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Abstract

The final diagnosis of most types of cancers is performed by an expert clinician

in anatomical pathology who examines suspicious tissue or cell samples extracted

from the patient. Currently, this assessment largely relies on the experience of the

clinician and is accomplished in a qualitative manner by means of traditional imaging

techniques, such as optical microscopy. This tedious task is subject to high degrees

of subjectivity and gives rise to suboptimal levels of discordance between different

pathologists, especially in early stages of cancer development.

Fourier Transform infrared (FTIR) spectroscopy is a technology widely used in

industry that has recently shown an increasing capability to improve the diagnosis

of different types of cancer. This technique takes advantage of the ability of mid-

infrared light to excite the vibrational modes of the chemical bonds that form the

biological samples. The main generated signal consists of an absorption spectrum

that informs of the chemical composition of the illuminated specimen. Modern FTIR

microspectrometers, composed of complex optical components and high-sensitive

array detectors, allow the acquisition of high-quality hyperspectral images with

spatially-resolved chemical information in a common research laboratory. FTIR

images are information-rich data structures that can be analysed alone or together

with other imaging modalities to provide objective pathological diagnoses. Hence,

this emerging imaging technique presents a high potential to improve the detection

and risk stratification in cancer screening and surveillance.
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VIII Abstract

This thesis studies and implements different methodologies and algorithms

from the related fields of image processing, computer vision, machine learning,

pattern recognition, multivariate analysis and chemometrics for the processing

and analysis of FTIR hyperspectral images. Those images were acquired with a

modern benchtop FTIR microspectrometer from tissue and cell samples affected

by colorectal and skin cancer, which were prepared by following protocols close to

the current clinical practise. The most relevant concepts of FTIR spectroscopy are

thoroughly investigated, which ought to be understood and considered to perform

a correct interpretation and treatment of its special signals. In particular, different

physicochemical factors are reviewed and analysed, which influence the spectroscopic

measurements for the particular case of biological samples and can critically affect

their later analysis.

All these knowledge and preliminary studies come into play in two main

applications. The first application tackles the problem of registration or alignment of

FTIR hyperspectral images with colour images acquired with traditional microscopes.

The aim is to fuse the spatial information of distinct tissue samples measured by

those two imaging modalities and focus the discrimination on regions selected by

the pathologists, which are meant to be the most relevant areas for the diagnosis of

colorectal cancer. In the second application, FTIR spectroscopy is pushed to their

limits of detection for the study of the smallest biomedical entities. The aim is

to assess the capabilities of FTIR signals to reliably discriminate different types of

skin cells containing malignant phenotypes. The developed studies contribute to the

improvement of objective decision methods to support the pathologist in the final

diagnosis of cancer. In addition, they reveal the limitations of current protocols and

intrinsic problems of modern FTIR technology, which should be tackled in order to

enable its transference to anatomical pathology laboratories in the future.



Resumen

El diagnóstico final de la mayoŕıa de tipos de cáncer lo realiza un médico experto en

anatomı́a patológica que examina muestras tisulares o celulares sospechosas extráıdas

del paciente. Actualmente, esta evaluación depende en gran medida de la experiencia

del médico y se lleva a cabo de forma cualitativa mediante técnicas de imagen

tradicionales como la microscoṕıa óptica. Esta tarea tediosa está sujeta a altos grados

de subjetividad y da lugar a niveles de discordancia inadecuados entre diferentes

patólogos, especialmente en las primeras etapas de desarrollo del cáncer.

La espectroscoṕıa infrarroja por Transformada de Fourier (siglas FTIR en inglés)

es una tecnoloǵıa ampliamente utilizada en la industria que recientemente ha

demostrado una capacidad creciente para mejorar el diagnóstico de diferentes tipos

de cáncer. Esta técnica aprovecha las propiedades del infrarrojo medio para excitar

los modos vibratorios de los enlaces qúımicos que forman las muestras biológicas.

La principal señal generada consiste en un espectro de absorción que informa sobre

la composición qúımica de la muestra iluminada. Los microespectrómetros FTIR

modernos, compuestos por complejos componentes ópticos y detectores matriciales

de alta sensibilidad, permiten capturar en un laboratorio de investigación común

imágenes hiperespectrales de alta calidad que aúnan información qúımica y espacial.

