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Abstract

In this paper we give a local convergence result for a uniparametric family of it-
erative methods for nonlinear equations in Banach spaces. We assume boundedness
conditions involving only the first Fréchet derivative, instead of using boundedness
conditions for high order derivatives as it is usual in studies of semilocal conver-
gence, which is a drawback for solving some practical problems. The existence and
uniqueness theorem that establishes the convergence balls of these methods is ob-
tained. We apply this theory to different examples, including a nonlinear Hammer-
stein equation that have many applications in chemistry and appears in problems
of electro-magnetic fluid dynamics or in the kinetic theory of gases. With these
examples we illustrate the advantages of these results. The global convergence of
the method is addressed by analysing the behaviour of the methods on complex
polynomials of second degree.
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1 Introduction

Solving nonlinear equations is an important branch of Numerical Analysis. A great variety
of problems in sciences and engineering can be modeled by ordinary differential equations,
partial derivative equations, integral equations, etc. [1]. After applying the corresponding
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numerical method many of them become a nonlinear system, F (x) = 0, where F is a
Fréchet-differentiable operator defined between Banach’s spaces.

We deal with the problem of approximating a solution of nonlinear systems. Iterative
methods are the common technique used to approximate the solutions.

Many iterative methods can be found in the literature, from the classical Newton or
Chebyshev’s methods to different variants of these, [2, 3]. In these studies, authors are
interested in giving conditions to obtain a starting point that ensures convergence to a
root. Precisely, one can find semilocal and local convergence results in order to estimate
the radii of the convergence balls.

The main difference between these types of convergence results is that while in semilo-
cal convergence, [7, 9, 4, 6, 10, 8, 5] one imposes conditions on the starting point x0, in
the local convergence, [12, 11], you impose conditions on the solution. Important results
about the convergence domains can be obtained with either local or semilocal techniques.

However, most of the local convergence results are obtained under general conditions
that, by using using Taylor’s expansions, allow us to find the convergence order but not
the radii of the convergence balls; see [13, 14, 15], among others.

In [5], a semilocal convergence study for a family of third and fourth order methods
for nonlinear systems has been performed. A shortcoming of these proofs is that they
assume boundedness conditions for high order derivatives, which can be a drawback for
solving some practical problems. As can be easily observed in Example 4.1, that is
a logarithmic equation, these type of equations appears for obtaining the equilibrium
constants in chemical reactions.

In this paper our aim is to obtain a local convergence result for this family of iterative
methods for nonlinear equations in Banach spaces, assuming boundedness conditions in-
volving only the first Fréchet derivative, in order to obtain convergence domains. We apply
this theory to different examples in order to illustrate the advantages of our results. We
include a nonlinear Hammerstein equation that appears in problems of electro-magnetic
fluid dynamics, in the kinetic theory of gases and in the reformulation of boundary value
problems with a nonlinear boundary condition, [1, 16].

Finally, we study the dynamics of the method on complex polynomials of second
degree, in order to assess the global convergence properties of the family.

2 Preliminary results

Let X, Y be Banach spaces and F : Ω ⊆ X → Y a nonlinear operator in an open convex
domain Ω0 ⊆ Ω. We consider the family iterative methods for solving the nonlinear
system F (x) = 0 defined by:

yk = xk − θF ′(xk)
−1F (xk)

zk = yk − F ′(xk)
−1F (yk) (1)

xk+1 = zk − F ′(xk)
−1F (zk).
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with θ ∈ R r {0}. In [5], the semilocal convergence analysis of the above mentioned
method was made under the following assumptions:

F is twice Fréchet differentiable, x0 ∈ Ω0 is such that Γ0 = F ′(x0)
−1 exists and the

following conditions are verified:

∥Γ0∥ ≤ β

∥Γ0F (x0)∥ ≤ η

∥F ′′(x)∥ ≤ M, x ∈ Ω0 (2)

∥F ′′(x)− F ′′(y)∥ ≤ K∥x− y∥, x, y ∈ Ω0.

These conditions involve the existence and boundedness of the Fréchet derivatives F (i) of
order i = 1, 2, 3, which makes the result very restrictive and difficult to apply to some
problems. Our aim is to give a local convergence result for this iterative method relaxing
the assumptions of the semilocal convergence case.

