
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

TOSCA-based orchestration of complex clusters at
the IaaS level
To cite this article: M Caballer et al 2017 J. Phys.: Conf. Ser. 898 082036

View the article online for updates and enhancements.

Related content
Monitoring of IaaS and scientific
applications on the Cloud using the
Elasticsearch ecosystem
S Bagnasco, D Berzano, A Guarise et al.

-

Geographically distributed Batch System
as a Service: the INDIGO-DataCloud
approach exploiting HTCondor
D C Aiftimiei, M Antonacci, S Bagnasco et
al.

-

Abstracting application deployment on
Cloud infrastructures
D C Aiftimiei, E Fattibene, R Gargana et
al.

-

This content was downloaded from IP address 158.42.104.164 on 23/02/2018 at 07:14

https://doi.org/10.1088/1742-6596/898/8/082036
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
http://iopscience.iop.org/article/10.1088/1742-6596/898/8/082053
http://iopscience.iop.org/article/10.1088/1742-6596/898/8/082053

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

TOSCA-based orchestration of complex clusters at

the IaaS level

M Caballer1, G Donvito2, G Moltó1, R Rocha3 and M Velten3

1 Instituto de Instrumentación para Imagen Molecular (I3M). Centro mixto CSIC Universitat
Politècnica de València - CIEMAT, camino de Vera s/n, 46022 Valencia, Spain
2 Istituto Nazionale di Fisica Nucleare (INFN), Via Giovanni Amendola, 173, 70126 Bari, Italy
3 European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland

Abstract. This paper describes the adoption and extension of the TOSCA standard by the
INDIGO-DataCloud project for the definition and deployment of complex computing clusters
together with the required support in both OpenStack and OpenNebula, carried out in close
collaboration with industry partners such as IBM. Two examples of these clusters are described
in this paper, the definition of an elastic computing cluster to support the Galaxy bioinformatics
application where the nodes are dynamically added and removed from the cluster to adapt to the
workload, and the definition of an scalable Apache Mesos cluster for the execution of batch jobs
and support for long-running services. The coupling of TOSCA with Ansible Roles to perform
automated installation has resulted in the definition of high-level, deterministic templates to
provision complex computing clusters across different Cloud sites.

1. Introduction
INDIGO-DataCloud is an European Union’s Horizon 2020 funded project whose ultimate
goal is to provide a sustainable European software infrastructure for science, spanning
multiple computer centers and existing public clouds. The participating sites form a set of
heterogeneous cloud infrastructures with different Cloud Management Platforms (CMP), some
running OpenNebula, some running OpenStack. INDIGO-DataCloud is introducing innovative
advancements at the layer of IaaS (Infrastructure as a Service), e.g., by introducing and
supporting containers in the aforementioned CMPs, at the layer of PaaS (Platform as a Service),
e.g., by creating SLA-based orchestration components that support deployments on multi-Clouds
and, finally, at the layer of SaaS (Software as a Service), e.g., by developing high-level REST
and graphical user interfaces to facilitate the usage of computing infrastructures for different
scientific communities. Moreover from the point of view of the storage INDIGO-DataCloud
pushes forward and greatly simplify the management of heterogeneous storage resources in the
cloud environment.

There was the need to find a common denominator for the deployment of both the
required PaaS services and the end user application architecture, which typically involve
customized virtual infrastructures. In this context TOSCA represents a standard approach
to provide descriptions of applications architectures to be deployed on a cloud and was adopted
and extended by INDIGO-DataCloud to support the requirements coming from scientific
communities.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

In the context of this work, we describe how TOSCA is employed to describe complex clusters
of applications and services and to provide a way to express their automatic configuration via
Ansible recipes so that they can deployed at an IaaS cloud site. In particular, we focus on two
different examples of complex clusters: i) customized elastic virtual computing clusters where the
number of nodes can dynamically grow and shrink according to the workload and ii) deployment
of elastic Apache Mesos clusters supporting the Chronos framework, to perform batch execution
of jobs and the Marathon framework, to manage the execution of long-running services, both of
them encapsulated as Docker containers.

After the introduction, the remainder of the paper is structured as follows. First, section 2
provides a brief introduction to the TOSCA standard. Second, section 3 describes the motivation
to adopt TOSCA as the standard to describe complex application architectures in INDIGO-
DataCloud focusing on its current usage to orchestrate complex clusters. Third, section 4
describes different examples of defining complex clusters using TOSCA, both involving scientific
applications employed by user communities as well as to perform support for the execution of
batch jobs and the deployment of long-running services. Finally, section 5 summarizes the paper
and points to future work.

