system 

of phase equations: 

        




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tdi
LtiRte Li

iLiiLi

)(
)()(                (7)   

Where : 

i: is an index that varies from 1 to mr+3, being mr the 

number of rotor bars. This index identifies the phase of the 

machine (i=1,2,3 for the stator phases, i =4,5,… mr+3 for the 

rotor phases or bars) 

 )(teLi : is a column vector, whose ith  element is the emf 

induced in the ith phase by the field BFp- and the rotating 

fields generated by the stator and rotor currents that this field 

induces. 

 iR : is a diagonal matrix sized (mr+3)x(mr+3), whose 

non null elements are the phase resistances. 

 iL : is a diagonal matrix sized (mr+3)x(mr+3), whose 

non null elements are the phase leakage inductances. 

 

 )(tiLi , 








dt

tdiLi )(
are column vectors containing the phase  

currents induced by BFp-  and its derivatives. 

The details for solving (7) from an imposed rotating field 

BFp- in the air-gap are explained in  the Appendix II. 

 

 



B. Evolution of the Left Sideband Harmonic during a Startup 

Equations (7) have been used in the previous section for 

analysis at steady state; moreover, these equations also allow 

the calculation of the currents (and so, the sideband 

components) during the startup transient, whenever the 

evolution of the yoke flux vector )(tr
Fp


 through the 

transient has been previously calculated.  This space vector, 

defined by (AI-17), represents the distribution of the yoke 

flux produced by the fault field component BFp .  From (AI-

12 ) and (AI-17) it can be seen that, for a specific machine,  

this vector depends on the slip and the rms value of the rotor 

phase current Ir. Strictly speaking, Ir can only be defined for a 

stationary regime. However, during a not too fast startup, 

once the electromagnetic transient after the connection 

extinguishes, the machine evolves approximately following a 

succession of stationary regimes. For each time, the rotor 

currents approximately constitute a poly-phase system, so 

that an rms value can be assigned, using (8):  
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)(                           (8) 

Where iri(t) designates the instantaneous value of the 

fundamental component of the ith phase current of the rotor. 

To obtain a realistic evolution of the yoke flux vector
Fp


 

during the startup transient, a numerical model of the 

induction machine was used for calculating the evolution of 

the speed and rotor currents. For this purpose, any model able 

to calculate these magnitudes during the startup would be 

suitable; for simplicity, the startup was simulated using the 

standard induction machine SI units block of the 

MATLAB/SIMULINK library. Table I gives the parameters 

used for the simulation. These parameters correspond to the 

1.1 kW industrial cage motor used for the experimental 

validation (see section IV) and were obtained from 

conventional tests and from the manufacturer’s information. 

Fig. 1 shows the process followed for the calculation of 

the yoke flux vector
Fp


 during startup.  

 

TABLE I 
MACHINE DETAILS AND PARAMETERS USED IN THE SIMULATION 

 

Rotor type:                        Squirrel-cage 

Referente frame:               stationary 

Nom.power (VA)       L-L volt (Vrms)            freq(Hz) 

                   1870                     400                              50 

Stator    Rs (ohm)             LIs (H) 

                  10.30        0.02 

rotor   Rr (ohm)               LI’r (H) 

                  5.8          0.02 

Mutual inductance Lm(H) 

                 0.385 

Inertia J(kgm2)    friction factor F(Nms)    pair of poles p 

                 0.25                        0                                  2 

Initial conditions: s() th(deg)  isa,isb,isc (A) pha,phb,phc(deg) 

                               1    0            0    0    0           0      0     0 

Simulation parameters: stop time(s)   fixed step size(s)      solver opt. 