From now on, we denote by B(v, ρ), B(v, ρ), the open, respectively closed, ball in X
with center v and radius ρ > 0.

3 Local convergence analysis

In the local convergence analysis of an iterative method, you impose conditions on the
values of F and its derivatives at the solution and obtain a ball centered in the solution
such that each point in it can be taken as an starting point for the iterative method. Our
aim is to increase the radius of this ball.

In a local convergence study, the conditions are usually expressed in the following way:
F : Ω0 ⊆ X → Y is a Fréchet differentiable operator. argyros2015study argy-

ros2015localhl L0 > 0, L > 0 and θ ∈ (−∞,∞) − {0} are real numbers verifying that
there exists x∗ ∈ Ω0 such that, F (x∗) = 0, and F ′(x∗)−1 ∈ L(Y,X) and for all x, y ∈ Ω0

the following holds:

∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ L0∥x− x∗∥
∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ L∥x− y∥. (3)

Always, a third assumption is made, as can be observed in different papers, see [21, 22],
that can be written as follows:

∥F ′(x∗)−1F ′(x)∥ ≤ M, (4)

for some M > 0.
Considering the remark made in [21], we can drop this condition. Moreover, a differ-

ence from this work and as far as we know, this is the first time that the whole process
for establishing local convergence is develop without using constant M imposed in (4).
This fact allows us to improve the value of the radius of the convergence ball. For this
purpose, we prove the following result:
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Lemma 3.1 If operator F verifies all conditions assumed in (3) then, the following
bounds also hold for all x ∈ Ω0 and t ∈ [0, 1] :

∥F ′(x∗)−1F ′(x)∥ ≤ 1 + L0∥x− x∗∥
∥F ′(x∗)−1(F ′(x∗ + t(x− x∗)∥ ≤ 1 + L0∥x− x∗∥ (5)

∥F ′(x∗)−1F (x)∥ ≤ (1 + L0∥x− x∗∥)∥x− x∗∥

Proof: By using the first condition of (3) we have:

∥F ′(x∗)−1F ′(x)∥ = ∥F ′(x∗)−1(F ′(x)− F ′(x∗)) + I)∥ ≤ 1 + ∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥
≤ 1 + L0∥x− x∗∥,

and then it follows that:

∥F ′(x∗)−1(F ′(x∗ + t(x− x∗)))∥ ≤ 1 + L0t∥x− x∗∥ ≤ 1 + L0∥x− x∗∥,

being 0 < t < 1.
Finally, we use the mean value theorem, so

∥F ′(x∗)−1F (x)∥ = ∥F ′(x∗)−1(F (x)− F (x∗))∥ ≤ ∥F ′(x∗)−1F ′(x∗ + t(x− x∗))(x− x∗)∥
≤ (∥1 + L0∥x− x∗∥)∥x− x∗∥.

Now we analyse the family of iterative methods, (1), we look for a ball centred at the
solution so that any point of this ball can be taking as starting point for the iterative
method and the sequence generates remains in this ball and converges to the solution,
specifically we want determine de radius of this ball.

So if we denote x0 ∈ Ω0 the starting point and use the assumption (3) we establish by
Banach’s lemma the first restriction for the domain of convergence:

∥F ′(x∗)−1(F ′(x0)− F ′(x∗))∥ ≤ L0∥x0 − x∗∥,

so, we impose that ∥x0−x∗∥ < 1
L0
, as a result by Banach’s Lemma on invertible operators,

F ′(x0)
−1 exists in L(Y,X) and verifies:

∥F ′(x0)
−1F ′(x∗)∥ ≤ 1

1− L0∥x0 − x∗∥
. (6)

Therefore, the method is well defined and now we look for bounding the iterates:

y0 − x∗ = x0 − x∗ − θF ′(x0)
−1F (x0)

= x0 − x∗ − F ′(x0)
−1F (x0) + (1− θ)F ′(x0)

−1F (x0)

= −F ′(x0)
−1 (F (x0)− F ′(x0)(x0 − x∗)) + (1− θ)F ′(x0)

−1F (x0)

= −F ′(x0)
−1F ′(x∗)