Las imágenes FTIR son estructuras de datos ricas en información que se pueden

analizar individualmente o junto con otras modalidades de imagen para realizar

diagnósticos patológicos objetivos. Por lo tanto, esta técnica de imagen emergente

alberga un alto potencial para mejorar la detección y la evaluación del riesgo del

paciente en el cribado y vigilancia de cáncer.
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X Resumen

Esta tesis estudia e implementa diferentes metodoloǵıas y algoritmos de los campos

interrelacionados de procesamiento de imagen, visión por ordenador, aprendizaje

automático, reconocimiento de patrones, análisis multivariante y quimiometŕıa para

el procesamiento y análisis de imágenes hiperespectrales FTIR. Estas imágenes se

capturaron con un moderno microscopio FTIR de laboratorio a partir de muestras de

tejidos y células afectadas por cáncer colorrectal y de piel, las cuales se prepararon

siguiendo protocolos alineados con la práctica cĺınica actual. Los conceptos más

relevantes de la espectroscoṕıa FTIR se investigan profundamente, ya que deben ser

comprendidos y tenidos en cuenta para llevar a cabo una correcta interpretación y

tratamiento de sus señales especiales. En particular, se revisan y analizan diferentes

factores fisicoqúımicos que influyen en las mediciones espectroscópicas en el caso

particular de muestras biológicas y pueden afectar cŕıticamente su análisis posterior.

Todos estos conceptos y estudios preliminares entran en juego en dos aplicaciones

principales. La primera aplicación aborda el problema del registro o alineación de

imágenes hiperespectrales FTIR con imágenes en color adquiridas con microscopios

tradicionales. El objetivo es fusionar la información espacial de distintas muestras

de tejido medidas con esas dos modalidades de imagen y centrar la discriminación en

las regiones seleccionadas por los patólogos, las cuales se consideran más relevantes

para el diagnóstico de cáncer colorrectal. En la segunda aplicación, la espectroscoṕıa

FTIR se lleva a sus ĺımites de detección para el estudio de las entidades biomédicas

más pequeñas. El objetivo es evaluar las capacidades de las señales FTIR para

discriminar de manera fiable diferentes tipos de células de piel que contienen fenotipos

malignos. Los estudios desarrollados contribuyen a la mejora de métodos de decisión

objetivos que ayuden al patólogo en el diagnóstico final del cáncer. Además,

revelan las limitaciones de los protocolos actuales y los problemas intŕınsecos de la

tecnoloǵıa FTIR moderna, que debeŕıan abordarse para permitir su transferencia a

los laboratorios de anatomı́a patológica en el futuro.



Resum

El diagnòstic final de la majoria de tipus de càncer ho realitza un metge expert en

anatomia patològica que examina mostres tissulars o cel·lulars sospitoses extretes del

pacient. Actualment, aquesta avaluació depèn en gran part de l’experiència del metge

i es porta a terme de forma qualitativa mitjançant tècniques d’imatge tradicionals com

la microscòpia òptica. Aquesta tasca tediosa està subjecta a alts graus de subjectivitat

i dóna lloc a nivells de discordança inadequats entre diferents patòlegs, especialment

en les primeres etapes de desenvolupament del càncer.

L’espectroscòpia infraroja per Transformada de Fourier (sigles FTIR en anglès)

és una tecnologia àmpliament utilitzada en la indústria que recentment ha demostrat

una capacitat creixent per millorar el diagnòstic de diferents tipus de càncer. Aquesta

tècnica aprofita les propietats de l’infraroig mitjà per excitar els modes vibratoris

dels enllaços qúımics que formen les mostres biològiques. El principal senyal generat

consisteix en un espectre d’absorció que informa sobre la composició qúımica de

la mostra il·luminada. Els microespectrómetres FTIR moderns, compostos per

complexos components òptics i detectors matricials d’alta sensibilitat, permeten

capturar en un laboratori d’investigació comú imatges hiperespectrals d’alta qualitat

que uneixen informació qúımica i espacial. Les imatges FTIR són estructures de dades

riques en informació que es poden analitzar individualment o juntament amb altres

modalitats d’imatge per a realitzar diagnòstics patològics objectius. Per tant, aquesta

tècnica d’imatge emergent té un alt potencial per a millorar la detecció i la avaluació

del risc del pacient en el cribratge i vigilància de càncer.
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XII Resum

Aquesta tesi estudia i implementa diferents metodologies i algoritmes dels

camps interrelacionats de processament d’imatge, visió per ordinador, aprenentatge

automàtic, reconeixement de patrons, anàlisi multivariant i quimiometria per al

processament i anàlisi d’imatges hiperespectrals FTIR. Aquestes imatges es van

capturar amb un modern microscopi FTIR de laboratori a partir de mostres de teixits

i cèl·lules afectades per càncer colorectal i de pell, les quals es van preparar seguint

protocols alineats amb la pràctica cĺınica actual. Els conceptes més rellevants de

l’espectroscòpia FTIR s’investiguen profundament, ja que han de ser compresos i

tinguts en compte per dur a terme una correcta interpretació i tractament dels seus

senyals especials. En particular, es revisen i analitzen diferents factors fisicoqúımics

que influeixen en els mesuraments espectroscòpiques en el cas particular de mostres

biològiques i poden afectar cŕıticament la seua anàlisi posterior.