                                                 2               0.0002               ode4(Runge-Kutta)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig.1 Process for the calculation of the vector
Fp


during startup 

 

Fig. 1(a) and Fig. 1(b) show the evolution of the rotor 

speed (t) and current in one of the rotor phases iri(t); they 

were obtained by numerical simulation as explained 

previously. Fig. 1(b) also represents the evolution of the rms 

value of the rotor currents Ir(t). This was obtained by 

applying (8) to the calculated rotor currents; Fig. 1(c) shows 

the factor  KFp, deduced in  Appendix I,  which introduces the  

influence of the slip on the distribution of the fault current 

through the rotor bars and so, in the amplitude of the fault 

field component BFp . This graph was obtained from the 

calculated rotor speed (t) and (AI-12); the evolution of KFp 

with the slip is physically explained in Appendix III. Fig. 1(c) 

also shows the evolution of the module of the yoke flux 

vector Fp


. It was obtained by substituting the calculated 

values of Ir, and KFp in (AI-17). Fig. 1(a) shows the evolution 

of the electrical speed of this vector, Fp-(t), in the stator 

reference frame. It was obtained from (t), (1) and (6). 

Finally, Fig.1(d) shows the evolution of (t) (argument of the 

yoke flux vector Fp


 ) and (t) (position of the rotor in the 

reference frame of the stator); these magnitudes were 

calculated by integration of the electrical speed of the yoke 

flux vector and that of the rotor:  

 
t

Fp dtt
0

)(                           (9) 

 
t

dtpt
0
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   Once the yoke flux vector Fp


is known for each time 

during the startup, the system (7) can be numerically 

integrated. Fig. 2 shows the evolution of the left sideband 

harmonics during the startup transient, in one of the phases of 

the stator; and computed following the procedure described 

above. 

                                    

 

 

 

 
fIg. 2.Evolution of left sideband harmonics during the startup 

(simulation) 

 

Basically, the left sideband harmonics evolve as sinusoidal 

waves whose frequency and amplitude vary continuously, 

following characteristic patterns. The frequency decreases 

continuously from when the machine is connected (t=0), 

becoming null when the rotor speed equals s/2 (t  0.85sec. 

see Fig.1(a) and Fig.2). From this point, the frequency of the 

sideband components increase again, keeping a constant 

value when the stationary regime is reached; this evolution is 

according to (1), although this expression was deduced for 

steady state conditions.  

The amplitude of the left sideband also shows a 

characteristic evolution. Initially, from t=0 the amplitude 

decreases, becoming zero when the frequency becomes null.  

During the second half of the startup (t >0.85 sec.) the left 

sideband amplitude initially grows, reaching a maximum 

which exceeds the amplitudes reached during the first half of 

the startup. This behaviour can be explained taking into 

account the evolution of the factor KFp, which always 

increases when the slip reduces (see Fig.1c and Appendix III) 

and also by the Lenz law: the fault field component BFp-  

produces variations of flux linkages at the short-circuited 

windings of rotor and stator; so, these windings react by 

generating currents that tend to compensate the magnetic 

field which causes the flux variations. During the first part of 

the startup, the contribution of the rotor windings to the 

compensation of the fault field component is important 

because, as it is shown by (5), when the slip is high, the bars 

are exposed to rapid variations of flux. On the other hand, 

during the second part of the startup, the slip is lower and so 

the flux linkage variations in the rotor are lower. The 

contribution of the rotor to the compensation of the fault field 

component is then irrelevant. The stator currents have to 

accomplish the compensation by themselves, and so, they 

need to be higher.  

Finally, the amplitude of left sideband components 

reduces when the startup process finishes. This decrease is 

caused by the reduction of the amplitude of the fault field 

component – due to the reduction of the amplitudes of the 

fundamental components of the rotor currents. 

The features described for the amplitude of the left 

sideband are consistent with the results published by several 

authors. Williamson and Smith [25], provide a graph for the 

“theoretical variation of amplitude of the 2s-1 f component 

of stator current with rotor speed”. Although this graph is 

deduced at steady state condition, its general shape fits well 

the description given in this section. The existence of a 

maximum in the sideband amplitude, during the second half 

of the startup was also establish by Burnett et al. [19]; in that 

work the continuous wavelet transform was applied to 

experimental startup currents of faulty machines; from the 

observation of the resultant three-dimension graphs, the 

authors state that “as the non-stationary components travel 

back towards the 50 Hz component, in the later stages of the 

transient, the amplitude of the sidebands pass through a peak 

value”. References [14,23] introduce a method for 

diagnosing bar breakages based on the analysis of the high 

level wavelet signals resulting from the DWT of the startup 

current. When analysing a faulty machine, the evolution (trip) 

of the sideband component through the frequency bands of 

the detail signals (first decreasing and later increasing) 

produces two groups of oscillations in every detail signal, 

arranged in a characteristic mode. It can also be observed that 

the oscillations corresponding to the interval where the 

frequency increases (placed at the second half of the startup) 

tend to reach larger amplitudes than those corresponding to 

the decreasing zone. 

