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Abstract— In this paper, a cutting edge time frequency 

decomposition tool, the Hilbert-Huang Transform (HHT) is 

applied to the stator startup current in order to diagnose the 

presence of rotor asymmetries in induction machines. The 

objective is to extract the evolution during the startup transient 

of the left sideband harmonic (LSH) caused by the asymmetry, 

which constitutes a reliable evidence of the presence of the fault. 

The validity of the diagnosis methodology is assessed through 

several tests developed using real experimental signals. 

Moreover, in the paper, an analytical comparison with an 

alternative time-frequency decomposition tool, the Discrete 

Wavelet Transform (DWT) is carried out. This tool was applied in 

previous works to the transient extraction of fault-related 

components, with satisfactory results, even in cases in which the 

classical Fourier approach does not lead to correct results. The 

results of the application of the HHT and DWT are analyzed and 

compared, obtaining novel conclusions about their respective 

suitability for the transient extraction of asymmetry-related 

components, as well as the equivalence, with regards to the LSH 

extraction, between their basic components: intrinsic mode 

function, for the HHT, and approximation signal for the DWT.  

Keywords- rotor asymmetries; startup transient; fault diagnosis; 

Hilbert-Huang Transform; wavelet analysis;  

I.  INTRODUCTION                             

During these recent years, predictive maintenance of 
electrical machinery has drawn the attention of many 
companies, due to the huge costs caused by unexpected failures 
in these machines. Early detection of broken rotor bars in 
induction machines has become a field of special interest. This 
constitutes a dangerous fault, which might not show apparent 
symptoms of its presence during its early stages, propagating 
towards the adjacent bars and leading to an abrupt collapse of 
the machine unless continuous monitoring of certain quantities 
has been carried out [1,2]. 

The most spread method for the diagnosis of rotor 
asymmetries in the industrial environment is based on the FFT 
analysis of the steady-state stator current and the study of two 
harmonic components appearing around the fundamental 
component (sideband components) [3-6]. This approach 
provides robust results when the machine operates under a 
certain level of load and perfect stationary regime, but it has 
some important drawbacks when it is applied to diagnose the 
condition of unloaded or light-loaded machines, machines 

driving variable torque loads (for instance, motors driving 
mills, compressors, gear reducers…) or machines supplied with 
fluctuating voltages [4, 6-7]. Some methods based on the study 
of the transient processes of the machine [8] and, more 
concretely, of the startup transient [7, 9-15], have been 
developed recently. The implicit or explicit basis of these 
techniques lies in the detection of the left sideband harmonic 
(LSH), associated with the fault, during that transient. The 
characteristic evolution of this component constitutes a reliable 
evidence of the presence of the breakage. A method based on 
the application of the Discrete Wavelet Transform (DWT) to 
the stator startup current was introduced recently by the authors 
[7, 12-14]. Unlike other approaches, the method is focused on 
the study of the high level wavelet signals (approximation 
signal and detail signals) resulting from the analysis. The use 
of the wavelet signals (instead of the coefficients) enables a 
clearer interpretation of the physical phenomenon taking place 
in the machine; clear patterns caused by the evolution of 
asymmetry-related components appear in these signals. The 
patterns make possible the diagnosis of the fault, even in cases 
in which the Fourier analysis does not lead to correct 
diagnostics [7].   

Despite the satisfactory results of the DWT method for a 
wide range of tested motors (from 1.1 kW up to several MW), 
some issues still remain. Firstly, despite not being a critical 
problem, the selection of the mother wavelet for the application 
of the DWT is somehow arbitrary, since there is not a clear rule 
for selecting the optimal mother wavelet for a specific 
application. With regard to this fact, design of specific 
wavelets, suitable for the extraction of the LSH, has been 
proposed in recent works [15]. Other issue lies in the overlap 
between frequency bands associated with the wavelet signals 
according to Mallat algorithm, which could make not suitable 
the selection of a particular mother wavelet, mainly if its order 
is low (low number of filter coefficients) [13, 25]. Also, the 
boundary distortion introduced by the transform might, in some 
specific cases, make difficult the identification of the left 
sideband component evolution, mainly if the startup transient is 
very fast. 