Tots aquests conceptes i estudis preliminars entren en joc en dues aplicacions

principals. La primera aplicació aborda el problema del registre o alineació d’imatges

hiperespectrals FTIR amb imatges en color adquirides amb microscopis tradicionals.

L’objectiu és fusionar la informació espacial de diferents mostres de teixit mesurades

amb aquestes dues modalitats d’imatge i centrar la discriminació en les regions

seleccionades pels patòlegs, les quals es consideren més rellevants per al diagnòstic

de càncer colorectal. En la segona aplicació, l’espectroscòpia FTIR es porta als seus

ĺımits de detecció per a l’estudi de les entitats biomèdiques més xicotetes. L’objectiu

és avaluar les capacitats dels senyals FTIR per discriminar de manera fiable diferents

tipus de cèl·lules de pell que contenen fenotips malignes. Els estudis desenvolupats

contribueixen a la millora de mètodes de decisió objectius que ajuden al patòleg en

el diagnòstic final del càncer. A més, revelen les limitacions dels protocols actuals i

els problemes intŕınsecs de la tecnologia FTIR moderna, que haurien d’abordar per

permetre la seva transferència als laboratoris d’anatomia patològica en el futur.
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1.1 Cancer

According to the World Health Organization (WHO), cancer is a generic term which

includes a large group of pathologies that may affect any part of the body [1]. Cancer

is a genetic disease caused by mistakes or mutations during Deoxyribonucleic Acid

(DNA) replication. The likelihood of suffering these remaining mutations is mainly

determined by environmental factors and lifestyle (around 90-95% of all cancer cases)

and in a lower degree by inherited genetic defects (only 5-10% of all cancer cases) [2].

The key characteristic of cancer is the rapid growth of abnormal cells capable of

dividing out of control and spreading beyond their natural boundaries. This invasion

of other tissues is called metastasis and it is the first cause of death in cancer patients.

Tumour is the common word to refer to neoplasms, that is, abnormal growths of

tissue with an increase in volume [3]. Tumours can be generally classified in two major

types: benign and malignant. Benign tumours only grow in a local and restricted

region without invading nearby tissues, meanwhile malignant tumours can spread to

adjacent and distant tissues (metastasis). Despite these differences, the word tumour

is commonly used with implicit malignant connotations. Most primary tumours in

humans are benign and do not cause any harm, unless their expansion presses a vital

organ and affects its correct operation. The majority of deaths connected with cancer

are caused by malignant tumours in the more advanced metastatic state.

Tumours are created by malfunctioning cells, which are incapable of building

tissues with normal morphology and functioning, disobeying the rules that control

the correct construction and maintenance. Cancer cells only have one target: making

more copies of themselves [4]. They can achieve this purpose by acquiring new

capabilities (Sec. 1.1.2) as a result of accumulated genetic mutations, which are

transferred to their descendants [5].

Some of these unsuitable alterations are the deactivation of apoptosis and the

invisibility to immune system. Apoptosis is the programmed mechanism of cellular

suicide by which all normal cells destroy themselves when they perform an incorrect

biological functioning. When this mechanism fails the immune system is responsible

for killing the defective cells. However, cancerous cells are able to hide from

immune system through different processes or remain unaffected by their defence

mechanisms [6].
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1.1.1 Development of cancer

The development of a malignant tumour is a slow process comprising different steps

where proper mutations get accumulated. In most cases the progression of a tumour

requires several years, in the order of decades. That is why cancer is considered as a

chronic disease more associated with old people.

The typical steps of cancer can be illustrated with the evolution of carcinoma.

Carcinoma is a cancerous lesion that begins in the epithelial tissue and is the most

common malignant tumour. Epithelial tissue is a sheet of cells that forms the inner

and outer surfaces of the body, such as the external layers of the bowel or the skin.

As illustrated in Fig. 1.1, the main stages in the development of carcinoma are [4, 7]:

1. Genetically altered cell : the tumour development starts when a normal cell

undergoes a genetic change that increases its predisposition to proliferate.

2. Hyperplasia: is the result of an unconstrained division of one altered cell into

a high number of cells in a limited region of tissue. The structure in these

cells is not altered and they look normal although their size may be larger.

Hyperplasia is a reversible process and is normally produced as a response to

an irritant stimulus. After years in this stage, one cell in a million suffers an

additional mutation that makes it grow more uncontrollably.