 

 

III EXTRACTION OF THE LEFT SIDEBAND 

HARMONIC USING THE DWT 

 

This section explains the procedure for extracting the left 

sideband harmonic from the stator startup transient current, 

by means of the DWT. 

Conceptually, the level n DWT decomposition, of a sampled 

signal is(t) = (i1, i2, i3 ...... iq), consists of a digital filtering 

process with n+1 stages. The signal is passed through n pass 

band filters and a low pass filter. Resulting from this multiple 

filtering process, n vectors of detail coefficients j= j
i (j: 

decomposition level 1 j  n;  1  i  q2-j ) , and a vector of 

approximation coefficients n= n
i  are obtained. Actually, 

the process for obtaining the DWT, is made using a recursive 

algorithm of high computational efficiency denominated 

“Mallat’s algorithm” or pyramidal algorithm [26,27].   

From these coefficients, the signal can be reconstructed using 

the inverse transform (IDWT). The reconstructed signal 

consists of the sum of n detail signals and an approximation 

signal, each one containing the same number of samples, q,  

as the original signal: 

 

                 nns adddti  ...)( 21                  (11) 

 

An analysis of the procedure for obtaining the 

reconstructed signal shows that every signal resulting from 

the decomposition contains the components of the original 

signal included in a particular frequency band.  The detail dj 
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contains the information concerning the signal components 

whose frequencies are included in the interval [2-(j+1)fs, 2-jfs] 

Hz. The approximation signal an includes the low frequency 

components of the signal, belonging to the interval [0,          

2-(n+1)fs] Hz [28]. 

If the supply frequency f is included in the detail dnf, then 

the approximation of this level (anf), only contains signal 

components with frequencies below f. In the case of healthy 

machines, these components are negligible if compared with 

the low frequency oscillations produced by the 

electromagnetic connection transient. Once this transient is 

finished, anf  remains almost null. 

If a bar breakage exists, the left sideband harmonic has a 

significant amplitude throughout the startup process; since its 

frequency is always below f, it causes a significant increase in 

the energy of the approximation signal anf during the startup 

process; in Section IV it will be shown that the evolution of 

anf over time follows a pattern similar to that described in 

Section II for the left sideband harmonic. This enables a very 

reliable diagnosis of bar breakages. 

The value of the decomposition level nf depends on the 

sampling frequency, and this can be easily calculated from 

condition (12) that specifies that the upper limit of the 

frequency interval of anf is lower than the supply frequency:  

ffs
n f 

 )1(
2                           (12) 

Therefore, the decomposition level of the approximation 

signal which includes the left sideband harmonic, is given by: 

                                                       

         (13) 

 

 

 

IV VALIDATION OF THE METHOD 

 

The method was validated by means of laboratory tests 

performed on two different machines: a standard 1.1 kW 

squirrel cage motor and a laboratory machine. Each machine 

was tested under both healthy and faulty conditions. 

The experimental test-bed used (Fig.3) was very simple: the 

startup current was captured with a digital oscilloscope, using 

a current transformer (relation 15/5, precision class 0.5) and a 

shunt (6A/60 mV, precision class 0.5). The current signal was 

then transferred to a PC and finally analyzed by applying the 

DWT. For this purpose, the MATLAB  wavelet  toolbox  was  

 

 

 

 

 

 

 

 
 
 

Fig. 3. Experimental test-bed 

 

used. For the application of the DWT, Daubechies-44 was 

selected as the mother wavelet. The reasons for selecting 

such a high order mother wavelet was to avoid overlapping 

between adjacent wavelet signals, as explained [14, 28].  

 

A. Commercial Squirrel Cage Motor Tests 

 The characteristics of the tested motor are: rated power 

1.1 kW, rated voltage: 400V (star), 4 poles, rated speed: 1410 

rpm and 28 rotor bars. The motor was directly coupled to a 

D.C. machine.  The induction motor was started direct on 

line, the excitation and armature windings of the D.C. 

machine were kept open (no load startup). The total inertia of 

the group amounts to J = 0.25 kgm2. 

