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ABSTRACT 
Cinnamaldehyde (CIN) loaded amorphous PLA films were obtained by casting, using ethyl acetate as 

solvent. Likewise, bilayer films were obtained by thermocompression of the PLA active layer and 

compression moulded cassava starch (S) films or semi crystalline PLA films. Starch-PLA laminated 

materials were considered to improve the barrier capacity (high oxygen barrier through the starch layer 

and high water vapour capacity through the polyester layer), while CIN incorporation confers 

antimicrobial activity on the films. The PLA bilayers were obtained for comparison purposes. The 

antimicrobial activity of the CIN loaded PLA films and S bilayer films was proved against Escherichia 

coli and Listeria Innocua through in vitro tests, which indicates that the active amount released into the 

growth medium exceeded the minimum inhibitory concentration (MIC) of both bacteria. The release 

kinetics of the active compound in different food simulants demonstrated that a part of CIN was tightly 

bonded to the PLA matrix, whereas the free compound diffused more easily through the starch layer, 

making S bilayers more active against the bacteria when the starch layer was in direct contact with the 

culture medium. CIN entrapped in PLA bilayers did not exhibited any antibacterial effect due to its 

release inhibition, associated to its bonding within the PLA matrix and the lower degree of relaxation in 

the semi crystalline PLA layer in contact with the food simulants.   

 
Key words: PLA, cassava starch, cinnamaldehyde, compression moulding, antimicrobial activity, 

release kinetics. 

 

 
INTRODUCTION 

Antimicrobial biodegradable packaging materials are of great interest for the food industry and 

consumers not only as a means of enhancing food preservation and shelf life extension but also for 

the purposes of reducing the environmental problems caused by synthetic plastic packaging. Natural, 

non-toxic antimicrobials were also required in order to enhance the product health properties, avoiding 

the toxicity of other antimicrobials. Therefore, the development of biodegradable antimicrobial 



 

materials for food packaging applications, using natural antimicrobial substances, such as essential 

oils or their active compounds, is a current alternative for food preservation and shelf life extension [1]; 

[2]. 

Cinnamaldehyde, one of the major constituents of cinnamon bark oil (~ 60-90 %) [3]; [4] is a phenolic 

terpenoid classified as GRAS (Generally Recognized As Safe) by the FDA (Food and Drug 

Administration), with high antibacterial, antifungal, antiinflammatory and antioxidant activity. It is widely 

used in cosmetic, food and pharmaceutical industries since it is a natural antimicrobial substance [5]; 

[6]; [7]. Different studies analysed the effects of CIN on the bacterial membranes, showing that CIN 

permeabilizes the internal membranes of different bacteria, such as E. coli and Staphylococcus 

aureus, [8] or Staphylococcus epidermidis and Enterococcus [9], altering their structure. It has also 

been reported that CIN is an inhibitor of β-(1,3) glucan synthase and quitin synthase 1, which are 

important during the synthesis of enzymes in the cell wall of yeasts and moulds [10].  

Several studies have demonstrated that CIN could be potentially used, in different concentrations, as 

an effective antimicrobial agent. This was observed for E. coli O157: H7 in apple juice and cider [11], 

for Enterobacter sakazakii in reconstituted milks for breastfed babies [12], for E. coli in bovine meat 

pasties [13], for Salmonella spp in tomato washing (alternative to sodium hypochlorite) [14] or for a mix 

of strains of bacteriophage and E. coli O157:H7 in green-leafy greened vegetables [15]. Cinnamon 

essential oil or CIN also caused the inhibition of the growth of psychotropic strains of Bacillus cereus 

(EPSO-35As y el INRA TZ415) in minimally processed products, such as carrot [16]. CIN has also 

been incorporated into different polymer matrices to obtain antimicrobial packaging materials or food 

coatings. Polymers, such as cellulose [17], pectin [18], PLA [19]; [20]; [21], starch [22], proteins [23] or 

alginates [24], have been used as CIN carriers. Studies about the antimicrobial effect of the active 

films, in vitro as well as in food matrices, showed antimicrobial activity against different 

microorganisms. Nevertheless, the antimicrobial action depended not only on the active compound 

and microorganism, but also on the effective release of antimicrobial compounds onto the 

contaminated product where microbial growth occurs.   

Both thermoplastic starch and PLA are biodegradable polymers with easy availability and relatively low 

cost whose bilayer combination could enhance the film functional properties, taking advantage of their 

complementary barrier capacity. Starch exhibits very good barrier capacity to oxygen [25] and PLA to 

water vapour [26]. Likewise, mechanical resistance of PLA is higher than that of starch, while being 

more brittle, and their combination could improve the film mechanical behaviour [24]. On the other 

hand, due to its highly hydrophilic nature, starch film properties greatly change in contact with high 

moisture foods and its application onto a more hydrophobic layer, such as a PLA layer, could improve 

its performance as a food coating. Sanyang et al. [27] characterized sugar palm starch/PLA bilayers 

obtained by casting, and found that the starch/PLA bilayers exhibit reduced water vapour permeability 

and enhanced mechanical properties in comparison with starch films. The incorporation of an active 

compound into starch/PLA bilayers could, moreover allow an active, biodegradable food packaging 

material with optimised functional properties to be obtained.  