3. Dysplasia: literally means disordered growth and is the result of an excessive

proliferation of cells in hyperplasia, which lose their normal structure and get

disorganised due to additional genetic changes. In this stage, cells keep growing

in an abnormal way. Just as hyperplasia, cells in dysplasia can recover their

normal state but sometimes, after a time, a rare mutation occurs that changes

the cell behaviour. Therefore, tissues in dysplasia must be specially controlled

and, in some cases, receive treatment.

4. In situ cancer : this stage is reached when cells do not recover their normal state

and accumulate more and more alterations. The tumour presents an irregular

structure. In this state, the cells are not able to invade other tissues and remain

confined in the primary location, maybe indefinitely. However, in situ cancers

must be promptly resected or treated before they acquire invasive properties

because of further mutations.
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5. Invasive cancer : is the final stage of tumour formation. Cells become malignant

and invade adjacent tissue and even spread to distant sites through the

blood vessels or the lymphatic system. The spread cells can get attached to

different tissues and create new tumours, producing metastasis. This stage

normally becomes lethal because spread cells, which typically cannot be totally

eradicated, finally invade and disrupt a vital organ.

IN SITU CANCER

Blood Vessels

INVASIVE CANCER

DYSPLASIAHYPERPLASIA

GENETICALLY
ALTERED CELL

Fig. 1.1: Illustration of the development of a cancerous lesion in the epithelial tissue.
Reproduced from [7] with permission by courtesy of Scientific American, Inc.

1.1.2 The characteristics of cancer

The cell cycle

Before explaining the main properties that distinguish cancer at the cellular level,

it is interesting to describe the cell cycle. All living cells reproduce by dividing

in two daughter cells following a coordinated cell cycle that tries to guarantee the

conservation of the genome. As depicted in Fig. 1.2, in most human cells this cycle is

composed of four main stages [8]:

1. G1 phase (Gap 1): the cell grows in volume by synthesising proteins and making

copies of its subcellular components called organelles, but excluding the nucleus,

which contains DNA.

2. S phase (Synthesis): the chromosomes, the macromolecules of DNA that

encodes the genetic information, are replicated into two identical entities called
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sister chromatids that remain attached. This is the longest stage of the cycle.

Once entered this phase of replication, cells must finish the complete cycle.

3. G2 phase (Gap 2): the cell growth continues by making more proteins and

organelles. The cellular content is also reorganised in preparation for the next

step. In particular, the chromatids of chromosomes become more compact.

4. M phase (Mitosis): the replicated chromosomes and the cytoplasm (the non-

nuclear part of the cell) finally split to produce two identical new cells.

G
2

M

Beginning
of:cycleCell

divides
(mitosis)

Cell:rests

Cell
replicates
its:DNA

Cell:enlarges
and:makes
new:proteinsCell:prepares

to:divide

Restriction:point::cell 
decides:whether 
to:commit: itself:to 
the:complete:cycle

S

R

G
1

G
0

Fig. 1.2: Stages of the cell cycle. Reproduced from [7] with permission by courtesy of
Scientific American, Inc.

The whole cycle is strictly regulated by specific signals both coming from outside

and inside the cell, which ensure a correct cell division. For instance, at the end of

G1 phase there is a specific period called restriction point (R) [9] where cells must

receive from the outside the so-called growth factors to trigger the DNA replication.

In normal tissues, these growth factors are not supplied if, for example, a nutritional

deficiency exists in the region. From this point, cells do not depend on extracellular

stimuli to finish the cell cycle. If growth factors are not supplied, cells enter in a

quiescent or still stage called G0, in which they have an active metabolism but they

do not keep on growing and synthesising more proteins. In addition, each phase of

the cell cycle has specific checkpoints [10], which prevent entering into the next phase
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if the preceding phase is not correctly completed. In particular, multiple checkpoints

try to guarantee that incomplete or damaged chromosomes are not replicated. As

detailed below, cancer cells can break the strict rules governing the cell cycle by

complex and interrelated pathways that benefit their sustained proliferation [11–15].

The hallmarks of cancer

In the past, tumours were considered as accumulations of relatively homogeneous

cancer cells whose biology only depended on autonomous properties. However, now

it is widely recognised that tumours are not just isolated masses of proliferating

cancer cells but heterogeneous mixtures of different cell types interacting with one

another and constructing a tumour microenvironment of high complexity, as depicted

in Fig. 1.3a.