∫ 1

0

F ′(x∗)−1[F ′(x∗ + t(x0 − x∗))− F ′(x0)](x0 − x∗)dt

+ (1− θ)F ′(x0)
−1F ′(x∗)

∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dt
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By taking norms and using (3) and (3.1), we get:

∥y0 − x∗∥ ≤ ∥F ′(x0)
−1F ′(x∗)∥

∥∥∥∥∫ 1

0

F ′(x∗)−1[F ′(x∗ + t(x0 − x∗))− F ′(x0)](x0 − x∗)dt

∥∥∥∥
+ |1− θ|∥F ′(x0)

−1F ′(x∗)∥
∥∥∥∥∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))(x0 − x∗)dt

∥∥∥∥
≤ 1

1− L0∥x0 − x∗∥

[
L

2
∥x0 − x∗∥+ |1− θ|(1 + L0∥x0 − x∗∥)

]
∥x0 − x∗∥

≤ g1(∥x0 − x∗∥)∥x0 − x∗∥, (7)

where we have used function g1(t) defined in [0, 1/L0] as follows:

g1(t) =
1

1− L0t

(
L

2
t+ |1− θ|(1 + L0t)

)
.

Now, in order to analyze function g1 we define a new function h1(t) = g1(t)− 1 resulting
that h1(0) = |1 − θ| − 1 < 0 if θ ∈]0, 2[ and h1(1/L0) → +∞, so by Bolzano’s theorem,
we take r1 the smallest root of h1(t) in ]0, 1/L0[ and then we have that:

0 ≤ g1(t) ≤ 1, ∀t ∈ [0, r1].

So, if we come back to (7), we have that:

∥y0 − x∗∥ ≤ g1(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥.

Then, we study bounds for the second step in the first iteration of (1). By using (3),
(3.1) and (7) we have:

∥z0 − x∗∥ ≤ ∥y0 − x∗∥+ ∥F ′(x0)
−1F (y0)∥

≤ ∥y0 − x∗∥+ ∥F ′(x0)
−1F ′(x∗)∥∥F ′(x∗)−1F (y0)∥,

≤
(
1 +

1 + L0∥y0 − x∗∥
1− L0∥x0 − x∗∥

)
∥y0 − x∗∥ (8)

≤
(
1 +

1 + L0g1(∥x0 − x∗∥)∥x0 − x∗∥)
1− L0∥x0 − x∗∥

)
g1(∥x0 − x∗∥)∥x0 − x∗∥

= g2 (∥x0 − x∗∥) ∥x0 − x∗∥,

where we have used the function g2(t) defined in [0, r1] as follows:

g2(t) = (1 +
1 + L0tg1(t)

1− L0t
)g1(t).

Now, we consider function h2(t) = g2(t)− 1 resulting that h2(0) = 2|1− θ| − 1 < 0 if
θ ∈]1

2
, 3
2
[ and h2(r1) =

2
1−L0r1

− 1 > 0, so by Bolzano’s theorem we take r2 the smallest
root of h2(t) in ]0, r1[ and thus we have:

0 ≤ g2(t) ≤ 1, ∀t ∈ [0, r2].
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So, coming back to (8), we have:

∥z0 − x∗∥ ≤ g2(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥.

Finally, we analyze the last step:

∥x1 − x∗∥ ≤ ∥z0 − x∗∥+ ∥F ′(x0)
−1F (z0)∥

≤ ∥z0 − x∗∥+ ∥F ′(x0)
−1F ′(x∗)∥∥F ′(x∗)−1F (z0)∥,

≤
(
1 +

1 + L0∥z0 − x∗∥
1− L0∥x0 − x∗∥

)
∥z0 − x∗∥ (9)

≤
(
1 +

1 + L0g2(∥x0 − x∗∥)∥x0 − x∗∥
1− L0∥x0 − x∗∥

)
g2(∥x0 − x∗∥)∥x0 − x∗∥

= g3(∥x0 − x∗∥)∥x0 − x∗∥,

where we have used the function g3(t) defined in [0, r2] as follows:

g3(t) =

(
1 +

1 + L0tg2(t)

1− L0t

)
g2(t).