 



 

The objective of this study was to obtain bilayer films with PLA and starch, incorporating 

cinnamaldehyde as antimicrobial compound into the PLA layer prepared by casting, analysing both 

the release kinetics of CIN in different food simulants and the in vitro antimicrobial properties against  

Gram+ (E. coli) and Gram- (L. innocua) bacteria. For comparison purposes, the study of these 

properties in CIN loaded monolayers and PLA-CIN loaded PLA bilayers was also carried out.  

 

MATERIALS AND METHODS 

1. Materials 
PLA resins: Crystalline PLA LL700, density of 1.25 g/cm3, purchased from Ercros (Spain) and 

amorphous PLA 4060D, density of 1.24 g/cm3, for heat seal layer in coextruded oriented films, 

purchased from Natureworks (U.S.A) were used to obtain films by compression moulding and casting, 

metho respectively. Cassava starch was produced by Asia CO., LDT (Kalasin, Thailand) and 

purchased from Quimidroga S.A. (Barcelona, Spain) and glycerol, used as a plasticizer for starch, was 

provided by Panreac Química SLU (Castellar del Vallés, Barcelona, España).  Ethyl acetate, used as 

solvent for amorphous PLA, was obtained from Indukern S.A. (Barcelona, Spain) and trans-

cinnamaldehyde and Poly(ethylene glycol) (PEG 4000 g/mol) were provided by Sigma-Aldrich (Madrid, 

Spain). Magnesium nitrate (Mg(NO3)2), used so starch filmsto reach a relative humidity (HRRH) of 53 

% for starch films, was supplied by Vidra Foc S.A. (Barcelona, Spain) and phosphorus pentoxide 

(P2O5), used to generate a 0 % HRH, was purchased from Panreac (Barcelona). As Rregardsing the 

quantification and kinetics release of cinnamaldehyde, pure methanol, ethanol, acetic acid and 

isooctane, UV-IR-HPLC quality, were obtained from Panreac (Barcelona, Spain). For the 

microbiological analysis, stock cultures of Listeria innocua (CECT 910) and Escherichia coli (CECT 

101) were purchased from the Colección Española de cultivos tipo (CECT; Valencia, España) and 

culture medias: Tryptic Soy Broth (TSB), Trypcasein Soy Agar (TSA), buffered peptone Water ISO 

were supplied by Scharlau (Barcelona, España). 

 

2. Film preparation 
Monolayer films of starch and PLA, with or without cinnamaldehyde, were obtained and combined to 

obtain S-PLA and PLA-PLA bilayer films.  

 

2.1. PLA monolayers obtained by casting method (M and Mcin) 

Amorphous PLA pellets were used tTo obtain active PLA monolayers with CIN, amorphous PLA 

pellets were used. Films were prepared by means of the solvent casting procedure after the 

preparation of film forming dispersions. PLA pellets were first dried at 60°C overnight to remove 

residual water and then dissolved in ethyl acetate at 10 % (w/w), for 4 hours while being stirred. CIN-

free layers (M) were obtained as control films and, in the case of active layers (Mcin), CIN was 

dispersed at 2.5 %, which means a PLA:CIN ratio of 10:2.5. The resultingant dispersions were poured 

into Teflon plates of 15 cm diameter at a surface density of solids of 1.5 g/plate and the solvent was 

evaporated overnight. Consequently, dried films were peeled off the casting surface and stored in a 

Con formato: Fuente: Cursiva



 

desiccator with silica gel (SiO2) at room temperature until further analysis or use to obtain bilayer films. 

Then, a nominal concentration of CIN of 20 g/100 g of dried film can be assumed.  

 

2.2. PLA monolayers obtained by compression moulding (PLA) 

Crystalline PLA pellets were first dried at 60°C overnight and then hot-mixed in a two-roll mill (Model 

LRM-M-100, Labtech Engineering, Thailand) at 200°C and 10 rpm for 10 min. The resulting paste was 

then compression moulded in a hydraulic press (Model LP20, Labtech Engineering, Thailand). 3 g of 

sample were placed onto steel sheets and pre-heated at 200°C for 4 min. Then, compression was 

performed at 200°C and 100 bars for 4 min, followed by a cooling cycle of 3 min until the temperature 

reached about 70°C. The obtained films were maintained in a desiccator with SiO2 at room 

temperature until their use to obtain bilayer films.  