Recently, a novel time-frequency decomposition tool, the 
Hilbert-Huang Transform (HHT), has been proposed. Its 
application has been mainly focused in the predictive 
maintenance of Nuclear Reactors as well as applications in 
other scientific areas [16]. Some recent contributions dealing 
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with diagnosis of bearing faults in electrical machinery have 
been also presented [17-18], although they deal with the study 
of other quantities and regimes. This tool has been claimed to 
provide certain advantages in comparison with wavelet-based 
and other time-frequency decomposition tools. 

In any case, it has to be remarked that the methodology 
here developed, is valid for machines started direct on-line. 
Further modifications would be needed for adapting the 
philosophy to inverted-fed machines [30]. 

The main objective of this paper is to analyse the viability 
of the HHT when diagnosing the presence of rotor asymmetries 
in an induction machine. The study will be focused in its 
performance regarding the transient detection and extraction of 
the LSH, drawing the attention on some aspects which might 
be improved with the HHT with respect to DWT (no necessity 
of selection of mother wavelet, avoidance of the shift-variance 
problem caused by the decimation inherent to the DWT [19-
20], or possibility of application of automatic image 
recognition techniques). Results from the tests carried out on 
real machines are presented. Finally, advantages and 
drawbacks of each approach are discussed. Important 
conclusions are reached about the equivalence between their 
basic decomposition components, regarding the transient 
extraction of the LSH; the intrinsic mode function (IMF) and 
the approximation signal (an), covering frequencies below the 
fundamental.     

II. PHENOMENON DESCRIPTION 

When a rotor bar breaks, two harmonics (sideband 

components) appear around the supply frequency in the FFT 

spectrum of the steady-state current. Their frequencies are 

given by (1) (s= slip, f =supply frequency) [3]. 

                             )21( sff H S
                                 (1) 

During the startup, the left sideband harmonic (LSH) 

(negative sign in (1)), evolves in a particular way in frequency 

and amplitude. In [12] the theoretical waveform of this 

harmonic during that transient was justified using the space 

vector theory and the approach introduced by Deleroi [21] for 

studying the bar breakage physical phenomenon. This 

waveform, calculated for a 1.1 kW commercial cage motor 

with a broken bar is shown in Fig. 1. 

 

 

 

 

Figure 1.  Evolution of the LSH in a stator phase during the startup transient. 

The evolution of the frequency and amplitude of the LSH 
during the transient is described next: 

- Its frequency (fLSH), at the beginning, is equal to the 
supply frequency f. As the slip s decreases from 1 to almost 0 
during the startup, the frequency of the LSH decreases firstly 
until becoming zero. Then, it increases until reaching a value 
close to the supply frequency f. This characteristic evolution in 
frequency is according to the expression (1) (component with 
negative sign), valid for steady-state.  

- Its amplitude decreases firstly from an initial value, until 
the slip equals 0.5. Then, it increases until reaching a 
maximum value (higher than the initial amplitude) and it 
decreases again until reaching the steady-state amplitude. The 
description and physical interpretation of this evolution is also 
carried out in [12]. 

III. HILBERT-HUANG TRANSFORM AND DISCRETE 

WAVELET TRANSFORM  

A. Hilbert-Huang Transform (HHT) 

   Recently, Huang and coworkers [16, 22] have introduced a 

new signal analysis technique based on the decomposition of a 

complex signal onto a sum of quasi-monocomponent ones 

(Intrinsic Mode Functions, IMF’s) by using an empirical 

approach (Empiric Mode Decomposition, EMD),  and on their 

representation within the context of the Complex Trace 

Method first introduced by Gabor [23]. This method, 

formulates a signal, X(q) ,(q representing  either time or an 

spatial coordinate) as the real part of a complex trace, Z(q), 

 

                                  Z(q)=X(q)+iY(q)                                   (2) 

 

where the imaginary part, Y(q), is the Hilbert transform: 
                                                                                                                                   

  




 )'/(')'(1)( qqdqqXPVqY


                    (3) 

where PV indicates the principal value of the singular integral. 

The complex conjugate pair (X(q); Y(q)) defines the 

amplitude, a(q), and  phase θ(q), as an analytical function of 

the q-variable: 

 
)()()( qieqaqZ                                    (4) 

 where, 
                                        

  ))(/)(()(an         t,         )()()( 2
1

22 qXqYqqYqXqa           (5) 

 

 with the instantaneous frequency defined as: 
 

                                 ω(q)= dθ(q)/dq                                      (6) 
 

    The Complex Trace formalism then defines the concepts of 

instantaneous amplitude, phase and frequency such that the 

original signal can be expressed in terms of a Fourier-like 

expansion based on these concepts [16]. 