As commented, cancer is a very complex and diverse disease but research

discoveries in the last decades have revealed that this diversity may be reduced to

a small number of principles. Hanahan and Weinberg [16, 17] suggested a series of

hallmarks or distinctive characteristics (illustrated in Fig. 1.3b) that allow cells to

survive, proliferate and disseminate and which differentiate cancer cells and their

microenvironment from normal cells and tissues. In 2000 [17], they initially proposed

six complementary hallmarks or functional capabilities:

� Sustaining proliferative signaling : cancer cells can develop different mechanisms

to maintain a supply of growth factors, which allow them to circumvent the

restriction point (Fig. 1.2) and favour their chronic proliferation. In some

cases, they can produce these substances themselves or they can stimulate other

normal cells to provide the growth factors to them.

� Evading growth suppressors: cancer cells can elude regulatory circuits of cellular

proliferation from extracellular and intracellular sources. For instance, they

abolish the signals generated by cell-to-cell contacts that prevent excessive

propagation in dense populations of normal cells.

� Resisting cell death: cancer cells do not follow apoptosis, the programmed

cell death induced by physiologic stresses and DNA damage associated with

hyperproliferation. The most common way is inactivating the production of the
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(a)

(b)

Fig. 1.3: The characteristics of cancer. (a) Illustration of a tumour microenvironment,
which is composed by a complex mixture of different cell types. (b) Illustration of
the hallmarks and enabling characteristics that distinguish cancer cells and their tumour
microenvironment. Reproduced from [16] with permission by courtesy of Elsevier.

protein p53, nicknamed the guardian of genome [18], which triggers apoptosis

when irreparable damage to the genome or other crucial subcellular subsystems

are detected in the different stages of the cell cycle [19]. Autophagy is another

mechanism that cancer cells develop to survive in the highly-stressed and
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nutrient-limited environments of tumours by which they can break down their

cellular components and recycle the obtained metabolites. Finally, a surprising

characteristic is that cancer cells seem to be able to conveniently induce cell

death by necrosis. Whereas apoptosis is an organised process which breaks cells

into compact pieces that are consumed by neighbours, necrotic cells explode

and release all their content into the local microenvironment. This release of

cellular debris attracts immune inflammatory cells (Fig. 1.3a), which generate

stimulating signals that promote the growth and invasiveness of the remaining

cancer cells (see below). Therefore, some tumours may tolerate some degree of

necrotic cell death in order to favour the surviving cells.

� Enabling replicative immortality : chromosomes have protective ends called

telomeres, which give them structural stability. In most adult normal cells,

telomeres shorten during successive replications as a programmed ageing until

reaching a non-proliferative state called senescence or suffering apoptosis.

However, cancer cells can produce enzymes that regenerate telomeres and get

an unlimited number of replications, becoming immortal.

� Inducing angiogenesis: cancer cells can stimulate endothelial cells (Fig. 1.3a) to

construct new blood vessels around the tumour region even in the early stages

of development. With this ability they guarantee the supply of nutrients and

oxygen and the evacuation of metabolic waste and carbon dioxide, which is

essential for the tumour expansion.

� Activating invasion and metastasis: this is the most dangerous and lethal

characteristic of cancer cells. They develop alterations that modify their

attachment to other cells and to the extracellular matrix. However, the

mechanisms that empower cancer cells to colonise other tissues and travel to

other distant parts of the body remain quite unknown. The development of

a secondary malignant tumour requires a permissive microenvironment in the

new colonised zone.

Experimental advances during the first decade of this century confirmed and

further clarified the described traits and allowed to add two emerging hallmarks in

2011, whose workings are not well understood yet [16]:
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� Reprogramming energy metabolism: cancer cells can reprogram their glucose

metabolism, and thus their energy production, in order to fuel cell growth and

replication. The uptake of glucose is highly increased in many tumours and the

modifications in its utilization seem to be key in the hypoxic conditions existing

in the tumour microenvironment.

� Evading immune destruction: immune system constantly monitors all the body

components and quickly recognise and eliminate the majority of altered cells

that may become cancer cells. By still-unresolved mechanisms, cancer cells

seem to manage to hide from immune system or limit its killing response.

In addition, two enabling characteristics that make possible the acquisition of the

described hallmarks were identified:

� Genome instability and mutation: cancer cells often accelerate their rates of

random mutations by showing an increased sensitivity to mutagenic agents.

This instability is translated into a high heterogeneity between different tumour

types and an extreme adaptability to new conditions.

� Tumor-promoting inflammation: tumour microenvironment is rich in inflam-

matory cells belonging to the immune system, which try to eradicate tumours.

Unfortunately, inflammatory cells not only attack cancer cells without success

but also produce growth factors that favour proliferation and promote angio-

genesis, invasion and metastasis.