 

2.3. Cassava starch monolayers obtained by compression moulding (S) 

Starch was first hand mixed with glycerol (30 g/100 g of starch), water (55 g/100 g of starch) and 0,5 g 

of PEG. The dispersion was then hot-mixed in a two-roll mill at 160°C at 10 rpm forduring 25 min. The 

resulting thermoplastic starch was stored in a desiccator with an oversaturated solution of Mg(NO3)2 at 

room temperature forduring 10 days, in order to reach a 53 % HRH. S films were then obtained the 

same way as compression moulded PLA films. 4 g of sample were placed onto steel sheets and pre-

heated in a hydraulic press at 160°C for 1 min. Then, compression was performed at the same 

temperature and 50 bars for 2 min, then 100 bars for 6 min, followed by a cooling cycle of 3 min until 

the temperature reached about 70°C. The obtained films were maintained in a desiccator with an 

oversaturated solution of Mg(NO3)2 at room temperature until their use to obtain bilayer films.  

 

2.4. Cassava starch (S-M, S-Mcin) and PLA bilayer films (PLA-M, PLA-Mcin) 

Bilayer films were obtained through thermocompression of the different monolayers. Either 

compression moulded PLA or S films were hot pressed with PLA films obtained by castingg method 

with and without CIN. Films were hot pressed at 160°C and 100 bars forduring 3 min and cooled down 

until reaching a temperature of 70°C. Films were maintained in a desiccator with SiO2 at room 

temperature until analyses were carried out. 

 

3. Film characterization 
3.1. Concentration of cinnamaldehyde in the films 

Samples containing CIN (Mcin, S-Mcin and PLA-Mcin) were analysed in as to their content by methanol 

extraction and spectrophotometric determination. Square samples of each film (about 1 cm side) were 

weighed and extracted in 100 mL of methanol under constant stirring for 24 h (previously determined 

maximum time of extraction previously determined) at 20°C. Then, absorbance was measured using a 

UV-visible spectrophotometer (Thermo Scientific Evolution 201, EEUU) at a wavelength of 286 nm 

(maximum of absorption of the cinnamaldehyde in methanol). The extract of the corresponding control 

film without cinnamaldehyde was used as a blank in each case. The calibration curve was obtained 



 

from the absorbance measurements of standard solutions of cinnamaldehyde and was used to 

determine the concentration of cinnamaldehyde into the films.  

 
3.2. In vitro antimicrobial activity of the films  

L. innocua andy E. coli, provided with 30 % glycerol, were regenerated in Triptic Soy Broth (TSB) and 

were incubated at 37°C forduring 24 h. A 10-µL aliquot from this culture was then transferred to 10 mL 

of TSB and grown again at 37°C for 24 h. 10 g of TSA were poured into petri dishes of 5.5 cm 

diameter and used as a model solid food system (TSA-NaCl). After the culture medium solidified, 100 

µL of the appropriate dilution of the TSB culture was inoculated on the surface of the agar plate in 

order to obtain an inoculum of 107CFU/g. Then, circles of the different active films (5.5 cm diameter) 

sterilized with UV light for 15 min, were placedut in contact with the agar. The corresponding films 

without CIN were used as control samples. The plates were incubated at 10°C for 13 days. Inoculum 

controls (C) with no film were also analysed. The bacterial counts of each sample were carried out in 

duplicate at 0, 2, 6, 9 and 13 days. To this end, 10 g of sample were diluted in 90 mL of peptone water 

and were homogenized in a stomacher (IUL, Spain) for 3 min. Serial dilutions were then made and 1 

mL of each adequate dilution was inoculated in petri dishes with 15 mL of TSA. Theses plates were 

incubated at 37°C for 24 h. In the case of the bilayer films, the antimicrobial test was carried out by 

placutting both sides of the film in contact with the bacteria (for example S-Mcin or Mcin-S for the starch 

or active layer in contact with the bacteria, respectively). All theEvery manipulations wasere made 

performed in a sterile environment underneath a laminar flow cabinet (Telstar, Bio II Advance, 

Barcelona, España). 

 

3.3. Release kinetics of cinnamaldehyde in food simulants 

The Rrelease kinetics of the active compound from the films into four food simulants was analysed 

according to the Commission regulation (EU) 2015/174 amending and correcting Regulation (EU) No 

10/2011 [28] on plastic materials and articles intended to come into contact with food. The four 

simulants were 10 % ethanol (v/v) (A), 3 % acetic acid (w/v) (B), 50 % ethanol (v/v) (D1) and isooctane 

(D2). Film samples (from 50 to 500about 100 mg depending on both film and food simulant) were cut, 

weighed and placedut in contact with 100 mL of each simulant at 20°C, under constant stirring. The 

Aabsorbance of the solutions was measured throughout time by means of spectrophotometry at the 

wavelength corresponding to the maximum of absorption of cinnamaldehyde in each simulant 

(between 280 and 286 nm, depending on the solvent). The Ccalibration curves were obtained in each 

simulant. Each film sample was analysed in triplicate and the corresponding films without 

cinnamaldehyde, submitted to the same release process, were used to obtain the blank solution for 

the absorbance measurements.  The amount of CIN delivered at each time (Mt) was fitted to Peleg’s 

model (1980) (equation 1), and the parameters k1 (inverse of the initial release rate) and k2 (inverse of 

the asymptotic release) were obtained. The delivered amount at the equilibrium (M∞) was deduced 

from k2 (equation 2).  

