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Abstract. Resonance is a phenomenon of utmost importance in railways engineering, leading to 
vast damages both in track and vehicles. Thus, to avoid the undesired effect of resonance, it must 
be studied, understood and predicted. To this aim, in the current study a FE model able to 
reproduce the dynamic behavior of a real stretch of track has been developed and its correct 
behavior has been calibrated with real data. Furthermore, different measures of mitigation have 
been proposed and its effect on displacements and vibrations in the mid-span section of a railway 
bridge have been evaluated. 
Keywords: railways vibrations, resonance, mitigation measures. 

1. Introduction 

The dynamic response of a track subjected to the passage of a train is a complex phenomenon, 
whose understanding is of utmost importance to maximize track quality, minimize its maintenance 
needs and to assure its safety. The importance of the dynamic response of the track is even higher 
when it is built over a railway bridge, since resonance conditions may be reached. 

The phenomenon of resonance takes place when frequencies similar to the eigenfrequencies 
of the bridge are induced by the passage of the train. These frequencies may be associated to the 
distance between adjacent wheelsets, the distance between adjacent sleepers or irregularities in 
the wheel-rail contact among others. 

Under these circumstances, the vibratory response of a track is highly increased, thus 
enhancing the risk of damage to the structure and, sometimes, leading to its collapse. These 
reasons have encouraged the study of resonance in railway bridges over the last few decades. 
Some authors as [1] and [2] studied the effect of high-speed trains on bridges and the procedures 
to calculate the dynamical response of the bridge under resonance conditions. 

The dynamic response of a railway bridge is influenced by numerous factors, such as structure 
natural frequencies and damping, train speed or the length of both the structure and the train. 
Within this context, [3] studied the influence of different parameters, including the  
bridge-to-carriage length ratio. [4] demonstrated that the primary frequencies in the bridge 
response might be caused by the driving frequencies, which are related to the time the train spent 
crossing the bridge, and the dominant frequencies, which are caused by the repeated loads. 

Among the studies found along the literature, it may be said that there are different ways to 
calculate he dynamic response of a bridge under dynamic excitations. The bridge has been 
modeled from simple beams [5, 6] to complex FEM models with hundreds of DOF. Meanwhile, 
the effect of the train also presents different procedures to be simulated. The main methods are the 
moving loads [7-9], the moving mass [10-12], and the moving sprung mass models [5, 13, 14]. 

The present paper aims to assess the dynamic response of a real short-span bridge, whose 
dominant frequencies are excited by the passage of a train. This study has been performed by 
means of a detailed 3D FEM model, calibrated and validated with accelerations data from a 
gathering campaign. Then, the effect of the train over the bridge in several scenarios has been 
simulated following the moving loads procedure and, finally, conclusions have been drawn. 
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2. Methodology 

In the present section, the methodology followed to evaluate the dynamic behavior of a bridge 
has been presented: first of all, the numerical FE model developed to simulate the bridge has been 
detailed. Then, to assess the validity of the model and the accurateness of the results, the 
vibrational data recorded in a real track have been compared to the accelerations calculated by the 
model; and finally, a modal analysis has been performed to calculate the flexural modes of the 
bridge. 

Once bridge modes of vibration are known, the frequencies associated to these modes have 
been induced by a set of loads travelling through the stretch – simulating the passage of the 
wheelsets, so as to evaluate the behavior of the track under resonance conditions. Moreover, 
different scenarios including ballast improvements, variations on damping and changes on 
railpads and sleepers have been evaluated. 

2.1. FE model 

To simulate the behavior of the bridge and the track a FE model has been implemented by 
means of the commercial software ANSYS LS-DYNA V14, following the research carried out  
by [15].  

As depicted in Fig. 1, the model consists on a ballasted track, provided with wooden sleepers 
and UIC-45 rails, built over a short-span bridge. The whole structure is modeled as a mesh of 
hexahedral elements, whose maximum size depends on the maximum wavelength transmitted 
through the track and the minimum size is set considering the computational time. Thus, following 
[15]. The maximum size of the elements has been set to 0.25 m. 

 
Fig. 1. Track model of the bridge 

It has been proved that, in this case, the dynamic wave generated by the passage of a train does 
not induce large strains in the soil. Thus, displacements on the system are limited to the elastic 
range in the stress-strain diagram, as stated by [15], and this leads to the assumption that materials’ 
behavior is linear elastic. Following this hypothesis, the mechanical parameters assigned to each 
element of the model are presented in Table 1. 