Understanding these hallmark principles and their underlying mechanisms is

playing and will play a crucial role in identifying therapeutic targets that effectively

stop and eradicate malignant tumours without hurting normal tissues excessively [20].

1.1.3 Colorectal cancer

Colorectal cancer is a very common human malignancy that starts in the walls of

the large intestine. Before summarising some facts of this type of cancer, it is worth

describing some concepts of the anatomy and physiology of the large intestine.



1.1. Cancer 11

Fig. 1.4: Structures of the human large intestine, rectum, and anus. Reproduced from [22]
with permission by courtesy of Encyclopaedia Britannica, Inc., copyright 2003.

Anatomy and physiology of the large intestine

The large intestine is the last part of the alimentary tract. It is about 1.5 meters long

and, as shown in Fig. 1.4, can be divided into several regions namely cecum, colon

(ascending, transverse, descending and sigmoid), rectum, anal canal and appendix.

As a part of the digestive system, the main functions of the large intestine are the

absorption of electrolytes, fluids and gases, and the conversion of undigested materials

and dead bacteria into faeces [21].

As can be appreciated in the detail view of Fig. 1.4, the walls of most regions of
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the large intestine (excluding the anal canal and the appendix) are composed of four

main layers of tissue [23]:

1. Mucosa: is the inner part of the wall and constitutes the lining of the intestine.

Mucosa consists of three sub-layers of tissue:

(a) Epithelium: is the external layer, which is composed of different types

of cells in a simple columnar configuration. The epithelium together with

the lamina propria build invaginations in the form of simple tubular glands

or crypts. The rectum contains fewer and deeper crypts than the colon.

Between the cells composing the epithelium, goblet cells have an important

role because they secret mucus into the central hole of the crypts, called

lumen. Mucus lubricates the lining of the intestine and facilitates the

movement and evacuation of faeces.

(b) Lamina propria: is composed of loose connective tissue whose main

function is to give structural and nutritional support to the epithelium.

(c) Muscularis mucosae: is a thin outer layer of smooth (involuntary) muscle

cells, which gently contract to promote the evacuation of the crypts’

content.

2. Submucosa: is composed of fibroelastic connective tissue and contains blood,

lymphatic vessels and nerves. It gives support to the rest of tissue layers.

3. Muscle layer : consists of two layers of smooth muscle, the inner one is circular

and the outer one is longitudinal. The involuntary contraction and relaxation

of these layers generate a movement called peristalsis that pushes the content

of the intestine onwards.

4. External layer : is formed by connective tissue and is called adventitia in the

ascending and descending portions of the colon, where it has a structural

function. In the cecum and remainder colon, it is called serosa and is composed

of a layer of connective tissue and another one of epithelium, which secretes

lubricating fluid to reduce the friction with the muscle layer.
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Main facts of colorectal cancer

Colorectal cancer [24], also referred to as bowel cancer [25] or sometimes differenced

as cancer of the colon [26] and the rectum [27], originates in the epithelial cells of

the mucosa that form the glands or crypts. This type of malignant tumour is called

adenocarcinoma (adeno- is the Greek term for gland) and accounts for more than

90% of cancer cases whose primary site is the wall of the large intestine [28]. Another

precursors of cancer in other layers of tissue are muscle cells (produce sarcomas), cells

of the lymphatic system (give rise to lymphomas) or specialized hormone-making cells

(produce carcinoid tumours), but these subtypes are normally included in categories

different from colorectal cancer.

As was described in Fig. 1.1, several mutations are accumulated in the epithelial

cells that develop a tumour. When these tumours appear in the lining of the colon

or the rectum, they are called polyps. Polyps can be divided in two main types :

� Hyperplastic polyps: present, in general, little potential to become an invasive

cancer. They are relatively common and are normally considered as benign.

� Adenomatous polyps or adenomas: are known as the main precursors of cancer

lesions and constitute a premalignant condition. Adenomas have characteristics

associated with cancer development (Sec. 1.1.1), such as epithelial overgrowth,

dysplasia and abnormal differentiation. Nevertheless, few adenomas progress to

invasive cancer and the process can take over one to three decades.

Several genetic pathways are already known to be responsible for the change from

premalignant polyps to invasive lesions. In fact, the family history of colorectal cancer

and other hereditary syndromes have relevant influence in this change. Apart from

the inherited predisposition, the main risk factors associated with colorectal cancer

are: obesity and sedentary life, smoking, alcohol, high-caloric diet, high red meat

consumption, overcooked red meat and high-saturated fats. On the contrary, high

level of physical activity and diets high in fibre, low in red and processed meat, and

rich in fresh fruit and vegetables, seem to decrease the risk of colorectal cancer.