Now, we consider function h3(t) = g3(t) − 1 resulting that h3(0) = 2g2(0) − 1 <
4|1− θ| − 1 < 0 if θ ∈]3

4
, 5
4
[ and h3(r2) =

2
1−L0r2

− 1 > 0 so by Bolzano’s theorem we take
r3 the smallest root of h3(t) in ]0, r2[ and so we have:

0 ≤ g3(t) ≤ 1, ∀t ∈ [0, r3].

So, if we come back to (9), we have:

∥x1 − x∗∥ ≤ g3(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥.

We can conclude that for values of θ ∈]3
4
, 5
4
[ we have 0 < r3 < r2 < r1 < 1/L0 so that,

by taking

0 < r ≤ r3 : B(x∗, r) ⊆ Ω0 (10)

and starting from any x0 ∈ B(x∗, r) the following relations hold:

∥y0 − x∗∥ ≤ g1(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < r,

∥z0 − x∗∥ ≤ g2(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < r,

∥x1 − x∗∥ ≤ g3(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < r

and thus, the iterates y0, z0 and x1 remain in B(x∗, r).
The following theorem describes the local convergence analysis of the family of iterative

methods (1) using the definitions of the above functions and parameters.
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Theorem 3.1 Let F : Ω0 ⊆ X → Y be a Fréchet differentiable operator. Suppose that
L0 > 0, L > 0 and θ ∈]3

4
, 5
4
[ are real numbers such that there exist x∗ ∈ Ω0 verifying (3),

and let r defined by (10). Then, the sequence {xk} obtained by (1) is well defined for
x0 ∈ B(x∗, r), remains in B(x∗, r) for each k = 0, 1, 2, . . . and converges to x∗.

Furthermore, if there exists R ∈ [r, 2
L0
) such that B(x∗, R) ⊆ Ω0, then the limit point

x∗ is the only solution of the equation F (x) = 0 in B(x∗, R).

Proof: Obviously the whole process we have presented starting by x0 obtainig x1 can
be exactly deduced starting from xk obtaining xk+1, just by substituting x0, y0, z0 and
x1 by xk, yk, zk, and xk+1 in the preceding study, we obtain that all the iterates remain
in B(x∗, r), verifying for each k = 0, 1, 2, . . . , the following inequalities:

∥yk − x∗∥ ≤ g1(∥xk − x∗∥)∥xk − x∗∥ ≤ ∥xk − x∗∥ < r,

∥zk − x∗∥ ≤ g2(∥xk − x∗∥)∥xk − x∗∥ ≤ ∥xk − x∗∥ < r,

∥xk+1 − x∗∥ ≤ g3(∥xk − x∗∥)∥xk − x∗∥ ≤ ∥xk − x∗∥ < r

Is easy to obtain that function g3 is increasing in its domain, so we have:

∥xk+1 − x∗∥ ≤ g3(r)∥xk − x∗∥ ≤ g3(r)g3(∥xk−1 − x∗∥)∥xk−1 − x∗∥
≤ g3(r)

2g3(∥xk−2 − x∗∥)∥xk−2 − x∗∥ ≤ . . . ≤ g3(r)
k+1∥x0 − x∗∥.

Then, by taking limits in the last expression and using that limk→∞ g3(r)
k+1 = 0, we have

lim
k→∞

xk = x∗, and so, the method converges to the solution.

In order to prove the uniqueness part, let y∗ ∈ B(x∗, R), y∗ ̸= x∗ with F (y∗) = 0.

Let us consider the integral operator T =

∫ 1

0

F ′(y∗ + t(x∗ − y∗))dt. Then by using (3),

we have

∥F ′(x∗)−1(T − F ′(x∗))∥ ≤
∫ 1

0

L0∥y∗ + t(x∗ − y∗)− x∗∥dt ≤ L0

2
∥x∗ − y∗∥ =

L0

2
R < 1,

therefore by Banach’s Lemma, T−1 exists. Then, from the identity

0 = F (x∗)− F (y∗) = T (x∗ − y∗),

we obtain x∗ = y∗.