Results for displacements, velocities and accelerations are obtained by means of Lagrange 
equation, being the motion in each node calculated as follows Eq. (1): [ܯ]{ݑሷ } + ሶݑ}[ܥ] } + {ݑ}[ܭ] = .{ሻݐሺܨ} (1)

Being [ܯ]  the mass matrix, [ܥ]  the damping matrix, [ܭ]  the stiffness matrix, ݑ  the 
displacement vector, ݑሶ  the velocity vector, ݑሷ  the acceleration vector and {ܨሺݐሻ}  the external 
forces vector. 
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Regarding track excitation, in this case the moving loads method is considered. Furthermore, 
since a linear behavior for the materials is assumed, the superposition principle may be applied so 
as to calculate the vibration response induced by the train. Thus, following studies carried out by 
authors as [16] or [15], track response due to the passage of a wheelset is calculated and then 
extended in time, considering train axles distribution and vehicle speed. 

Once the FE model is properly implemented, calibration and validation stage may be started. 

Table 1. Materials mechanical properties 
߭ (MPa) ܧ   (kg/m3) ߩ

Rail 210,000 0.3 7850 
Railpad 600 0.3 7850 
Sleeper 1310 0.35 700 
Ballast 80* 0.2 1900 
Concrete slab 27500 0.225 2350 
Soil 200* 0.3 1890 
*Parameter subjected to calibration 

2.2. Calibration and validation 

The main goals of this calibration and validation stage are, on the one hand, to obtain the 
unknown parameters needed to implement the model; in the present case, these parameters are 
ballast and soil elasticity modulus as well as ߚ damping coefficient. On the other hand, this stage 
is necessary to assess the correct behavior of the model. With this aim, data recorded in a gathering 
campaign are divided in two sets: a part of them are used to calibrate the unknown parameters of 
the model and then, the other part, to validate it. Therefore, the calibration has been performed 
from the accelerations registered in the sleepers, while the accelerations recorded in the rail web 
have been used to validate the model. 

It must be noted that, among the several registers recorded in the gathering campaign, those 
accelerograms considered representative were the ones selected to calibrate and validate the model. 

The gathering campaign was carried out near Xativa (Spain), in a simple ballasted track that 
belongs to a mid-distance network. In this track, UIC-45 rails are placed over wooden sleepers 
and, between them, steel railpads may be found. Below the sleepers, a 45 cm ballast layer rests 
over a 5 m long bridge, which is composed of a 40 cm thick reinforced concrete slab. 

 
Fig. 2. Gathering campaign 

The studied stretch was instrumented as presented in Fig. 2, placing accelerometers both on 
the rail web (accelerometer 1) and on the sleeper (accelerometer 2). The devices used to this aim 
where SEQUOIA FAST TRACER accelerometers, whose main characteristics are shown in 
Table 2. 



2114. STUDY OF VIBRATIONS IN A SHORT-SPAN BRIDGE UNDER RESONANCE CONDITIONS.  
FRAN RIBES-LLARIO, CLARA ZAMORANO-MARTÍN, SILVIA MORALES-IVORRA, JULIA REAL-HERRÁIZ 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2016, VOL. 18, ISSUE 5. ISSN 1392-8716 3189 

Table 2. Main SEQUOIA FAST TRACER accelerometers characteristics 
 Rail Sleeper 

Accelerations range (m/s2) ±180 ±180 
Frequency range (Hz) [0-2500] [0-2500] 

The vehicle running through the studied section is a S-592, from Alstom. Its maximum load 
per axle is 12 t, consists of three carriages, and the main distances between its elements are 
depicted in the following sketch (Fig. 3). 

 
Fig. 3. Registered rolling stock 

Being available the results from the model and the accelerations from the gathering campaign, 
a comparison between them is performed to reach the goals of the calibration stage. This 
comparison is presented in Fig. 4, where similar peak acceleration values can be appreciated for 
the real registers and the results from the model. Through this process, soil and ballast elasticity 
modulus and damping coefficient are set to: 200 MPa, 80 MPa and 0.0006 respectively. 

From this verification it is concluded that a numerical model able to represent the vibrations 
in this track is available. Subsequently, the modal behavior of the track may be studied. 

 
a) 

 
b) 

Fig. 4. Comparison between real registers (red) and model results (blue):  
a) in the sleeper and b) in the rail web 

3. Modal analysis 

The natural frequencies of the bridge have been obtained from a modal analysis carried out by 
means of the FE model, being the geometry of the track and the structure the same as in the 
dynamic model. In the modal analysis, materials also have been assumed to present a linear-elastic 
behavior, damping has been neglected and the external actions have been disregarded. 
Consequently, the dynamic equation presented in Eq. (1) is reduced to Eq. (2): [ܯ]{ݑሷ } + {ݑ}[ܭ] = {0}. (2)