   The aforementioned process as well as the definition of 

instantaneous frequency work well for mono-component 

signals. However, for many real applications the signals are 

multi-component and often noise corrupted. In these cases, the 

Complex Trace concept fails because the Hilbert transform 

processing of those noisy waves generates spurious amplitudes 

at negative frequencies. Huang [16, 22] developed an entirely 

new approach to signal analysis to avoid generating 

unphysical results. To this end, the Hilbert transform is not 

directly applied to the signal itself but to each of the members 

of an empirical decomposition of the signal into intrinsic mode 

functions (IMF’s). These IMF’s are individual, nearly mono-

component signals with ‘Hilbert-friendly’ waveforms, to 
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which the instantaneous frequency defined by (6) can be 

applied [24]. 

   The algorithm to create the IMF’s, referred to as “sifting”, is 

both elegant and simple. First, the local extrema of the data are 

identified and used to create upper and lower envelopes which 

enclose the signal completely. From this envelope a running 

mean is created. By subtracting this “mean” from the data one 

obtains a new function, which must have the same number of 

zero crossings and extrema (i.e. it exhibits symmetry across 

the q-axis). If the function so constructed does not satisfy this 

criterion, the “sifting” process continues until some acceptable 

tolerance is reached [22]. The resulting q-series is the first 

‘IMF’, c1(q), and contains the highest frequency oscillations 

found in the data (the shortest time scales). The IMF1, is then 

subtracted from the original data, and this difference R1 is 

taken as if it were the original signal and then the sifting 

process is applied to the new signal. 

   The process of finding modes, cj (q), continues until the last 

mode, the residue Rn, is found  which will contain the trend 

(i.e. , the “time –varying” mean). Thus, the signal, X(q), is 

given by the sum: 

    



n

j

j RnqcqX
1

)()(                                   (7) 

      The issues of completeness and orthogonality of the IMF-

expansion are discussed by Huang in [22].  

   Once the IMF’s are obtained, the Hilbert transform can be 

applied to each individual IMF, computing the instantaneous 

frequency and amplitude using (5) and (6). After applying the 

Hilbert transform to each IMF, the signal can be expressed 

according to (8), where aj(q) and wj(q) are, respectively, the 

instantaneous amplitude and frequency corresponding to each 

IMF cj(q). 
                                                         














 



 n

j

dqqi
j

jeqaqX
1

)(
)(Re)(


               (8) 

   This expression enables the representation of the 

instantaneous amplitude and frequency as functions of q in a 

three-dimensional plot or contour map. The time-frequency 

representation of the amplitude is named Hilbert-Huang 

spectrum, H(w,q) [24].  

   After defining the Hilbert-Huang (HH) spectrum, the 

marginal spectrum can be also defined according to (9), where 

Q is the total data length [17]; 

                                qdqwHwh
Q

 
  

  0
),()(                      (9) 

   Whereas the HH spectrum offers a measure of the amplitude 

contribution for each frequency and time, the marginal 

spectrum (power spectral density) offers a measure of the total 

amplitude (or energy) contribution from each frequency [17]. 

The frequency in the marginal spectrum indicates only the 

likelihood that an oscillation with such a frequency exists; the 

exact occurrence time of that oscillation is given in the full 

Hilbert spectrum [22]. 
 

B. Discrete Wavelet Transform (DWT) 

The DWT decomposes the sampled signal being analysed, 
y (y1, y2, …yN), onto an approximation signal an and several 
detail signals dj [7, 20], according to (10).  

  
1

1

...)( ddaty nn

n

j i

j

i

i

n

i  


(t)ψ(t)
j

i

n

i 
        (10) 

j

i

n

i  ,  are the scaling and wavelet coefficients, φ 
n
(t) is the 

scaling function at level n and ψ 
j
(t) the wavelet function at 

level j; n is the decomposition level; an is the approximation 
signal at level n and dj the detail signal at level j [20]. 

Mallat algorithm shows that each wavelet signal is 

associated with a certain frequency band. If fs (samples/s) is 

the sampling rate used for capturing y, then the detail signal dj 

contains the information concerning the signal components 

with frequencies included in the interval [2
-(j+1)

fs , 2
-j
fs] Hz. 