4 Numerical examples

In this section the convergence ball for approximating solutions of some nonlinear equa-
tions by using methods of the family given by (1) is obtained under weaker hypotheses
than before. While the semilocal study presented in [5] involves boundedness conditions
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for high order derivatives, here we only impose the boundedness condition on the first
Fréchet derivative (compare conditions (2) with (3)). Most of the examples have been
taken from the literature in order to compare the obtained results.

Example 4.1 Let function f defined on D = [−1
2
, 5
2
] by

f(x) =

{
x3 lnx2 + x5 − x4, x ̸= 0

0, x = 0

First we consider a logarithmic equation that is the typical example in studies of local
convergence. The successive derivatives are:

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x2 lnx2 + 20x3 − 12x3 + 10x,

f ′′′(x) = 6 ln x2 + 60x2 − 24x+ 22.

It can be easily observed that f ′′′ is unbounded on D. So, the results of semilocal conver-
gence involving (2) cannot be applied. However, by applying theorem 3.1 with x∗ = 1,
we have L0 = L = 96.6628. Taking θ = 1, we get:

r3 = 0.002611 < r2 = 0.004206 < r1 = 0.006897.

Example 4.2 We study now a nonlinear integral equation of Hammerstein type. These
equations have many applications in chemistry and appear in problems of electro-magnetic
fluid dynamics, in kinetic theory of gases, and in the reformulation of boundary value
problems, [1],[16]. This equation is of the form:

x(s) = u(s) +

∫ b

a

G(s, t)H(x(t)) dt, a ≤ s ≤ b,

for x(s), u(s) ∈ C[a, b] with −∞ < a < b < ∞. G is the Green function and H is a
polynomial function.

The usual technique to solve these kind of equations consists in expressing it as a nonlinear
operator in a Banach space, that is:

F (x) = 0,

where F : Ω ⊆ C[a, b] → C[a, b] with Ω a non-empty open convex subset,

[F (x)](s) = x(s)− u(s)−
∫ b

a

G(s, t)H(x(t)) dt,

considering the uniform norm ∥ν∥ = maxs∈[a,b] |ν(s)|.
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Observe that in most cases boundedness conditions like (2) cannot be satisfied since
∥F ′′(x)∥ or ∥F ′′′(x)∥ can be unbounded in a general domain. Thus, an alternative is
looking a domain that contains the solution. But it is more convenient using the local
convergence results obtained in our study in order to give the radius of a convergence
ball.

We apply our theoretical study presented in theorem 3.1 to the particular Hammerstein
equation given by:

F (x(s)) = x(s)− 5

∫ 1

0

s t x(t)3dt, (11)

with x(s) in C[0, 1]. The derivative can be written by:

F ′(x(s))v(s) = v(s)− 15

∫ 1

0

s t x(t)2v(s)dt, (12)

One solution of this problem is the null function so it is easy to find different values
for Lipschitz constans L0 = 7.5 and L = 15. By choosing the iterative method from (1)
corresponding to θ = 1, the following results are obtained:

r3 = 0.021860 < r2 = 0.037592 < r1 = 0.066667.

Example 4.3 Let X = Y = R. Define F on D = [1, 3] by

F (x) =
2

3
x

3
2 − x

Then, x∗ = 9
4
, F ′(x∗)−1 = 2, L0 = L = 1.

Choosing
θ = 0.9870,

we have

r3 = 0.234583 < r2 = 0.390015 < r1 = 0.652346.

Example 4.4 Let X = Y = R3, D = U(0, 1). Define F on D for v = (x, y, z) by

F (v) =

(
ex − 1,

e− 1

2
y2 + y, z

)
.

Then the Fréchet derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1



9



Then, x∗ = (0, 0, 0), F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e− 1, L = e, M = e.
Choosing

θ = 1.0125,

we have

r3 = 0.104544 < r2 = 0.181094 < r1 = 0.318661.

4.1 More results

In Table 4.1 we show for the previous examples the radius of the convergence ball centered
at the solution for different values of theta in our family of iterative methods. As you can
see the largest radius always corresponds to theta equal one.