In the linear system considered, free vibration is determined by harmonic functions as shown 
in Eq. (3): {ݑ} = {߶௜} cos ߱௜(3) .ݐ

In which ߶௜  represents the eigenvector associated to the mode shape of the ݅ th natural 
frequency (߱௜). 
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Combining Eq. (2) and Eq. (3), the modal analysis is performed solving Eq. (4): ሺ−߱௜ଶ[ܯ] + ሻ{߶௜}[ܭ] = {0}. (4)

Eq. (4) can be solved for ݊ values of the natural circular frequencies of the system ߱௜ and 
eigenvectors {߶}. Natural frequencies ௜݂ are then calculated as shown Eq. (5): 

௜݂ = ߱௜2(5) .ߨ

In single-track bridges, the main natural frequencies that may induce the resonance of the 
bridge are those related to the flexural shape modes since, due to the geometric and loading 
symmetry, torsional modes are not excited. Some authors as [2] claim that the first flexural mode 
is the most influential in the dynamic behavior of a bridge. In the present study, the firsts 20 natural 
frequencies (Table 3) are calculated by means of the FE model. 

In Fig. 5, the mode shapes deformation is presented for the first and the third flexural modes 
of vibration. 

Table 3. Bridge modes of vibration. Flexural modes are highlighted 
Number Frequency (Hz) 

1 6.3794 
2 7.3419 
3 7.94 
4 9.605 
5 10.17 
6 10.69 
7 11.55 
8 11.67 
9 12.082 
10 12.24 
11 12.5664 
12 12.6264 
13 12.6264 
14 12.99 
15 14.475 
16 14.9988 
17 15.0867 
18 15.33 
19 16.695 
20 17.4903 

 

 
Fig. 5. Shapes mode deformation at 10.17 Hz and 15.33Hz 



2114. STUDY OF VIBRATIONS IN A SHORT-SPAN BRIDGE UNDER RESONANCE CONDITIONS.  
FRAN RIBES-LLARIO, CLARA ZAMORANO-MARTÍN, SILVIA MORALES-IVORRA, JULIA REAL-HERRÁIZ 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2016, VOL. 18, ISSUE 5. ISSN 1392-8716 3191 

Once the modes of vibration of the system are known, in next section the natural frequencies 
associated to the flexural modes will be excited, and the displacements and accelerations induced 
by train passage under resonance conditions will be calculated. Furthermore, different scenarios 
will be analyzed so as to improve the track-structure behavior under these circumstances. 

4. Analysis of different scenarios 

In this section, first of all, the main flexural modes of vibration have been excited by the 
wheelsets passage. To do so, the distance between adjacent wheel axles has been set and different 
vehicle speeds have been simulated, thus inducing the natural frequencies of the system. Then, 
accelerations for each case have been calculated. 

Moreover, the influence of different track parameters has been assessed: In the first scenario, 
improvements in ballast properties dues to a tamping process have been simulated; in the second 
scenario, changes in track damping have been assessed; and finally, in the third scenario the 
wooden sleepers available in the original track have been substituted by reinforced concrete 
sleepers, while steel railpads have been substituted by elastomeric railpads. These scenarios have 
also been studied both from the point of view of vertical displacements and accelerations. 

It is well known that the repeated loads transmitted to the track by train passage may excite 
the natural frequencies of the bridge. Then, in the present study, a train of loads running over the 
track model have been simulated. Following the research carried out by [2], it may be said that 
the dynamic behavior of the bridge is determined mainly by its flexural modes. Thus, in the present 
research, the frequencies associated to these modes have been induced. Since frequencies are 
determined by Eq. (6): 

݂ = ܸ݀. (6)

Being, vehicle speed denoted by ܸ and the distance between adjacent loads by ݀. 
Then, to induce the frequencies associated to the main flexural modes, the distance between 

adjacent loads has been set according to the distance between adjacent axles, and different vehicle 
speeds have been fixed depending on the flexural mode that is being excited.  

Following this procedure, Table 4 summarizes the studied cases. 

Table 4. Summary of the studied cases 
Case Mode Frequency (Hz) Vehicle speed (km/h) 

1 5 10.17 91.53 
2 9 12.082 108.74 
3 18 15.33 137.97 
4 19 16.695 150.26 

In Fig. 6 the accelerations calculated in the mid-span slab section for each case are shown. It 
may be highlighted that, according to the study performed by [2], the maximum accelerations are 
obtained for the first flexural mode. 

Several authors, as [17] proved that the vertical accelerations are very sensitive to train speed 
being: the higher train speed, the higher the accelerations. Nevertheless, in this case, the higher 
the flexural mode, the higher the vehicle speed and then, according to Table 5, maximum 
acceleration values should be reached in Case 4. Regarding Fig. 6, the opposite behavior is shown 
in this case and it may be explained by the fact that the influence of resonance phenomenon is 
higher than the influence of vehicle speed. 