  (1) 



 

   (2) 

Fick’s second law was considered to model the diffusion process of CIN from the films towards the 

food simulants. Film samples can be considered as infinite plane sheets where the active compound 

diffuses only in an axial direction, with the characteristic half thickness characteristic dimension. The 

diffusional long-time equation for an infinite plane sheet [29] with ten terms was used to determine the 

values of diffusion coefficient (D) of CIN into the different solvents (equation 3), by using the Solver 

tool (Microsoft Excel 2016®) to optimize the D values, by minimizing the Sum of Squared Errors (SSE), 

and considering the following boundary conditions: 

 
    

       

 

 (3) 

where: 

Mt is the mass of compound released at time t 

M∞ is the mass of compound released at equilibrium 

L: half thickness of film  

 

The Tthickness of films was measured at six random positions using a hand-held digital micrometer 

(Electronic Digital Micrometer, Comecta SA, Barcelona, Spain).  

 

3.4. Statistical analysis 

StaTgraphics Plus for Windows 5.1 (Manugistics Corp., Rockville, MD, U.S.A.) was used to carry out a 

statistical analysis of data through an analysis of variance (ANOVA). Fisher’s least significant 

difference (LSD) was used at the 95 % level. 

 

 
RESULTS AND DISCUSSION 

Table 1 gives the values of the concentration of CIN concentration in the active films, both the nominal 

value and that quantified through extraction with methanol. The surface concentration was also 

shown, this being equivalent from to the nominal value, but greatly reduced when the extracted 

amount was considered. The extraction method gave values below those corresponding to the 

quantity incorporated quantity into the PLA monolayer (11.7 g against 20 g per 100 g of film). 

Nevertheless, the final weight of the monolayers did not reflect notable losses of CIN by evaporation, 

taking into account the solid mass of the casted film forming solution for each film. Then. 

Nevertheless, the 58.5 % extraction with methanol should only correspond to the extractable 

compound from PLA, whereas a part of CIN could remained bonded to the polymer matrix, despite 

that fact that the compound solubility in methanol (----mg/l) was not overcomeexceeded. The 

extractable amount in the bilayer films was also lower than the theoretical one, which was estimated 



 

from the mass fraction of each layer in the laminated film (33.7 and 53.4 % for S bilayer and PLA 

bilayer films, respectively). In that case, a significant difference between the weight of the films before 

and after the thermocompression process was observed, especially for the starch bilayers. The 

Wweight losses of in the starch bilayer and PLA bilayer films during thermocompression were 28.5 

and 4.4 %, respectively, which could be associated to with the water loss of in the S layer and the CIN 

losses in both cases. During the heating and compression of the bilayers, diffusion of the compound 

could occur to the CIN-free layer. Likewise, the polymer radial flow could imply a lower concentration 

of the compound per surface unit. The radial flow was especially relevant in the starch layer, which in 

turn dehydrates, promoting a steam drag effect of the CIN. On the other hand, the compound diffusion 

to the CIN-free PLA layer could imply aied tighthigher bonding of this active to the PLA chains, 

reducing the amount of available compound available to be effectively released into the solvent. All of 

these factors could greatly reduce the CIN methanol extraction. Nevertheless, it could be assumed 

that the bilayer films have a higher contents of CIN than thatat obtained from the methanol extraction 

could be assumed in the bilayer films, although the CIN-polymer interactions could affect its deliver 

capacity into the medium and, thus, its antimicrobial potential.  

 

Table 1. Film thickness, concentrations (C) of theoretical and extractable CIN in mono (Mcin) and 

bilayer films with starch (S-Mcin) and PLA (PLA-Mcin) and percentage of CIN extraction in methanol.   

(g/100 g of 
film) (mg/cm2)

(g/100 g of 
film) (mg/cm2) Extraction %

Mcin 77 ±13 20 1.7 11.7 ±0.8 1.0 58.5

S-Mcin 183 ±12 8.1 1.7 2.7 ±0.2 0.6 33.7

PLA-Mcin 188 ±13 7.6 1.7 4.0 ±0.1 0.9 53.4

Film Thickness
(µm)

Theoretical C Extractable C

 
 
Antimicrobial properties of the films 
The Aantimicrobial properties of the monolayer and bilayer films were analysed against Gram+ (L. 

innocua) and Gram- bacteria (E. coli). In the case of bilayer films, the film contact with the agar plate 

containing the bacteria was through both the PLA active layer with CIN and the PLA or S layer, into 

which CIN was not directly incorporated, but where the compound diffusion could have occurred. 