Examples θ = 0.85 θ = 0.95 θ = 1 θ = 1.24
4.1 8.56× 10−4 1.942× 10−3 2.611× 10−3 7.7× 10−5

4.2 7.759× 10−3 1.6769× 10−2 2.1860× 10−2 7.28× 10−4

4.3 8.2782× 10−2 0.187715 0.252388 7.516× 10−3

4.4 3.8647× 10−2 0.084765 0.111497 3.588× 10−3

Table 1: Radii of convergence balls

4.2 Comparing results

Now we compare our results with the ones of recent published papers. First, we consider
the method defined in [21] that is a family of Chebyshev-Halley-type methods free from
second derivative given by:

yk = xk − F ′(xk)
−1F (xk)

zk = xk −
(
1 + (F (xk)− 2αF (yk))

−1F (yk)
)
F ′(xk)

−1F (xk) (13)

xk+1 = zk −
(
F ′(xk) + F̄ ′′(xk)(zk − xk)

)−1

F (zk).

where F̄ ′′(xk) = 2F (yk)F
′(xk)

2F (xk)
−2. The order of convergence of these methods was

shown to be at least five and for any value of parameter α and if α = 1, the order is six.
For this method to work the following condition should be satisfied

0 < |α|ML < 1

which holds for small values of α. For α = 1, this condition is not satisfied for the
considered examples. We have to consider smaller values of α that the authors have
considered, we have taken α = 0.00006, 0.0075, 0.009, 0.125; respectively for examples
from 1 to 4.
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The second method with which we will compare our results defined in [22] has the
following iterative function:

yk = xk − F ′(xk)
−1F (xk)

uk = yk + (1− θ)F ′(xk)
−1F (xk)

zk = yk − γAθ,nF
′(xk)

−1F (xk) (14)

xk+1 = zk − αBθ,nF
′(xk)

−1F (zk).

where α, γ, θ ∈ (∞,∞)−{0}, Hθ,n = 1
θ
F ′(xk)

−1
(
F ′(uk)−F ′(xk)

)
, Aθ,n = I − 1

2
Hθ,n

(
I −

1
2
Hθ,n

)
and Bθ,n = I −H1,n +H2

θ,n.

For this method to work, the following conditions should be satisfied.

M |1− θ| < 1

M |γ| < 1(
1 + |α|M

)
|γ|M < 1

Examples θ γ α
4.1 1 0.005 0.008
4.2 1 0.575 0.03
4.3 0.987 3/5 0.001
4.4 1.0125 0.3 0.03

Table 2: Value of the parameters

We have chosen the values of these parameters, see Table 4.2, in such a way that above
conditions are satisfied.

From Table 4.2, it can be observed that the present method gives larger radii of
convergence than the existing methods. So we conclude that the fact of dropping constant
M in the local convergence study has the advantage of obtaining greater convergence balls.

Examples Present method Method (13) Method (14)
4.1 0.002611 4.4× 10−9 2.501628× 10−4

4.2 0.021860 0.007218 0.004999
4.3 0.234583 0.105844 0.059554
4.4 0.104544 0.001728 0.027226

Table 3: Comparison of radii of the convergence balls
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5 Dynamics

The dynamics of the family of iterative methods 1 has been studied in [5] for systems of
nonlinear equations in the real plane. Here we study its dynamical behaviour for complex
polynomials of second degree proving scaling and conjugacy results. Similar studies have
been performed in [18, 19, 20] for other families of iterative methods. The dynamics of
the relaxed Newton’s method has been studied in [17].

The iterates obtained starting from z0 ∈ C can be denoted by {z0, R(z0), R
2(z0), . . .,

Rn(z0), . . .}, where R is a rational function defined on the Riemann sphere Ĉ. This set is
called the orbit of z0.

Let z ∈ Ĉ be a fixed point of the rational function R, that is to say R(z) = z. The
basin of attraction of z consists of the points whose orbit tends to z. The behaviour of
the orbits near a fixed point z depends on the derivative R′(z). If |R′(z)| < 1, the fixed
point z is attracting and if |R′(z)| > 1, it is repelling. If R′(z) = 0, the fixed point is
superattracting.

The set of points z0 ∈ Ĉ such that their families Rn(z0), n ∈ N are normal in some
neighbourhood U(z0) is the Fatou set, F(R) and its complement in Ĉ is the Julia set
J (R). Roughly speaking, the orbits of the points in F(R) present a stable behaviour
whereas the orbits of the points in J (R) have chaotic behaviour. In particular, the Fatou
set contains the attraction basins of the attracting fixed points whereas the Julia set
contains the boundaries of the attraction basins.