The approximation signal an includes the low frequency 

components of the signal, belonging to the interval [0, 2
-(n+1)

fs] 

Hz [7]. DWT performs then the filtering process shown in Fig. 

2. As observed, the filtering is not ideal, a fact leading to a 

certain overlap between adjacent frequency bands [25]. This 

can be problematic, since some frequency components 

(specially the fundamental component) can be partially filtered 

in the adjacent band, masking the components within that 

band.   

 
 

 

 

 

 

 

Figure 2.  Filtering process performed by the DWT. 

 

IV. EXPERIMENTAL RESULTS 

Tests were developed on 1.1 kW cage induction motor. The 
motor was directly coupled to a 10 kW DC machine acting as a 
load. Interchangeable rotors with different number of 
breakages were considered. The breakages were forced in the 
laboratory, drilling the holes in the selected bars.  

A. Application of the HHT 

Six transient data sets of induction machines stator current 
subject to different number of bar breakages and load 
conditions were analyzed (Table I). Each data set was 
decomposed into two intrinsic modes (IMF1 and IMF2) and 
their respective HH spectra calculated. The second intrinsic 
modes for the six data sets are shown in Fig. 3. In Figs. 4 to 9 
the input signal (a), speed during the startup (b); HH spectrum 
of the first intrinsic mode IMF1 (c), HH spectrum of the second 
intrinsic mode IMF2 (d) and the power spectral density of the 
input signal (e) are plotted for each one of the data sets. 

Inspection of Fig. 3 reveals that the IMF2 remains low if 
the machine is healthy (q1 and q4) whereas it increases its 
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amplitude for the faulty machine. Indeed, the amplitude of 
IMF2 increases with the number of broken bars (compare q2-
q3 and   q5-q6). A deeper analysis reveals that the waveform of 
the IMF2 for the faulty machine is quite similar to the 
theoretical evolution of the left sideband component shown in 
Fig. 1 and justified in [12]. This fact indicates that the IMF2 
reflects the time evolution of the frequency components below 
50 Hz (supply frequency) and, therefore, IMF2 is extracting the 
evolution of the left sideband (LSH) during the startup 
transient, since it is the unique significant component within 
that range of frequencies. 

It has to be remarked that the IMF’s are obtained from an 
empiric methodology (EMD), and so, there are no analytic 
equations enabling the deduction of the range of frequencies of 
the components included in a specific IMF. So, the 
interpretation of the IMF’s has to be based on physical 
reasoning, as exposed in the precedent and next paragraphs. 

A deeper analysis of Figs. 4 to 9, leads to additional 
interesting conclusions:  

- Firstly, as a result of the HHT analysis of each data set, an 
IMF1 is obtained. Figs. 4 to 9, sections (c), show the IMF1 
spectrum obtained for the six analyzed cases. In all these cases 
a single component at 50 Hz is detected along the whole length 
of the startup. Moreover, the HH spectrum of each IMF1 shows 
that the amplitude of this component decreases as the current 
decreases during the startup (from red color to blue color).  
These facts indicate that the IMF1 extracts the main component 
at the supply frequency from the tested signal. 

  - As commented above, the second intrinsic mode 
function (IMF2) resulting from the analysis of each data set 
reflects the evolution of the rest of frequency components 
below 50 Hz. This is confirmed when analyzing the HH 
spectrum for each IMF2; for the healthy machine (Fig.4 (d) and 
7 (d)) only slight traces appear in the HH spectra due to the fact 
that no sideband component exist in the machine, so no 
significant components exist within the frequency band 
reflected by IMF2. Nevertheless, for the faulty machine (Figs. 
5 (d), 6 (d), 8(d) and 9(d)) some components are detected in the 
IMF2 spectra. The pattern appearing in those spectra is quite 
characteristic; as the startup progresses, there is a first stretch in 
which the frequency decreases from 50 Hz to 0 Hz and a 
second one in which the frequency increases again up to 50 Hz. 
In addition, the color of the spectra informs about the 
amplitude of the LSH at each time; a higher amplitude is 
detected during the second stretch. This characteristic pattern 
found in the HHT current spectra of the faulty machines fits 
perfectly the theoretical waveform of the LSH shown in Fig. 1, 
confirming again that the HHT (and the EMD) is a suitable 
approach for diagnosing rotor asymmetries, since it enables a 
clear extraction and detection of the LSH produced by the fault. 
As it will be seen, the pattern described in the HHT spectrum 
keeps a certain similitude with the characteristic pattern 
obtained with the second approach based on the DWT method 
(Fig. 13), also caused by the transient evolution in frequency of 
the LSH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Second intrinsic mode functions (IMF2’s) for the six data sets q1 

up to q6.    