Different tests are applied in screening programs in order to detect colorectal

cancer in undiagnosed individuals. The three most common tests are fecal occult

blood tests and two endoscopy alternatives: sigmoidoscopy (endoscopy of the left side
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of the colon) and colonoscopy (endoscopy of the entire colon). Endoscopy is also used

to extract small biopsies from small portions of tissue or even remove whole polyps.

It also gives valuable complementary information to perform a final diagnosis, which

is accomplished by histological examination (Sec. 1.1.6).

The clinical management of colorectal cancer differs depending on the location

of the tumour and its spread [25]. If tumours are localized in the colon, the

involved bowel segments including the local lymphatic drainage area are normally

removed by laparoscopic surgery, with high curative potential (Sec. 1.1.5). Cancers

in the rectum, especially in carcinomas below the mid-sigmoid region, may also be

treated with radiation therapy apart from surgical resection. In advanced stages of

spread, complementary adjuvant treatments, such as chemotherapy or other systemic

therapies, can also be applied to prevent the formation of new tumours in the primary

or secondary sites.

1.1.4 Skin cancer

Melanoma is the most aggressive subtype of skin cancer. As in colorectal cancer, some

concepts of the anatomy and physiology of the skin and its relevant constituents must

be explained prior to describe some general facts of skin cancer and melanoma.

Anatomy and physiology of the skin

The skin is the outer covering and the largest organ of human body. Its functions

are: to protect the body against injury, desiccation and infection; to regulate body

temperature; to absorb Ultraviolet (UV) radiation; and to contain receptors for touch,

temperature and pain stimuli from the external environment [23]. The skin is divided

into two main layers: the epidermis (upper or outer layer) and the dermis (lower

or inner layer) (Fig. 1.5). These two tissue layers are separated by the basement

membrane.

The epidermis is composed of stratified keratinised squamous epithelium, whose

predominant cell type is the keratinocyte [21]. Keratinocytes are arranged in five

layers or strata, where they acquire different characteristics. In the deepest layer of

epidermis, keratinocytes are also called basal cells and are mitotically active, that
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Fig. 1.5: Illustration of the anatomy of healthy skin. Reproduced from [29] with permission
by courtesy of Terese Winslow (Illustrator).

is, they are in continuous cell division to regenerate the upper layers. In the rest

of epidermis layers, keratinocytes are called squamous cells and they evolve towards

the surface until becoming flattened dead cells filled with impermeable keratin in the

most superficial layer.

Melanocytes are cells also present in the deepest layer of the epidermis. The

mission of melanocytes is to synthesise a dark brown pigment called melanin and to

transfer it into nearby keratinocytes (see detail view of Fig. 1.5). Melanin protects

against tissue damage caused by UV radiation and its synthesis is promoted by

continuous exposure to sunlight.

The dermis is formed by connective tissue that supports different structures, such

as blood and lymph vessels, nerves, sweat and oil glands, and hair follicles. Connective

tissue plays an important role in immune and inflammatory responses, tissue repair

after injury, as well as delivering nutrients to the avascular epidermis through the
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basement membrane [30]. Fibroblasts are the resident cells of connective tissue, whose

mission is to elaborate fibres, such as collagen and elastin, and other components of

the extracellular matrix.

Main facts of skin cancer

Skin cancer can be divided into two main groups: non-melanoma skin cancer and

melanoma skin cancer. Among non-melanoma skin cancer, two subtypes are more

common [31]:

� Basal cell carcinoma: is a slow-growing neoplasm that originates from

keratinocytes in the basal cell layer of the epidermis. This carcinoma rarely

produces metastasis but its local recurrence and invasiveness result in significant

tissue destruction. As depicted in Fig. 1.6a, basal cell carcinoma normally

remains confined in the epidermis and does not expand to other tissues. It

typically develops on sun-exposed regions of people with lighter skin.

� Squamous cell carcinoma: is a neoplasm that has malignant characteristics, such

as local invasion and metastatic potential. It originates from kerotynocytes of

epidermis in squamous cell configuration and can invade nearby tissues like

the dermis, as illustrated in Fig. 1.6a. Most lesions of this cancer type do not

cause pain and remain undetected, growing slowly until they become invasive

carcinomas.

Melanoma is a neoplastic disorder that starts with the transformation of normal

melanocytes [35–37]. Although melanocytes are also present in other body locations

(e.g., meninges, upper oesophagus or eyes), their malignant transformations are more

common in the skin. Melanoma is the most aggressive type of skin cancer, that is why

it is normally considered as an individual category. In fact, it is one of the most violent

and therapy-resistant human cancers, mainly due to its high mutation capability and

heterogeneity. Compared with other skin cancers, melanoma is characterised by its

superior ability to grow and spread both radially and vertically, finally invading inner

tissues in a very aggressive way (Fig. 1.6a).