Figure 1 shows microbial counts for E. coli andy L. innocua for the different samples and controls (the 

corresponding films without CIN (M, M-S and M-PLA) and the uncoated plate (C)) as a function of 

incubation time. For monolayer films with CIN (Mcin) applied on plates with E. coli (a), a bacteriostatic 

effect was observed during the first 6 days, in comparison with the controls; however,, whereas, from 6 

days onwards, a bactericidal effect occurred, with a reduction of nearly 4 Log (CFU/g) with respect to 

the initial counts at 13 days of incubation. In the case of L. innocua, an inhibition of the growth of the 

bacteria was observed during the first 9 days but afterwards, very similar counts to those of the control 

were obtained (b). That could be explained by the progressive evaporation of the active compound 

during the incubation time, reaching levels lower than the minimum inhibitory concentration (MIC) for 

this bacterium/this bacteria, or also to the adaptation of the bacteria, becoming less sensitive to the 

active agent.  



 

In the case of the S bilayer films, a growth inhibition of both bacteria (c-d) was observed throughout 

the incubation time, even when films were in contacted with from  the starch layer (S-Mcin) where no 

active was incorporated. This indicates that CIN effectively diffuses from the PLA to the starch layer 

and then through the starch layer to the agar medium.  The latter was probably enhanced by the 

swelling of the S layer swelling in contact with the wet medium, which favours the CIN migration to the 

plate surface and resulted in greater antimicrobial effectiveness. In fact, for E. coli, a bactericidal effect 

was observed throughout the incubation time when the starch layer was in contacted with the medium 

(S-Mcin), whereas the active compound had a bacteriostatic effect when the contact occurred through 

the Mcin layer (c). Coherent behaviour was observed for L. innocua, where the S layer contact also 

conferred greater antibacterial effect than that with the Mcin layer.  In the last case, cells growth was 

observed at the end of the incubation time, as observed for the Mcin monolayer. This could be 

associated to with an insufficient release of CIN from the PLA layer, which allows the bacterial 

adaptation, recovering the growth capacity at long contact times. This was also confirmed bywith the 

counts obtained for PLA bilayers, where no growth inhibition of either bacteria was observed for either 

contact types, the PLA or Mcin layer (e-f). The lack of antibacterial activity when the Mcin layer was in 

contacted with the agar medium, despite the initial load of CIN, could be explained by the CIN diffusion 

and partition between the two PLA layers and its binding to the polymer matrix with the subsequent 

loss of availability for the antibacterial action. 

 

 
a b 

 
c d 



 

 

 
e f 

Figure 1. Microbial growth at the different incubation times for E. coli and L. innocua in samples with 

monolayer PLA films (a-b) and bilayer films with S (c-d) and PLA (e-f), in comparison with their 

respective control films without CIN and with the inoculum controls (C). For the bilayer films, count 

values are given for the culture medium in contact with the starch layer (S-Mcin data), compression 

moulded PLA layer (PLA-Mcin data) and CIN-loaded PLA layer (Mcin-S or Mcin-PLA data ).  

 

The results obtained results suggest that CIN is strongly tightly bonded to the PLA matrix, which limits 

its release rate into the medium and, so its antibacterial capacity. In the PLA monolayer, the 

incorporated amount of CIN incorporated seems to be enough to deliver a CIN concentration above 

the MIC of both bacteria, but when this amount was distributed in a thicker PLA bilayer, not enough 

active compound is released occurs to affect bacterial growth. In contrast, the S layer offers much less 

resistance to the CIN migration, thus enhancing the antimicrobial capacity of the bilayer films. In that 

sense, since starch is a hydrophilic material, its hydration in contact with the medium would favour the 

molecular mobility and thus the diffusion of CIN into the medium. To corroborate this hypothesis, the 

next section analyses the release kinetics of CIN from mono and bilayer films in different food 

simulants. 

 

Release kinetics of cinnamaldehyde 
The release kinetics of the active compound into food simulants with of differingent polaritiesy was 

analysed. Aqueous (A: 10 % ethanol (v/v) and B: 3 % acetic acid (w/v)) and less polar simulants (D1: 

50 % ethanol (v/v) and D2: isooctane) were considered. The Released mass of CIN delivered at 

different contact times with simulants hasve been determined and ffigure 2 shows the mean values, 

referred to the maximum value (at equilibrium) for each case. This ratio represents the fraction of 

active released at each time with respect to the final amount delivered at equilibrium in each simulant. 