 

 

 

 

 

 

 

 

           

 

 

 

Figure 4.  Hilbert-Huang (HH) analysis of the q1-data set: (a) input signal;   

(b) speed; (c) first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic 

mode (IMF2) HH spectrum; (e) input signal power spectral density.  
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Figure 5.  Hilbert-Huang (HH) analysis of the q2-data set: (a) input signal;   

(b) speed; (c) first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic 

mode (IMF2) HH spectrum; (e) input signal power spectral density.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  HHT analysis of the q3-data set: (a) input signal; (b) speed;  (c) 

first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic mode (IMF2) 
HH spectrum; (e) input signal power spectral density.  

 
TABLE I.  ANALYZED DATA SETS  

SET MACHINE CONDITION 

q1 

q2 

q3 
q4 

q5 
q6 

healthy , unloaded 

one broken  bar , unloaded 

two broken bars , unloaded 
healthy , loaded 

one broken bar , loaded 
two broken bars , loaded 

 
 
 
It is interesting to remark how the study of the startup 

transient enables the detection of the LSH even in the cases of 
faulty unloaded machines (q2 and q3). In this context, the 
application of the HHT to the startup current shows the 
presence of the LSH both through the IMF2 and through its 
HH spectrum. In these situations of unloaded machine, the 
application of the classical approach, based on the FFT analysis 
of the steady-state current would not be suitable for the 
diagnosis since the slip is very low and the sidebands would 
almost overlap the supply frequency (a very high frequency 
resolution would be mandatory for their detection). This can be 
observed in Fig. 10, in which the FFT spectrum of the steady-
state current of the machine with one rotor bar is shown for a 
slip s= 0.0066 and for frequency resolution of 0.2 Hz. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  HHT analysis of the q4-data set: (a) input signal;   (b) speed; (c) 

first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic mode (IMF2) 

HH spectrum; (e) input signal power spectral density.  
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Figure 8.  Hilbert-Huang (HH) analysis of the q5-data set: (a) input signal;   

(b) speed; (c) first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic 

mode (IMF2) HH spectrum; (e) input signal power spectral density.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Hilbert-Huang (HH) analysis of the q6-data set: (a) input signal;   

(b) speed; (c) first intrinsic mode (IMF1) HH spectrum ;  (d) second intrinsic 

mode (IMF2) HH spectrum; (e) input signal power spectral density.  

 
 

Moreover, the tool enables to establish a relation between 
the amplitudes of the IMF2 and the degree of failure in the 
machine (as it is observed in Fig. 3). This could allow the 
introduction of non-dimensional parameters for quantifying the 
degree of severity of the fault, based on the energy of these 
IMF. 

 
 
 
 
 
 
 
 
  

Figure 10.  FFT of the steady state current for  the unloaded machine with one 

broken bar. 

To sum up, the Hilbert–Huang spectra of the IMF1’s do not 
carry information on the machine status simply providing the 
electric network supply frequency otherwise easily available 
from Fourier algorithms. The bulk of information on the 
machine status is contained in the IMF2 and on its Hilbert-
Huang spectrum as they reveal the presence of the LSH and its 
time-frequency evolution, these results arising from the 
empirical signal decomposition and non stationary properties 
of the Hilbert-Huang algorithm. 

 

B. Application of the DWT Method 

In order to corroborate the results obtained with the HHT, a 
method proposed in previous works, based on the application 
of the DWT to the startup current and the subsequent study of 
the resulting high-order wavelet signals, will be applied. The 
wavelet signals reflect the evolution of the LSH during the 
transient. Two alternative approaches were proposed;  

- The first is based on the study of the approximation signal 
with associated frequency band extending up to near the supply 
frequency. It reflects the evolution in amplitude and frequency 
of the left sideband during the transient [12].  

-  The second is based on the study of high-order wavelet 
signals (one approximation and two detail signals), whose 
associated frequency bands cover the frequency range between 
zero and almost the supply frequency. In the case of breakage, 
the oscillations in those signals follow a characteristic pattern 
fitting the evolution in frequency of the LSH [7].  