2. A Brief Introduction to TOSCA
TOSCA (Topology and Orchestration Specification for Cloud Applications) is an OASIS
specification for the interoperable description of application and infrastructure cloud services,
the relationships between parts of these services, and their operational behaviour. Originally,
TOSCA templates were written in XML, but the TOSCA Simple Profile in YAML[7] enables the
user to write TOSCA documents in YAML that are less verbose and more human-readable. This
greately simplifies the creation of TOSCA templates. The TOSCA Simple Profile specification
defines a set of normative types as a base type system that provides high-level abstractions for
most cloud service and infrastructure components. In addition, new non-normative node types
can be included to fit some particular needs.

Recently the TOSCA TC has approved the TOSCA Simple Profile for Network Functions
Virtualization (NFV) [10]. This enables the specification of a NFV specific data model using
the TOSCA language to deploy and operate Network Services and Virtual Network Functions
(VNFs) on an NFV infrastructure platform.

Furthermore, the TOSCA TCs Container and Clustering ad hoc workgroup has been
empowered to expand its focus to include how to define clusters of homogeneous and
heterogeneous containers and provide standard capabilities that allow containers to describe
abstract Compute, Network, and Storage requirements, as well as provide overall load balancing
and scaling of both individual containers and the clusters themselves.

To sum up, TOSCA provides the language to create a TOSCA template, which is a YAML
document that describes the architecture of an application to be deployed on a cloud site.

3. TOSCA in INDIGO-DataCloud
At the start of the INDIGO-DataCloud project an effort was made to evaluate the available
orchestration options. The following were considered:

• HOT[4], the language behind OpenStack HEAT

• CloudFormation[1], the language used by AWS (Amazon Web Services)

• TOSCA[7]

The first two had the advantage of a larger user base, with multiple tools relying on them
to accomplish more complex tasks. Indeed, Heat endeavours to provide compatibility with the
AWS CloudFormation template format. One big disadvantage was clear: they are both tied to
specific implementations, and not easily reusable in an heterogeneous environment. TOSCA on

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

Orchestrator
Service

Infrastructure
Manager

TOSCA

GUI-based
Portlets

Repository

TOSCA-
compliant
Templates

1. Access

2. Select /
Customize

4.a Delegate
Deploy

3. Deploy

4.b Delegate Deploy

External
Cloud

Cloud APIs

Partner IaaS

OpenNebula

IM

OpenStack

HEAT
TOSCA

...

Virtual Infrastructure for
User Application/Service

5. Provision
Infrastructure

...

Figure 1. Simplified architecture of the usage of TOSCA for the deployment of computing
clusters in INDIGO-DataCloud

the other hand is an open standard, with existing support from popular frameworks such as
Cloudify[2] and OpenStack and benefits from a growing support in different communities. This
is clear from the strong interest from the networking community regarding Network Functions
Virtualization (NFV)[10] in a separate profile of the specification, as stated earlier.

The same evaluation also revealed two existing codebases that could be reused in our project:
the TOSCA Parser[6] and the HEAT Translator[5]. Both are open sourced under the umbrella
of the OpenStack project, but integration in other environments was easy with a couple of small
prototypes created to prove this point. This filled in the requirement of the INDIGO-DataCloud
to support multiple cloud providers.

The decision was thus to take TOSCA as the viable common denominator for the definition
of both topologies and end user applications.

3.1. TOSCA Templates in INDIGO-DataCloud
A TOSCA Template is a text document written in YAML that describes an architecture of
an application to be deployed on a Cloud site. In addition, in INDIGO-DataCloud, TOSCA
templates are also employed to describe jobs to be executed via Chronos as well as long-running
services executed via Marathon, both on an Apache Mesos cluster, though in this particular
work we exclusively focus on the definition of complex clusters.

Figure 1 describes a simplification of the architecture of components employed to deploy
complex clusters. For the sake of brevity, data management, authentication and autorization
and other services required for orchestration (such as monitoring and SLA assessment, among

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

others) have been omitted from the diagram. The INDIGO-DataCloud PaaS Orchestrator
accepts TOSCA templates as input. There are two main publicly available sources of TOSCA
templates for INDIGO-DataCloud: i) the tosca-templates GitHub repository, which contains
the authoritative templates employed to support different use cases and deploy required
infrastructure used by the PaaS (e.g. a Mesos cluster). and ii) the tosca-types/examples directory
of the corresponding GitHub repository, which contains additional TOSCA templates used for
examples, training, testing as well as incubating TOSCA templates for uses cases before they
are assessed.