Table 2 shows the maximum values (M∞), referred per mass unit of the initial film, which were 

estimated by applying Peleg’s model to the experimental data for the CIN release. The values of 1/k1 

parameter, related to the release rate, were also included in table 2. A good fitting of the model was 

achieved in all every cases (R2 > 0.97). Both the deliver rate and asymptotic value were greatly 

affected by the polarity of the food simulant and the kind of film, yielding different values depending on 

both factors. For every kind of film, Tthe fastest release of CIN was observed in 50 % ethanol 



 

(simulant D1) (c), whereas the slowest deliver occurred in the non-polar solvent (D2: isooctane) (e) for 

all kinds of films, as previously observed by several authors for other essential oil compounds in 

polymer matrices [30]; [31]; [32]; [33]; [34]. However, although the different films were observed to 

exhibit great differences in the CIN release rate were observed among the different films for a 

determined simulant, while in all cases the PLA bilayer (PLA-Mcin) exhibited the slowest release rate in 

every case.  

 

 

 
a b 

 
c d 

 
e  

Figure 2. Ratio of the active compound released in each food simulant, with respect to the equilibrium 

value, as a function of contact time (points) and Fick’s fitted Fick’s model (lines). A: 10 % ethanol (v/v), 

B: 3 % acetic acid (w/v), D1: 50 % ethanol (v/v), and D2: isooctane.   
 



 

As concerns the maximum active compound delivered, table 2 also shows the maximum release ratio 

(M∞/M0) for each compound, related with its partition coefficient (defined as the mass of active 

released at equilibrium in the simulant (M∞) with respect to the corresponding residual mass of the 

active in the film (M0-M∞)). This ratio was referred to the M0 value of the theoretical amount 

incorporated into the films and also to the amount determined by methanol extraction. The highest 

M∞/M0 values occurred in the starch bilayer (S-Mcin) and PLA monolayer samples (Mcin) in almost all 

every simulants, except in D1, where no significant differences were observed for the different films, if 

when considering the extractable CIN in methanol is considered. In this case, a total release can be 

assumed, considering the methanol extractable CIN in methanol of the films SE PUEDE QUITAR??, 

although only about 50 % of the incorporated compound was delivered from the PLA mono and 

bilayers. The Sstarch bilayers exhibited the greatest variability in this parameter, thus indicating more 

stochastic losses of the active compound during the bilayer processing, which could be due to the 

coupled effects of water loss from the S layer and the potential steam drag of CIN. In the non-polar 

simulant (D2), a very low small release of CIN occurred in all every cases, with being the PLA bilayer 

being the film that morethat most strongly retainss the active compound.  

 

Table 2. Parameters of Peleg’s model: amount of active compound released at equilibrium in the 

simulant (M∞) and its release rate (1/k1), and maximum release ratio (M∞/M0): mass of active delivered 

at equilibrium in the simulant related to the initial mass of the active (theoretical and extractable in 

methanol). Values of the Diffusion coefficient (D) were also included. Mean values ±standard 

deviation.  

Simulant Film 1/k2 = M∞ 

(g CIN/100 g film)
1/k1

(µg/min)

M∞/M0 

theoretical
(%)

M∞/M0 

extractable in 
methanol (%)

D x1011 

(cm2/s)

Mcin 9.7 ±0.3 e 4.3 ±0.6 ab 48 ±2 cd 83 ±3 c 2.4 ±0.2 a

S-Mcin 3.1 ±0.7 c 4.5 ±0.9 ab 35 ±8 b 113 ±25 e 53 ±20 bc

PLA-Mcin 0.57 ±0.12 ab 0.9 ±0.4 a 7.5 ±0.4 a 14.2 ±0.7 ab 5 ±1 a

Mcin 9.0 ±0.2 e 4.0 ±0.8 ab 45 ±1 c 77 ±2 c 1.9 ±0.3 a

S-Mcin 2.6 ±0.6 c 1.6 ±0.3 a 29 ±7 b 95 ±22 cde 15 ±4 ab

PLA-Mcin 0.278 ±0.012 a 0.47 ±0.07 a 3.7 ±0.2 a 6.9 ±0.3 ab 5.4 ±0.5 a

Mcin 10.9 ±0.2 f 97 ±8 d 55 ±1 d 93 ±2 cde 63 ±5 c

S-Mcin 2.3 ±0.9 c 49 ±12 c 27 ±10 b 86 ±33 cd 1378 ±106 d

PLA-Mcin 4.3 ±0.7 d 8.9 ±0.6 b 56 ±9 d 107 ±17 de 9 ±2 a

Mcin 1.11 ±0.03 b 0.18 ±0.05 a 5.5 ±0.2 a 9.5 ±0.3 ab 0.31 ±0.08 a

S-Mcin 0.7 ±0.2 ab 0.11 ±0.04 a 8 ±3 a 26 ±9 b 1.78 ±0.12 a

PLA-Mcin 0.046 ±0.006 a 0.014 ±0.002 a 0.61 ±0.08 a 1.2 ±0.2 a 1.7 ±0.2 a

A

B

D1

D2

 
Different superscript letters within the same column indicate significant differences among samples (films or 

simulants (p<0.05)). 