DWT was applied to the experimental signals obtained with 
the 1.1 kW motors described above.  For the DWT analysis, a 
6-level decomposition is carried out for the application of the 
first approach whereas an 8-level decomposition is considered 
for applying the second one [7]. Daubechines-44 is used as 
mother wavelet. The frequency bands associated with the 
wavelet signals used for the analysis are shown in Table II (the 
sampling rate fs was 5000 samples/sec). 

1) Healthy unloaded machine (s=0.0066) 

 
    Fig. 11 (a) and (b) show the application of the DWT 

method to the healthy unloaded machine. As observed in Fig. 
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11(a), once the initial oscillations produced by the 
electromagnetic connection transient are extinguished, the 
approximation signal a6  remains low. This indicates that the 
LSH is not present, leading to diagnose the healthy condition 
of the machine. The same conclusion is reached from Fig. 
11(b); no oscillations appear in the high-level wavelet signals, 
after the electromagnetic transient is finished. This is revealing 
the absence of the LSH and, thus, the healthy condition of the 
machine. 

 

 

2) Unloaded machine with 1 broken bar (s=0.0066) 
 

Fig. 12 (a) and (b) show the case of the unloaded machine 
with one broken rotor bar. Clear differences appear in 
comparison with Fig. 11. In Fig. 12 (a), clear oscillations occur 
in the approximation signal a6. They fit practically the 
characteristic evolution in amplitude and frequency of the 
LSH, commented above.  

   The reason why they do not fit exactly the theoretical 
waveform of the LSH (Fig. 1) is that the frequency band 
corresponding to a6 only extends up to 39.06 Hz. Thus, the 
evolution of the sideband within the range [39.06 - 50] Hz is 
not reflected in that signal. The reason for not setting the upper 
limit of the frequency band associated with this signal at 50 Hz, 
is to avoid the interference of the supply frequency component 
(50 Hz) which, due to the non-ideal filtering, could be filtered 
partially in a6, masking the evolution of the LSH.  

TABLE II.  FREQUENCY BANDS FOR BOTH  APPROACHES 

6-level  DWT  

(FIRST APPROACH) 

8-level  DWT  

(SECOND APPROACH) 

Level Frequency Band Level Frequency band 

d6 

a6 

39.06 - 78.12 Hz 

0 - 39.06 Hz 

d6 
d7 

d8 

a8 

39.06 - 78.12 Hz 
19.53 - 39.06 Hz 

9.76-19.53 Hz 

0-9.76 Hz 
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 (b) 

Figure 11.  (a) First approach: 6-level DWT of the startup current for the 

unloaded healthy machine. (b) Second approach: 8-level DWT of the startup 
current for the unloaded healthy machine. 
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   (b) 

Figure 12.  (a) First approach: 6-level DWT of the current for the unloaded 

machine with one broken bar. (b) Second approach: 8-level DWT of the 

current for the unloaded machine with one broken bar. 

   Application of the DWT method in other cases where the 
classical Fourier analysis could not lead to a correct diagnosis 
(pulsating loads, fluctuating supply voltages) can be found in 
[7]. The method has also been tested in large motors (up to 
several MW). The results are even clearer than those obtained 
with small machines and some of them can be found in [26]. 

   An important advantage of the method lies in the fact that 
it avoids some of the drawbacks of the classical Fourier 
method, deeply spread in the industrial environment, but 
maintaining also its simplicity; the only input required is the 
startup current of a single phase, which can be easy captured in 
a non-invasive way. Moreover, the method does not require 
any special software or complex algorithms for the analysis, 
being suitable any conventional package enabling the DWT of 
a signal. In addition, the computational requirements are 
negligible; indeed the number of operations required by the 
DWT, according to the Mallat algorithm, is much lower than 
that of the FFT [27]. 

   Despite the excellent results of the method, some issues 
could be improved. One of them is the selection of the 
optimum mother wavelet for carrying out the analysis. The 
experience has shown that this is not a critical matter since 
different wavelet families (dmeyer, Daubechies, coiflet, symlet, 
biorthogonal), despite their different mathematical properties, 
can provide excellent results [13], enabling the reliable 
extraction of the transient evolution of the left sideband. This is 
shown in Fig. 13 where the same analysis of Fig 12 (a) is 
carried out but using dmeyer (an infinite support wavelet) as 
mother wavelet, instead of Daubechies-44 (compactly 
supported wavelet). The analogies between both analyses are 
obvious despite the different characteristics of both mother 
wavelets.  
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Figure 13.  First approach: 6-level DWT of the current for the unloaded 

machine with one broken bar using dmeyer as mother wavelet. 