For capturing the startup current, a sampling rate fs = 5000 

samples/s was used; according to (12), the approximation 

signal with level nf = 6 (a6) is that containing the left sideband 

harmonic. More accurately, this approximation contains the 

part of the sideband component with frequency below the 

upper limit of the frequency band corresponding to a6, given 

by: 

Hzff sn
sup 0625.39250002 )16()1(

 
        (14) 

Fig. 4 shows the startup primary current and the level-6 

approximation signal, corresponding to a test under healthy 

conditions. After the test, the rotor of the machine was 

removed and a bar breakage was forced; this was achieved by 

drilling a hole in the connection point between the bar and the 

short-circuit ring. Finally, the machine was re-assembled, and 

tested again. Fig. 5 shows the startup primary current 

measured under these conditions, and the corresponding 

level-6 approximation signal. It can be clearly observed that, 

in the case of the machine with a broken bar (Fig.5), large 

oscillations appear within the level-6 approximation signal. 

They do not occur within the corresponding signal for the 

healthy machine.  

Moreover, in the case of the faulty machine, it can be 

observed that the evolution of the frequency and amplitude of 

 

 

 

 

 

 

 
 
 

Fig.4.Tested startup current is and level 6 approximation a6 for the 
case of healthy machine (test of a commercial machine) 

 

 

 

 

 

 
 
 

Fig.5.Tested startup current is  and level 6 approximation signal a6  
for the case of one broken bar (test of a commercial machine) 
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the oscillations of the approximation signal a6 matches the 

evolution of these magnitudes for the left sideband harmonic, 

calculated in Section II (Fig. 2): It can be seen that frequency 

decreases progressively, becoming null, and then increases 

again. Its amplitude also decreases initially, becoming null at 

t  0.9 sec. and then increases, reaching a maximum at t  

0.125 sec. 

   It has to be remarked that the similarity between the a6 

approximation signal (Fig.5) and the theoretical sideband 

waveform (Fig.2) is not achieved at the beginning (t < 

0.21sec.) and during the last stages (t >1.63 sec.) of the 

startup. As commented before, this is because during these 

periods, the frequency of the sideband component is higher 

than the upper limit of the frequency band fup associated with 

the approximation signal. So, these parts of the sideband 

component are not included within the approximation signal 

under study. 

 

B. Laboratory Machine Tests: These tests were performed 

using a laboratory machine, with very different constructive 

characteristics from those of the motor tested previously. This 

is a universal laboratory machine with p=1 and twelve 66-

turns coils (coil pitch 11/12) at the secondary winding (placed 

at the stator); the endings of each coil are accessible; and so, 

they can connected to simulate a cage configuration. The 

primary winding (placed at the rotor) is a balanced three-

phase, delta-connected winding. This configuration enables 

easy testing of the resultant induction machine under 

different fault conditions, achieved by opening 1,2,3… stator 

coils corresponding to 2,4,6… broken bars. For these tests a 

sampling frequency fs=2000 samples/s was used; according to 

(13) and (14), for this frequency, the level of the 

approximation signal which contains the left sideband 

harmonic is nf = 5, and the upper limit of its frequency band 

is fup=31.25 Hz.  Fig. 6 shows the result of the test for the 

healthy machine, and Fig. 7 for the machine with two broken 

bars (a stator coil opened).   In both figures, the upper graph 

 

 

 

 

 

 

 

 
Fig.6.Tested startup current and level 5 approximation signal  a5 

for the case of a healthy machine (laboratory machine test) 

 

 

 

 
 
 
 
 

Fig.7.Tested startup current and level 5 approximation signal a5 
for the case of a faulty machine (laboratory machine test) 

corresponds to the startup line current, whereas the waveform 

below is the level 5 approximation signal resulting from the 

DWT of the startup line current. 