The very same TOSCA template should be employed to: i) deploy an application by spawning
an instance of a Docker container out of a Docker image available in Docker Hub on either a
Cloud site managed via OneDock, in the case of OpenNebula, and nova-docker in the case of
OpenStack, which both allow to natively deploy Docker containers (Docker images will have to
be registered in the site), and, ii) deploy an application by spawning a vanilla VM or Docker
container on a Cloud site and installing the application by means of the corresponding Ansible
Role that defines how to install a particular application. An Ansible Role represents a recipe
that describes the installation process of a particular application a specific platform or a set of
them.

Having a single, unified approach to describe application installation enables to reuse this role
in order to either deploy the application as part of the creation of a Docker image or to deploy the
application on a running Docker container or Virtual Machine, thus simplifying maintenance.

3.2. TOSCA-based Elastic Computing Clusters
Computing clusters are a widely-known computing facility and virtual computing clusters in the
Cloud have enabled scientific communities to access customized cluster-based computing on-
demand. INDIGO-DataCloud supports the deployment of customized virtual elastic computing
clusters defined in TOSCA templates and automatically provisioned by the PaaS Orchestrator
on the available Cloud infrastructure.

These clusters are elastic since, initially, only the front-end node is deployed, which is
customized with the required scientific applications, depending on the target user community.
This front-end node is also configured with support for CLUES [8], an elasticity management
system for clusters that supports several Local Resource Management Systems (LRMS) (e.g.
SLURM, PBS/Torque). CLUES monitors the state of the job queue in order to detect when
additional working nodes are required to be deployed in order to cope with the number of
pending jobs. This way, the cluster can dynamically grow and shrink in terms of the number of
working nodes to adapt to the workload (as visually depicted in step 7 in Figure 1). In INDIGO-
DataCloud, CLUES was adapted to provision additional nodes from the PaaS Orchestrator, as
well as to introduce elasticity for Apache Mesos Clusters and HTCondor batch resources.

The usage of TOSCA templates to describe complex computing clusters provides a
deterministic, reproducible approach to provide cluster-based computing to a wide variety of
scientific communities.

3.3. TOSCA Workflow in INDIGO-DataCloud
As described earlier, the INDIGO-DataCloud project is providing a set of TOSCA templates
and Ansible Roles to describe useful stacks for scientific purpose. These templates should be
deployed on any of the Cloud providers supported by the project. For the sake of the discussion,
we differentiate between OpenStack sites and other Cloud sites.

For the first case, the Heat component of OpenStack is used in order to deploy a software
stack and manage the lifetime of its various components (mainly VMs in our case but basically
all OpenStack primitives are supported by Heat like volumes, networks, etc). Unfortunately
Heat does not natively understand TOSCA templates. However, a translator is available under

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

the OpenStack umbrella to convert a template from the TOSCA language to HOT. We used this
translator as a base and improved it upstream to properly support our templates. This work
includes Ansible script support, Ansible Galaxy Role as TOSCA artifact, querying and matching
the available flavors, images and networks, scalable server support among other features and
fixes. Currently this translator is a client side implementation but there is work in progress to
provide a pluggable component to the Heat server directly, using the same principles as used for
the CloudFormation compatibility layer.

To contextualize a VM with Ansible and other scripts an agent is needed inside the used image
to communicate with the Heat server. Contextualization can also directly happen through the
cloud-init metadata information. However, this mechanism is way less flexible since we cannot
communicate back any value from inside the VM to pass it to another component.

In case of deploying on OpenNebula sites or public Clouds, such as Amazon Web Services,
the Infrastructure Manager (IM) [11] is used to perform the orchestration, deployment and
configuration of the virtual infrastructures. There is one IM instance in each cloud provider of
the INDIGO-DataCloud platform, that acts as the TOSCA runtime for the site, in a similar
way as Heat works for OpenStack sites (see Figure 1 for details). This IM instance directly
receives the TOSCA template and contacts the cloud site using their own native APIs to deploy
and configure the virtual infrastructure. Once the resources have been deployed and they are
running the IM selects one of them as the ”master” node and installs Ansible [9] and configures
it to launch the contextualization agent that will configure all the nodes of the infrastructure.
The master node requires a public IP accessible from the IM service and must be connected
will the rest of nodes of the infrastructure (either via a public or private IP). Once the node
is configured the contextualization agent will configure all the nodes using the defined Ansible
playbooks.