 

In relation withAs regards the active agent release process, three steps can be assumed: a) the 

solvent diffusion into the polymer matrix, b) the network relaxation in line with solvation and 

plasticization and c) the diffusion of the compound through the relaxed polymer network until the 
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thermodynamic equilibrium between phases (polymer/food system) is reached. The compound affinity 

with the solvated polymer and its solubility in the liquid food system will determine the partition 

coefficient at equilibrium for the delivered compound. Thus, the compound diffusion through the matrix 

will be affected by the solvent impregnation into the polymer network and the interactions established 

among the components. Considering bilayer films, two polymer matrices were involved in the film 

(amorphous PLA and starch or crystalline PLA, in S-Mcin or PLA-Mcin samples respectively). Therefore, 

different behaviours of the two layers could be expected to behave differently. Nevertheless, there was 

an overall behaviour tendencywas observedCHECK when bilayer films were submitted to the release 

studies. Previous studies for into similar compounds in different polymer matrices revealed no coupling 

of the polymer relaxation and compound diffusion steps. ThenSo, the diffusional mechanism controlled 

the compound release in different polymer films. This was the case of thymol in poly(butylene 

succinate) [32] and PLA [33] or lemongrass essential oil in sodium alginate films [35]. Taking these 

considerations into account, the apparent diffusion coefficient of the different mono and bilayer films 

were obtained. 

Figure 2 shows the fitted Fick’s model fitted to the experimental points in each simulant. A good fitting 

of the model was observed in all every cases (SSE< 0,076) as well as the different pattern of the 

curves depending on the film and the simulant. In each simulant, Thethe time required to reach the 

equilibrium value greatly varied among from film tothe films in each simulant:, from a few hours in the 

case of the starch bilayer (S-Mcin) to several days, in that ofbeing shorter for the starch bilayer (S-Mcin) 

and much longer for the PLA bilayer (PLA-Mcin)CHECK. This agrees with that previously 

commentedaforementioned CIN bonding to the PLA chains, which greatly retards the CIN deliver into 

the food simulants, regardless of their polarity. The Ddifferences were more marked for the simulant 

D1 (50 % ethanol), where a much faster release was observed for both monolayer and S bilayer films 

(c), in comparison with PLA bilayers (d). The decrease of in the simulant polarity, related to the rise of 

in the ethanol ratio, promoted boosted the CIN release rate of both the PLA monolayer and starch 

bilayer, probably due to the greater affinity of CIN with the solvent  (-----------) and the greater 

relaxation of the PLA layer in contact with this ethanol- rich solvent. Finally, the three kinds of films 

exhibited a very similar behaviour in isooctane (D2), with a very slow release until reaching the 

equilibrium is reached at longer contact times (nearly 120 days).  

The values of the apparent diffusion coefficient (D) in each film and simulant are shown in table 2, 

where both the polymer matrix and solvent influence can be observed. As the solvent penetrates the 

polymer matrix to a different extent in the polymer matrix, providing it with different relaxation effects, 

the compound diffusion was affected not only by the kind of polymer but also by the relaxation induced 

by the different solvents. In all every cases, D values were higher for the S bilayer, thus reflecting the 

low poor binding capacity of starch chains to bond CIN, which can be released more easily. No 

significant differences in D values were observed for eachin either film were observed for the two 

mostre aqueous simulants (A and B). Nevertheless, the increase of in the ethanol ratio in the simulant 

D1 enhanced the CIN diffusion in all every films, which can be attributed to a greater relaxation of the 

PLA matrix in both mono and bilayers. Finally, the lowest values of D were obtained in the simulant D2 

due to both the low solvent chemical affinity with CIN and the polymers, which will imply low relaxation 
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effects in the film matrices. It is remarkable that the D value in the PLA bilayer was significantly lower 

than in the PLA monolayer when the simulant D1was used, which can be attributed to the lower 

relaxation of the crystalline PLA layer in contact with the ethanol- richer simulant.  

The obtained results confirm the great retention of CIN into the PLA matrix, which can be explained by 

the enhanced compound-chain interactions with great chemical affinity. This will limit both its release 

ratio and rate in food systems, which could compromise  for itsthe CIN antimicrobial actionNO LO 

ENTIENDO. This retention seems to be enhanced after the thermocompression in bilayer films, as 

also revealed by the antimicrobial test. In the S bilayer, the thermocompression step seems to involve 

the CIN diffusion into the starch layer, where no CIN binding occurred due to the lesser poorer 

polymer-compound chemical affinity, and the migrated CIN could effectively be delivered into the 

simulants. This migration also occurred for the crystalline PLA layer in the PLA bilayer films, which 

contributes to the compound binding. The different relaxation of crystalline and amorphous PLA films 

in contact with the medium affected the CIN diffusion, limiting its release when it is entrapped in the 

more crystalline layer. 
 