When comparing between both approximation signals, the 

same phenomena described for the case of the cage motor can 

be observed: a clear perturbation appears within the 

approximation signal of the faulty machine. This perturbation 

does not exist when the machine is tested under healthy 

conditions. Moreover, the frequency and amplitude of this 

perturbation fit well the patterns described in the Section II 

for the theoretical evolution of the left sideband component. 

It is noticeable the similitude of the results of the tests for 

both machines, in spite of their different constructive 

characteristics and parameters used for calculating the DWT. 

This fact confirms the validity of the physical bases from 

which the approach is derived. 

   In any case, the tests show that the analysis of the 

approximation is a tool sufficiently sensitive to clearly 

diagnose a rotor fault, even when only one bar is broken. The 

fault diagnoses achieved by this approach are highly reliable, 

because it is very unlikely that a fault, or operating condition 

other than a rotor asymmetry, could produce a perturbation 

within the approximation signal with amplitude and 

frequency following a pattern similar to that described in 

Section II. 

 

V.QUANTIFICATION OF THE DEGREE OF 

SEVERITY OF THE FAULT 

 

Additional tests were performed on both machines with an 

increasing number of consecutive broken bars; the figures are 

not included here due to space considerations. The results of 

these tests show that, when the number of successive broken 

bars increases, the shape of the approximation signal anf 

remains practically unchanged (that is, fits that of the left 

sideband) – but the amplitude of the oscillations increase. 

This suggests that the energy of this approximation signal 

could be a suitable magnitude for defining a parameter for 

quantifying the severity of the fault. This parameter can be 

defined as: 
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Where ij is the value of the jth sample of the current signal; 

anf (j)  is the jth element of the order nf approximation signal; 

Ns is the number of samples of the signal, until a steady-state 

regime is reached; and Nb is the number of samples between 

the origin of the signals and the extinction of the large 

oscillations within the approximation signal, due to the 

electromagnetic transient produced immediately after the 

connection and the border effect. This non-dimensional 

parameter nf represents the ratio between the energy of the 

current signal and that of the approximation signal anf within 

the referred time interval, expressed in dB. Table II shows the 
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variation of this parameter for both tested machines and for 

differing numbers of broken bars. 

When the number of consecutive broken bars increases, a 

significant reduction in this parameter can be observed. So 

this parameter would be suitable for the quantification of the 

severity of the faults and thus, for possible implementation of 

automatic bar breakage detection systems.  

 

TABLE II 

VARIATION OF THE PARAMETER nF WITH THE NUMBER OF BROKEN BARS 

 

Machine 

 

Status 

 

nf (dB) 

 

nf (dB) 

Cage motor Healthy 44.9 - 

Cage motor 1 broken bar 35.1 -9.8 

Cage motor 2 broken bars 29.3 -15. 6 

Lab.machine Healthy 39.5 - 

Lab.machine 2 broken bars 25.8 -13.7 

Lab.machine 4 broken bars 21.1 -18.4 

 

 

VI. CONCLUSIONS 

 

   The paper proposes a physically based approach for the 

diagnosis of rotor asymmetries in induction machines. The 

method is based on the application of the Discrete Wavelet 

Transform to the startup stator current. It is shown that a 

given approximation signal resulting from the DWT of the 

stator startup current (whose level depends on the sampling 

rate), practically reproduces the evolution of the left sideband 

harmonic during the startup process. The similitude between 

the shape of this approximation signal and the characteristic 

waveform of the left sideband harmonic during the startup 

(also deduced in this paper) is reliable evidence of a rotor 

fault; an expression providing the level of this approximation 

signal as a function of the sampling rate is deduced.  

To facilitate the evaluation of the shape of the 

approximation signal, this paper includes an analysis of the 

evolution of the left sideband harmonic during startup; from 

this analysis, an approximated method for calculating the 

evolution of this harmonic in a given machine is proposed 

and also, a general description of its waveform and main 

characteristics is given and explained. 

As a complement of the qualitative diagnosis method 

proposed, a non-dimensional parameter is introduced to 

facilitate preliminary fault analysis and the automatic fault 

detection. 

The proposed method is validated by testing a commercial 

induction motor and a laboratory machine. The results of the 

tests show that this approach is sensible enough for a clear 

and reliable diagnosis of the rotor fault, even when only one 

bar is broken.    