Nevertheless, when using certain mother wavelets with a 
low number of coefficients (i.e. a low order Daubechies 
wavelet), the frequency response of the associated filter 
becomes worse, increasing the overlap between frequency 
bands [19, 25]. This can cause that a portion of the fundamental 
component is partially filtered into the adjacent band, masking 
the evolution of the left sideband within the wavelet signal 
used for the diagnosis. As an example, Fig. 14(a) shows the 
application of the first approach for the case of the loaded 
machine with two broken bars, using Daubechies-10 as mother 
wavelet. Fig. 14(b) shows the same analysis but using 
Daubechies-44. In the former case, due to the low order of the 
wavelet, the non-ideal behaviour of the wavelet filter is more 
visible, leading to a partial filtering of the fundamental 
component into the adjacent band, which makes not possible 
the diagnosis. In the second case, when using a high order 
wavelet, the frequency response improves and the overlap 
disappears. The same effect appears when using other low 
order wavelets such as low-order biorthogonal wavelets.   
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                                                      (b) 

Figure 14.  Application of the first approach for the loaded machine with two 

broken bars using: (a) Daubechies-10 (b) Daubechies-44. 

Another question regarding the DWT is the boundary 
distortion introduced by the transform. This, together with the 
initial electromagnetic connection transient, provokes the initial 
oscillations at the beginning of the wavelet signals observed in 

Figs. 3, 4, 6 and 7. This phenomenon might make difficult the 
identification of the left sideband evolution if the startup is 
very fast (shorter than half a second) [7]. However, besides the 
fact that the method works well for small motors like those 
shown above, it has to be considered that the motors in which 
the bar breakages are more feasible to occur are large motors 
started driving high inertias; these are the most favourable 
conditions for appearing high resistance joints leading to bar 
breakages [28]. Under these conditions, the startup is much 
longer than necessary to apply the methodology without any 
problem.  This is reinforced by the fact that these large motors 
are the ones the diagnosis of which is often most critical since 
the repair costs in these cases are usually much higher.     

C. Comparison between the methods. 

Both the DWT and the HHT perform a time-frequency-
amplitude decomposition of the startup current signal being 
analyzed. This fact enables the extraction of the time evolution 
of frequency components associated with the fault, being the 
most prominent the LSH. 

The application of the DWT is simple and the patterns 
arising from the application of this transform are clear and 
reliable, becoming a robust tool for the diagnosis of the fault, 
even in cases where the classical Fourier analysis does not lead 
to correct results (unloaded machines, fluctuating torque loads, 
oscillating supply voltage…) [7]. The two proposed DWT-
based approaches are complementary; the first one reflects the 
time evolution of the LSH (in amplitude and frequency) and it 
fits well its theoretical evolution deduced in previous works; 
the second approach leads to a characteristic pattern caused by 
the frequency evolution of the left sideband.  

Summarizing the comments made above, possible issues 
that could be improved regarding the DWT approaches are;  

- The mother wavelet selection can constitute a problem if 
the order of the mother wavelet is low, due to the non-ideal 
characteristic of the wavelet filtering. This is not a critical 
problem since a high number of wavelets have been proved as 
valid for the application of the approaches. 

- The boundary effect caused by the transform, together 
with the initial electromagnetic transient, provoke oscillations 
at the beginning of the signals, which can distort the patterns 
used for the diagnosis. This problem is avoided if the startup is 
long enough since, in this case, the duration of these initial 
oscillations is negligible. These long startups are common in 
large motors started under high inertias; In fact, in these motors 
bar breakages are more likely to occur.  

-The dyadic frequency decomposition carried out by the 
DWT, according to the Mallat algorithm causes that, once the 
sampling frequency fs is selected, the limits of the bands 
associated with the wavelet signals are fixed. This can imply a 
loose of flexibility mainly when studying possible high 
frequency components introduced by the fault.  