Once the behavior of real track under resonance conditions is assessed, different scenarios are 
studied so as to evaluate the influence of different parameters on resonance phenomenon. In all the 
studied scenarios, it is supposed that the fifth mode of vibration is excited; since it has been proved 
that the most unfavorable situation from the point of view of vibrations is reached in this case. 
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Fig. 6. Maximum and minimum accelerations for each flexural mode of vibration 

4.1. Ballast improvement: Case A 

In the present case, an improvement in ballast quality has been simulated. To this aim, the 
modulus of elasticity has been increased from the 80 MPa calibrated for the original model to 
180 MPa, which is a common value for tracks recently tamped. 

This analysis has been performed from the point of view of both vertical displacements and 
accelerations in the mid-span section of the bridge. In Fig. 7, the results for displacements are 
shown and, in Fig. 8, the results for accelerations. 

 
Fig. 7. Comparison between displacements before and after tamping process 

       
Fig. 8. Comparison between accelerations before and after tamping process 

According to Fig. 7, improvements in the ballast layer do not lead to significant changes in 
vertical displacements, although some diminution in the minimum values may be observed.  

Nevertheless, the opposite behavior is presented for the accelerations, as seen in Fig. 8. In this 
case, increasing the stiffness of ballast layer induces high reductions in acceleration peaks. Then, 
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this measure might be taken into account when resonance problems are found in short-span 
bridges so as to increase track security, passengers comfort and to reduce track damage and 
maintenance costs. 

4.2. Influence of track damping: Case B 

In this case, the influence of track damping has been assessed from the point of view of 
displacements and accelerations. To this aim, Rayleigh coefficient – set to ߚ = 0.006 through the 
calibration process – has been changed: firstly, increased (ߚ = 0.009) and secondly decreased  
ߚ) = 0.003). The results of this analysis are presented in Fig. 9, for displacements, and in Fig. 10 
for accelerations.  

 
Fig. 9. Influence of track damping on displacements 

     
Fig. 10. Influence of track damping on accelerations 

From this analysis, it may be clearly seen that the higher the damping, the lower both the 
displacements and the accelerations reached in the mid-span section of the bridge. Furthermore, 
comparing this case with the reductions obtained in Case A (ballast improvement), it may be 
concluded that the influence of track damping is much higher than the influence of ballast stiffness 
regarding both the vibrations and the accelerations. Thus, this measure should be taken into 
account by railway managers in problematic bridges under resonance conditions. 
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4.3. Changes in sleepers and railpads: Case C 

The original track presented wooden sleepers and steel railpads. Although these elements may 
be commonly founded in old tracks, replacing them by reinforced concrete sleepers and 
elastomeric railpads would lead to improvements in track dynamic behavior. To quantify this 
improvement, said changes have been simulated. 

Results from this analysis have been presented in Fig. 11 for vertical displacements and in 
Fig. 12 for accelerations. 

 
Fig. 11. Influence of changes in sleepers and railpads on vertical displacements 

  
Fig. 12. Influence of changes in sleepers and railpads on accelerations 

On the one hand, from Fig. 11, where vertical displacements for both the original and the 
improved track are presented, it may be concluded that no noticeable changes are obtained from 
the point of view of vertical displacements. 

On the other hand, according to Fig. 12, accelerations on the mid-span section of the bridge 
are reduced by changing sleepers and railpads. Nevertheless, although the reductions in vibrations 
are noticeable, this improvement is far from that reached by modifying track damping. 

5. Conclusions 

The current investigation aims to study the effect of resonance phenomena in a railway 
short-span bridge under different circumstances. To this aim, a FE model has been performed in 
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time domain, and it has been calibrated and validated with experimental measurements.  
To this goal, first of all, natural frequencies of the structures have been obtained by means of 

modal analysis. Then, frequencies associated to the main flexural modes have been induced by 
the train passage and, finally, different scenarios have been analyzed. 

From this study, the following conclusions have been drawn: 
• The higher the mode of vibrations, the lower the acceleration values obtained despite they 

are reached at higher vehicle speeds. 
• The influence of vehicle speed is lower than the influence of resonance phenomenon 
• The numerical model developed has provided accurate results for both shape modes and 

transient analysis. It allows designers to study the induced railway resonance phenomena in early 
design steps with a high accurate model. 

• Improvements in ballast layer leads to slight decreases in vertical displacements and 
noticeable reductions in accelerations. 

• Track damping is highly influent both from the point of view of track displacements and 
accelerations. 

• Changes on sleepers and railpads only are influent on accelerations. 
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