In an IaaS context both Heat and IM are very useful to ease portable provisioning of resources
and deployment of services and applications on dynamically instantiated clusters. One of the
advantages of using TOSCA and the IM/Heat approach is that the INDIGO PaaS layer can
easily exploit it across different IaaS implementations, increasing the portability of the cluster
definitions, and implementing the provisioning of the required services across multiple IaaS
infrastructures through the INDIGO orchestrator.

A similar approach is used in case of accessing external providers. For example public
clouds (Amazon Web Services, Google Cloud Platform, Microsoft Azure) or some federated
infrastructures as EGI FedCloud sites [3]. In this case, a special instance of the IM is provided
by the INDIGO PaaS core to access these providers.

4. Examples of TOSCA-based Complex Clusters in INDIGO-DataCloud
This section describes two representative definition examples of complex clusters. The first
one involves the deployment if a virtual elastic cluster supporting the Galaxy bioinformatics
application. The second one exemplifies the deployment of an elastic Apache Mesos cluster.

4.1. Galaxy-based Elastic Computing Cluster
An example of TOSCA-based description of these virtual elastic computing clusters is available
in the tosca-templates GitHub repository, summarized in figure 2. The TOSCA template
provides a description of the elastic cluster in terms of the computing requirements for both
the front-end node and the working nodes of the cluster, although for the sake of brevity, this
information is omitted in the TOSCA template depicted. There are non-normative TOSCA
types that have been defined to support the requirements for INDIGO-DataCloud, such as
tosca.nodes.indigo.ElasticCluster and tosca.nodes.indigo.GalaxyPortal. These node types are
described in the tosca-types GitHub repository, where a set of artifacts is defined to perform the
installation of the software (SLURM, Galaxy, NFS, etc.) via the corresponding Ansible Roles.

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

tosca_definitions_version: tosca_simple_yaml_1_0
imports:

- indigo_custom_types: indigo-dc/tosca-types/master/custom_types.yaml
topology_template:

node_templates:
elastic_cluster_front_end:
type: tosca.nodes.indigo.ElasticCluster
properties:

deployment_id: orchestrator_deployment_id
requirements:

- lrms: lrms_front_end
- wn: wn_node

galaxy_portal:
type: tosca.nodes.indigo.GalaxyPortal
requirements:

- lrms: lrms_front_end

lrms_front_end:
type: tosca.nodes.indigo.LRMS.FrontEnd.Slurm
properties:

wn_ips: { get_attribute: [lrms_wn, private_address] }
requirements:

- host: lrms_server

lrms_server:
type: tosca.nodes.indigo.Compute
capabilities:

endpoint:
properties:

dns_name: slurmserver
network_name: PUBLIC
ports:

http_port:
protocol: tcp
source: 80

outputs:
galaxy_url:
value:

concat:
- "http://"
- get_attribute: [lrms_server, public_address, 0]
- "/galaxy"

Figure 2. A modified excerpt of the TOSCA template to describe a virtual elastic computing
cluster to support the Galaxy bioinformatics application.

The output of the TOSCA template is the endpoint directly used by the end user to access
the Galaxy portal by means of a web browser, where jobs are submitted to the SLURM queue
as part of the operations performed while processing datasets in Galaxy.

4.2. Mesos-based Elastic Computing Cluster
Figure 3 includes a simplified TOSCA template to illustrate the various technical capabilities
and integration that are supported by the Heat translator and the IM orchestrator. TOSCA
is quite flexible and allows to define non normative types, a functionality employed in this

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

tosca_definitions_version: tosca_simple_yaml_1_0

artifact_types:
tosca.artifacts.AnsibleGalaxy.role:

derived_from: tosca.artifacts.Root

node_types:
tosca.nodes.MesosSlave:

derived_from: tosca.nodes.SoftwareComponent
properties:
master_ip:

type: string
artifacts:
mesos_agent_role:

file: indigo-dc.mesos
type: tosca.artifacts.AnsibleGalaxy.role

interfaces:
Standard:

create:
implementation: mesos_slave_install.yml
inputs:

mesos_master_ips: [{ get_property: [SELF, master_ip] }]

topology_template:
node_templates:

mesos_slave:
type: tosca.nodes.MesosSlave
properties:

master_ip: 192.168.0.1
requirements:

- host: mesos_slave_server

mesos_slave_server:
type: tosca.nodes.Compute
capabilities:

scalable:
type: tosca.capabilities.Scalable

Figure 3. A simplified example to deploy a scalable set of Mesos slaves provisioned with an
Ansible role.

example: a new artifact type is defined to describe the needed Ansible Galaxy Role(s). To avoid
any confusion, it is important to point out that Ansible Galaxy, an online repository of Ansible
Roles, has nothing to do with the Galaxy bioinformatics application described in the previous
example, despite using the same name.