- Moreover, due to this fix dyadic decomposition and to the 
non-ideal filtering of the DWT, the wavelet signals do not 
extract the whole transient evolution of the LSH (up to the 
supply frequency), but a substantial part of this evolution (up to 
near the supply frequency). This does not mean a critical 
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problem for the diagnosis, since the characteristic pattern is 
detected through these signals, but it requires that the possible 
parameters used for the quantification of the degree of severity 
of the fault, based on the energy of the wavelet signals [29], 
should be based on the same sampling rate. 

The HHT arises as an alternative tool for the extraction of 
the transient evolution of the LSH and, so, for the diagnosis of 
the asymmetry. The intrinsic mode functions (IMF’s) and their 
HH spectra provide a complementary way for enabling the 
analysis of the frequency components and their evolution in 
time and amplitude. 

Nevertheless, according to the results obtained here, the 
patterns do not seem so clear that those obtained with the DWT 
approaches, perhaps because the HH spectra are not so easy to 
be physically interpreted as the wavelet signals. In addition, the 
use of the HHT also introduces a boundary effect whose 
influence, as in the DWT, is negligible for long startups. 
Moreover, there is no an “a priori” relation between the IMF’s 
and the frequency bands, a fact that can create problems for 
selecting the most suitable number of IMF’s to be considered 
for the detection of the sideband. 

In any case, the HHT implies some positive aspects; the 
dyadic frequency decomposition of the DWT is avoided, due to 
its operation based on the instantaneous frequency, a fact that 
could enable a more accurate study of the high frequencies 
present in the signal. Also the IMF enables a more accurate 
representation of the theoretical waveform of the LSH, 
showing the real amplitude of that component, since the 
frequencies reflected in that IMF signal arrive up to the supply 
frequency. This might enable the definition of non-dimensional 
quantification parameters non-dependant on the sampling rate 
used for capturing the current signal and only based on the 
energy of the IMF containing the whole evolution of the left 
sideband. Furthermore, the HH spectra revealing the time-
frequency evolution of the LSH are more suitable to be 
processed using automatic image recognition techniques. These 
could enable the faster integration of the tool in portable 
devices for the on-line diagnosis of the fault.  

In conclusion, both approaches can be considered as 
equivalent tools for the extraction of the same physical 
phenomenon: the transient evolution of the LSH caused by the 
rotor asymmetry. Indeed a clear analogy can be established 
between the approximation signal resulting from the 
application of the approach 1 based on the DWT and the IMF2 
resulting from the application of the HHT method; both of 
them extract the evolution in amplitude and time of the LSH 
(Fig. 15 (a)). Equivalently, an analogy can be also made 
between the high-level wavelet signals resulting from the 
application of the approach 2 based on the DWT and the HH 
spectrum of the IMF2; both reflect the characteristic patterns 
arising due to the evolution in frequency of the LSH during the 
startup (Fig. 15 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Analogies between: (a) Approximation signal (DWT method) and 

IMF2 (HHT method);   (b) High-level wavelet signals (DWT method) and HH 
spectrum of IMF2 (HHT method).  

V. CONCLUSIONS 

   In this paper the HHT is proposed for the diagnosis of 
rotor asymmetries in induction machines. Application of the 
tool on experimental signals is carried out, proving the 
reliability of the tool even in cases in which the classical FFT-
based approach is not suitable (unloaded machines). The 
results are compared with those obtained using an alternative 
time-frequency decomposition tool: the DWT.  

 HHT has some positive aspects in comparison with the 
DWT such as avoiding the necessity of selection of mother 
wavelet or a possible better representation of the LSH up to the 
fundamental frequency, since it avoids the dyadic frequency 
decomposition of the Mallat algorithm. Also, a better 
suitability of the HH spectra for being processed by automatic 
image recognition algorithms is appreciated. However, the 
patterns arising from the HHT seem not so clear than with the 
DWT approaches; in addition, some constraints as the 
boundary distortion are not avoided and also, the lack of 
explicit relationships between the IMF’s and the frequency of 
the components reflected by them could make difficult a 
general formulation of the approach.  

In any case, both of them constitute equivalent tools for the 
extraction of the same physical phenomenon; in this sense, 

(a) 

(b) 
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important novel analogies are established in the paper between 
approximation signals and IMF’s (amplitude and frequency 
evolution of the LSH) and between high-level wavelet signals 
and HH spectra (characteristic patterns caused by the evolution 
in frequency). 
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