Active release prediction over during/throughout the plate incubation time. 
Based on the kinetics analysis, the active agent release concentration vs. time was predicted in the 

plates where in which the antimicrobial test was performed, assuming bulk diffusion into the culture 

medium and assuming the simulant A (10 % ethanol) behaviour for the medium. Figure 3 shows the 

predicted CIN concentration (mg/mL TSA medium) when each one of the films was placedere put in 

contact with the plate as a function of time. The CIN MIC range reported by several authors for E. coli 

and L. innocua [36]; [37]; [38]; [39]; [40]; [41]  was reflected in the plot (shadow areas). As observed in 

the figure 3, different CIN concentrations will be present in the plate at the different incubation times. 

The Sstarch bilayer released the active compound faster, whose concentration reached the maximum 

level after about two days of contact, whereas the CIN release wais slower from the PLA monolayer 

active films. For both films, the MIC value was exceededovercame, which explains the effective 

antimicrobial action observed and commented on previously. Nevertheless, the CIN delivered from the 

PLA bilayer film did not exceedovercome the MIC value throughout the incubation time (13 days), 

which explains the lack of antibacterial action found in the antimicrobial test. Despite the fact that 

release kinetics provided information about the overall release ofromf both sides of the films??, the 

comparative analysis of both bilayers allows for obtaining information to be obtained about the 

different release kinetics of starch and semi crystalline PLA layers. This information is completely 

coherent with the obtained antimicrobial response obtained of from the three types of films. When the 

S bilayer is considered, CIN migration to the culture media is promoted by the diffusion of the 

compound diffusion into the starch layer where the compound is faster delivered faster. When this 

diffusion occurred into the semi crystalline PLA layer, CIN was highly closely retained into the polymer 

network, which becaomes less relaxed in contact with the medium, both factors inhibiting the 

compound release. The initially free CIN in the amorphous PLA layer will be greatly reduced by its 

distribution and partial bonding to the new PLA layer, when the bilayer  wasis formed by 

thermocompression, and its availability to be delivered into the agar medium becomes more limited, 
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thus not reaching the MIC value for the tested bacteria when the films were are in contact with the 

plates.   

 

 
Figure 3. Predicted concentration of CIN released throughout the incubation time into the TSA culture 

medium for the three different types of film, considering the simulant A. Shaded areas correspond to 

the range of the MIC of CIN against E. coli (dark grey) and L. innocua (faded grey). 

 

So, the kinetics analysis of the CIN release from the different films contribute helps to explain the 

different antimicrobial effects of the compound, according to its different retention ratios in the polymer 

matrix. The obtained results show great differences in the active compound release properties, 

affected by the polymer-retention entrapping capacity of the active compounds and the polymer-

medium interactions, which greatly affect its relaxation capacity and compound diffusion. Crystalline 

PLA offers high great resistance to CIN release,ase CIN and soo will limitings its antimicrobial action in 

active packaging materials. However, amorphous PLA and starch delivered CIN faster and at a higher 

ratio, which favoured the antibacterial activity. Of both polymers, starch seems both to retain CIN to a 

lesser extent and provide a higher CIN content to the culture medium, thus being more effective at to 

controlling bacterial growth.   

 
 
CONCLUSION 
Antimicrobial films based on starch and PLA could be obtained by the thermocompression of a CIN 

loaded amorphous PLA layer and compression moulded thermoplastic starch. Films exhibited 

antibacterial effect in in vitro tests against E. coli and L. innocua, when the culture medium was in 

contact with both starch and PLA layers, being more effective for in the case of S contact, despite the 

fact that CIN was loaded into the PLA layer. Both the antimicrobial test and CIN release kinetics 



 

suggest that a part of the incorporated CIN was strongly tightly bonded to the PLA mMatrix and the 

free CIN diffuses into the initially free layer in the bilayer films. In the starch bilayers, CIN migrates into 

the food system faster through the starch side due to its lower poorer/fewer interactions with the starch 

chains and the fact that the polymer swellsing in contact with the wet medium, which favours the 

compound diffusion. When bilayers were formed with CIN loaded amorphous PLA and a semi 

crystalline PLA layer, CIN migration was greatly inhibited, in line with the increase in the bonded/free 

CIN ratio and the lower milder solvent relaxation effects in the crystalline regions of the film. This 

implied the a lack of antimicrobial action of CIN of in these bilayers, where the released active 

compound did not overcome exceed the MIC of both tested bacteria. Therefore, the lamination of CIN 

loaded amorphous PLA with thermoplastic starch represents a good strategy to obtain antimicrobial 

films for food applications, which can be applied through starch or PLA food contact, depending on the 

interest for in a determined kind of food. In both cases, an antimicrobial activity can be expected, while 

films show complementary barrier properties associated to with the combination of both materials; . 

Tthe films facing the oxygen through the starch layer, whereas the PLA layer would bring provide good 

water vapour barrier properties capacity. Nevertheless, in vivo tests are required to assess the 

antimicrobial and functional effectiveness of these bilayer films in real foods.   
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