 

APPENDIX I: Deduction of the expressions of  KFp  BFp- , 

Fp
Φ


as functions of the constructive parameters and the 

slip: 

   For a given slip, the amplitudes of the fault field 

components depend on the amplitude of the fault current, (or 

equivalently, on the rms value of the rotor currents). In 

addition, they also depend on the way in which the fault 

current is distributed among the rotor bars.   

   The distribution of the fault current through the rotor bars 

as a function of the slip and of the machine parameters was 

deduced by Deleroi [24]; Fig.AI-1 shows the equivalent 

circuit for the fault current  distribution in a rotor cage with N 

bars, in which “b0” is the broken bar.  

 

 

 

 

 

 

 

 

 
Fig.AI-1: Equivalent circuit for the fault current 

 

  In this circuit: 

ZR=RR+j s·XR; impedance of a portion of ring between two 

consecutive bars. 

Zb=Rb+j s·Xb; impedance of a bar. 

Ib0: time phasor of the current injected in the broken bar, 

equal to the fault current (this is, equal to the bar current in 

the healthy machine, but with the opposite sign). 

Ibi: time phasor of the current in the ith bar  

IRi: time phasor of the current in the ith portion of the ring. 

  Deleroi proved that: 
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where d is a complex number (damping factor) which 

depends on the machine characteristics and on the slip, 

defined by (AI-2 ), (AI-3 ), (AI-4 ) 
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   Xmr is the mesh reactance of the equivalent circuit and bt  the 

tooth pitch. 

   Choosing a suitable time origin:  

Ib0 = -Ir e j0                            (AI-5) 

   Being Ir the rms value of the current in a rotor bar, for the 

slip s. 

   Assuming symmetry in the cage with respect to the broken 

bar: 
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   The current through each bar (see Fig.AI-1) can be 

calculated as: 

Ri1Ribi III                                 (A1-7) 

    

From (AI-1), (AI-6), (AI-7), results: 

2

)(
)( r1i I

 
d1dII i-bNbi                           (AI-8) 

   Once the currents through the bars have been calculated, 

the next step consists of calculating the space vector of the 

nth order component of the current density wave generated 

by the fault field; using the formulation of the space vector 

theory [29], the nth order current space vector generated by 

b0, is given by: 
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   The expression within brackets is the magnitude of the 

vector, which oscillates in time; its argument is constant and 

coincides with the coordinate of b0 which has been selected as 

the origin of angular coordinates. 

   The current space vector produced by every two bars 

symmetrically placed with respect b0 is given by: 
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 where s is the rotor slot pitch, in radians. The resultant 

space vector of the nth wave of current density is obtained by 

adding the space vector produced by each bar:  
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the complex factor KFn takes into account the distribution of 

the cage bars along the air-gap and also the  way in which  

the fault current is distributed through the rotor bars (rms 

value and time phase). The interpretation of this factor is 

similar to that of a conventional winding factor, since it 

enables the calculation of the total order n component of the 

current density wave (or of the yoke flux wave) from that 

created by a single conductor; but in this case, its value not 

only depends on the constructive parameters of the machine, 

but also on the slip. It could be called “order n winding 

factor of the fault field”, for a given slip.  

   Once the space vector 
Fni


is calculated, the space vector 

theory [29] determines the amplitude of the order n 

component of the spatial wave of flux density of the fault 

field: 
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  The order n spatial vector of yoke flux of the fault field, is 

obtained [29], as the product of the nth order unit inductance 

per conductor (Lun) and the space vector of current 

density
Fni


 : 
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where: 
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2 n

D
Lun
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
                               (AI-15)     

being D the average diameter of the airgap and  the axial 

length of magnetic circuit. 

  Equations, (AI-13), (AI-14) show that the fault field, as 

stated in [2,24], is built adding the components with 1,2...p..n 

pole pairs; each component has a constant position related to 

the rotor, but an oscillating amplitude. The arguments of the 

current density and yoke flux spatial vectors of all the 

components coincide, and they are equal to the angular 

coordinate of the broken bar; this means that the current 

density and yoke flux spatial waves of all the components 

have a maximum at this point. The time phases of these 

vectors depend on their order (because KFn does); and this 

means that the components with different orders reach their 

maximums at different times and so, the fault field varies not 

only its amplitude, but also its spectra (or shape) cyclically.  