We then define a new node type to describe the necessary steps to have a configured Mesos
slave. For that we first reference an Ansible Role artifact: it will then be interpreted by either the
translator (converted to a HOT SoftwareConfig/Deployment with an inline script installing the
role) or the IM (installed through SSH). This Ansible Role will then be used inside the Ansible
playbook mesos slave install.yml. This playbook needs the list of IPs of the Mesos masters to
register, hence we create an input property on the defined SoftwareComponent.

After defining those new types we enter the topology template section, where we instantiate
the MesosSlave software component defined earlier with an actual value for the master IP. In
a full example this value would be directly retrieved from the output parameter of a Master

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082036 doi :10.1088/1742-6596/898/8/082036

instantiation, similarly as what we can see in the previous figure 2.
We also instantiate a Compute node to host this software component with a

scalable capability. For the translation to HOT this template will result in a set of
SoftwareConfig/Deployment with dependencies (for example the role installation needs to
happen before executing the playbook) and a Nova server. Those elements are then stored
in a substack, that is referenced in a ResourceGroup to provide the scalability part. The passing
of parameters is kept. On the IM side all of this happens directly through the IM, by launching
new compute nodes via the IaaS API and contextualizing directly with SSH and Ansible.

5. Conclusion and Future Work
This paper has described the adoption of the TOSCA standard, for the description of application
architectures to be deployed on a Cloud, in the INDIGO-DataCloud project focusing on the
definition of complex computing clusters. Two examples of these complex clusters have been
provided, an elastic cluster to support a bioinformatics application and the deployment of a
scalable Mesos cluster for the execution of jobs and long-running services.

The extensibility features of the standard has allows to create additional non-normative
types to support the specific requirements of the applications supported by the project, such
as the automated elasticity required by the underlying virtual computing clusters. The usage
of TOSCA templates, being a declarative language, coupled with the automated installation
capabilities provided by Ansible Roles has paved the way to provide deterministic high-level
declarations of complex clusters that can be deployed across multiple on-premises Clouds
(OpenStack and OpenNebula) and public Clouds. By leveraging Heat, in the case of OpenStack
and the Infrastructure Manager for OpenNebula and public Clouds, a wide variety of cloud
provides on which to orchestrate complex virtual cluster is now possible.

Future work includes addressing other types of complex clusters, such as those required in
Big Data involving distributed computing at scale and large volumes of data processing (e.g.
Hadoop, Spark, etc.). Also, we plan to introduce support for hybrid deployments of these
complex clusters across different Clouds in order to include multi-site orchestration for elastic
computing clusters.

Acknowledgments
The authors would like to thank the European Commission for the financial support for project
INDIGO-DataCloud (RIA 653549).

Bibliography
[1] Amazon cloud formation. https://aws.amazon.com/cloudformation/.
[2] Cloudify. http://getcloudify.org/.
[3] Egi federated cloud. https://www.egi.eu/infrastructure/cloud/. Accessed: 2017-01-13.
[4] Heat orchestration template. https://docs.openstack.org/developer/heat/template_guide/

hot_guide.html.
[5] Heat translator. https://docs.openstack.org/developer/heat-translator/.
[6] Tosca parser. https://wiki.openstack.org/wiki/TOSCA-Parser.
[7] Palma D, Rutkowski M, and Spatzier T. TOSCA Simple Profile in YAML Version 1.0. Technical report,

2016.
[8] de Alfonso C, Caballer M, Alvarruiz F, and Hernández V. An energy management system for cluster

infrastructures. Computers & Electrical Engineering, 39(8):2579–2590, 2013.
[9] Hochstein L. Ansible: Up and Running, Automating Configuration Management and Deployment the Easy

Way. O’Reilly Media, 2014.
[10] S Li. TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0. Technical report,

2016.
[11] Caballer M, Blanquer I, Moltó G, and de Alfonso C. Dynamic management of virtual infrastructures. Journal

of Grid Computing, 13(1):53–70, 2015.