Given an analytic function f(z), consider the function associated to a step of the
iterative method (1) Mf : Ĉ −→ Ĉ, such that Mf (xk) = xk+1. The following scaling
result holds for Mf :

Theorem 5.1 Let f be an analytic function on Ĉ, and A(z) = αz + β, with α ̸= 0, an
affine map. If g(z) = λ(f ◦A)(z), λ ̸= 0, then Mf is analytically conjugated to Mg by A,
that is, A ◦Mg ◦ A−1 = Mf .

Any polynomial of second degree is conjugated by an affine transformation to a poly-
nomial of the form f(z) = z2 + c, c ∈ C, so that in order to study the dynamics of Mf

on quadratic polynomials, it suffices to consider only polynomials of this form.
Then, if f(z) = z2 + c, with c ̸= 0, Mf has the form

Mf (z) = −16z4 (c+ z2) (c+ 5z2) + 8z2 (c+ z2)
3
θ2 + (c+ z2)

4
θ4

128z7
. (15)

The equation Mf (z) = z can be written as

16z4 (c+ z2) (c+ 5z2) + 8z2 (c+ z2)
3
θ2 + (c+ z2)

4
θ4

128z7
= 0, (16)

so that, Mf has eight fixed points. Six of them depend on θ and the two remaining
are the roots of f(z), ±

√
−c, which do not depend on θ. These two fixed points are

12



Figure 1: Attraction basins for c = i and θ = 0.5.

superattracting, because

M ′
f (z) =

(c+ z2)
2
(48z4 − 8z2 (−5c+ z2) θ2 + (7c− z2) (c+ z2) θ4)

128z8
(17)

and then, M ′
f (±

√
−c) = 0. The character of the remaining fixed points depends on θ.

Figures 1 and 2 show the attraction basins of Mf for f(z) = z2 + i and values of θ for
which the roots of the polynomial are the only attracting fixed points. The roots, marked
in red, are in its attraction basin and the other repelling fixed pints, marked in white, are
in the boundary of the basins, in the Julia set.

The dynamical study can be simplified further by using the idea of analytical conju-
gation. If B(z) is a Möbius map

B(z) =
αz + β

γz + δ
, αδ − βγ ̸= 0, (18)

the rational maps M and N are analytically conjugated via B if N = BMB−1. Then,
F(N) = B(F(M) and J (N) = B(J (M).

13



Figure 2: Attraction basins for c = i and θ = 0.5.
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Theorem 5.2 Let f(z) be a quadratic polynomial with simple roots. The fixed point
operator Mf (z) associated to the family of iterative methods (1) verifies:

1. Mf (z) is analytically conjugated with

Nf (z) =
z3 (−(1 + z)4(2 + z) + 2(1 + z)2θ2 + zθ4)

−(1 + z)4(1 + 2z) + 2z3(1 + z)2θ2 + z4θ4
. (19)

2. The Julia set of this operator contains the unit circle.

3. The Fatou set consists of the attraction basins of 0 and infinity. Both are superat-
tracting fixed points.

Proof:

1. Due to the scaling theorem 5.1, we suppose f(z) = z2 + c. Then, the Möbius
transform

B(z) =
z −

√
−c

z +
√
−c

has the following properties:

B(∞) = 1, B(
√
−c) = 0, and B(−

√
−c) = ∞.

By conjugating Mf with B one gets (19), which does not depend on c.

2. It is easy to check that the unit circle z : |z| = 1 is invariant under Nf .

3. Expression (19) shows that 0 and ∞ are superattracting fixed points of third order.

Figures 3 and 4 depict the Julia sets of Nf for θ = 0.5 and θ = 1.5, respectively. The
Julia set of Newton’s method for polynomials of second degree reduces to the unit circle.
In our case, the set is more involved, but still includes it.

The figures show that most of the points in the complex plane belong to the attraction
basin of a root, so that, they are suitable as starting points for the iterations of the
considered family of methods, when dealing with quadratic polynomials. This implies a
good global behaviour of the family, in comparison with other iterative methods.
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