   Equations (AI-13) and (AI-14) also show that every 

component of the fault field can be decomposed as the sum of 

two rotating fields with constant amplitudes and opposite 

directions (Leblanc’s theorem). Considering the negative 

rotating direction components and particularizing n= p in 

(AI-13) and (AI-14), result:  
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These expressions give the amplitude of the flux density 

wave and the yoke flux vector of the fault field component 

that induces the left sideband harmonics; the superscript r 

indicates that the yoke flux vector is related to the rotor 

reference frame. 
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APPENDIX II: Calculation of the left sideband 

component in steady-state 

 

Using the formulation of the space vector theory [29], the 

emfs in (7) can be calculated as: 

)Re(
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              (AII-1) 

where: 

Nci is the number of conductors in series of ith phase  
*
ik


 is the conjugate of the complex winding factor of ith 

phase  

p


 is the resultant, order p, space vector of the yoke flux 

related to the same reference frame than 
ik


. It will be denoted 

as s

p


when related to the stator, and as r

p


when related to the 

rotor reference frame. 

For calculating a stator phase emf (i≤3), the resultant yoke 

flux vector is calculated as the sum of the corresponding 

space vectors generated by the fault field, the stator currents 

and the rotor currents referred to the stator reference frame:  
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where: 

 is the coordinate (in electrical radians) of the reference 

frame of  the rotor related to the stator reference frame: 

tp                                   (AII-3) 

Lr
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 is the yoke flux vector produced by the rotor currents 
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Ls


 is the yoke flux vector created by the stator currents 

(this is, by the left sideband components) 
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s

Fp


 is the yoke flux vector originated by the fault field 

component BFp- , related to the stator reference frame, which 

is calculated from (AI-17): 
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 (electrical radians) is the argument of this vector, which 

varies with time: 
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For calculating the rotor emfs. (i≥4) the yoke flux has to be 

related to the rotor reference frame:  
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For a specific machine and stationary regime (characterized 

by the slip or rotor speed), the rms value of the rotor current 

Ir can be calculated; then, using (AI-12), (AI-17), (AII-3) and 

(AII-6) the vectors s
Fp

r
Fp  


,  are determined. Finally, the left 

sideband components can be obtained by numerically solving 

the equation system (7)  

APPENDIX III: Variation of the factor KFp with the slip 

 

   The factor KFp depends on the slip through the damping 

factor d. Fig.1(c) shows the variation of KFp when the slip 

varies from 1 to 0. This curve was computed from (AI-2 ), 

(AI-3 ), (AI-4 ), (AI-12) using the parameters of the 1.1kW 

motor tested in Section IV. 

   The factor increases as the slip decreases. This behaviour 

can be explained by means of (AI-2), (AI-3) and (AI-4): 

When the slip is low, A is small (A<<1) and the damping 

factor d1.This means that the fault current injected at the 

broken bar distributes quite equitably among the other bars. 

As an example, Fig. AIII-1(a) is a qualitative representation 

of the current density space vector diagram for this case,  in a 

bipolar machine with N=12 bars, at a certain time; the current 

density vectors generated by the bars 1, 2…N-1 constitute 

approximately a balanced star, giving a sum almost null. So, 

the resultant current density vector approximately equals that 

produced by the bar b0: 10,  FpKFpFp ii


 . 

On the other hand, if the slip is high, then A  1, and the 

damping factor d tends to zero and so, as indicated (AI-1), 

the fraction of the fault current circulating through a certain 

bar is substantially lower than that flowing through the 

previous bar. This means (see (AI-8)) that most of the fault 

current injected from the broken bar circulates throughout the 

adjacent bars (b1, bN-1), leading to the vector diagram of 

Fig.AII-1(b), in which the current density vector generated by 

b0 is practically compensated by those produced by b1 and   

bN-1. 
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Fig.AIII-1: Current density vector diagram for the cases: a) low slip (KFp1); 
b) high slip (KFp<<1) 

 

In this way, the resultant current density vector is 

substantially lower than in the previous case: 

 10,  FpKFpFp ii

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