Melanoma occurs mainly in white people with fair skin. Although not necessary

occurring in all cases, some melanomas start from common accumulations of
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(a) (b) (c)

Fig. 1.6: Skin cancer. (a) Illustration of the most common types of skin cancer. Reproduced
from [32] with permission by courtesy of Mayo Foundation for Medical Education and
Research. All rights reserved. (b) Photographs of five common benign moles. Reproduced
from [33]. (c) Photograph of a malignant melanoma. Reproduced from [34].

melanocytes called nevi or moles (Fig. 1.6b). Individuals with a high number of

melanocytic nevi (more than 50) have higher odds of developing melanoma [38]. A

famous rule to distinguish the features of a malignant melanoma (Fig. 1.6c) is the

mnemonic ABCD method [39,40]: Asymmetry, Border irregularity, Colour variation,

Diameter >6mm.

The common major risk factor in skin cancers is sun overexposure with inadequate

protection even in the absence of sunburn, especially in childhood and adolescence,

or other cumulative exposures to UV radiation as artificial tanning lamps and beds.

Other risk factors include inherited genetic susceptibility, immunosuppression and

viral infections. The clinical management of skin cancers depends on the tumour

aggressiveness and stage, and also on the current status and medical record of

the patient. The common treatments expand from traditional surgical excision to

destructive modalities that include cautery or electrodesiccation, cryosurgery, laser

surgery, radiation therapy and chemotherapy. In the excisional surgery, the borders

of the extracted mass of tissue can be studied to assess the completeness of the tumour

ablation. However, the destructive techniques do not provide any information to know

if the cancer has been completely removed.
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1.1.5 Cancer statistics

Cancer burden

GLOBOCAN project, elaborated by the International Agency for Research on Cancer

(IARC), the specialized cancer agency of WHO, provides the most updated and

reliable estimates of the global cancer burden, which can be retrieved from [41, 42].

These statistics correspond to 2012 and are given in terms of estimated incidence,

mortality and prevalence [43,44]. In this case, these terms are defined as follows [45]:

� Incidence: is the number of new cases arising in a specified population within a

given period of time. Here it is expressed as the absolute number of new cases

per year (2012).

� Mortality : is the number of deaths occurring in a specified population within a

given period of time. Here it is also expressed as the absolute number of deaths

per year (2012).

� Prevalence: is a function of both incidence and survival. It is defined as the

number of individuals within a specified population who have been diagnosed

with a specific cancer and who are still alive at a given point in time (i.e. the

survivors). In this case, it is presented as partial prevalence, which limits the

number of patients to those diagnosed during a fixed time in the past, 5 years

in particular. In most types of cancers, patients still alive at 5 years after

diagnosis are usually considered cured because the death rates of such patients

are similar to those expected in the general population [46]. Therefore, the 5-

year prevalence is an estimate of the cure rate of a specific cancer. Here it is

presented the number of estimated cases diagnosed since 2004 who were still

alive at the end of 2008 [44].

Fig. 1.7 graphically summarises the described measures for the corresponding top

10 cancer sites worldwide and in Europe, for both sexes. Roughly more than 14

million new cases of all cancers were diagnosed in the world in 2012 and 3.4 million

of them were registered in Europe. WHO foresees a rise of 70% in this value over

the next 2 decades due to population increase and ageing [47], which will result in

almost 24 million new cases diagnosed worldwide per year. Regarding the relevant
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Fig. 1.7: Estimated incidence (first row), mortality (second row) and 5-year prevalence
(third row) of the corresponding top 10 cancer sites worldwide (first column) and in Europe
(second column), for both sexes in 2012. The relative values for each cancer site with respect
to the corresponding total number of cases are shown in parentheses. The relevant cancer
sites for this PhD thesis (colorectum and melanoma of skin) are highlighted with bold letters.
Adapted with the graphs produced from [42].
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cancer sites for this PhD thesis, colorectal cancer was the 3rd most diagnosed cancer

worldwide in 2012 (9.7% of all new cases) and melanoma of skin occupied the 19th

position (1.7%). The relative incidence in Europe for these types of cancer is higher,

with colorectal cancer in the 2nd place (13%) and specially melanoma in the 9th

position (2.9%). Some factors that may explain these local differences could be the

characteristics of population (e.g., people with white skin for melanoma), their habits

or the screening programs which are mainly applied in more developed countries.

Cancer is the second leading cause of mortality, just after cardiovascular diseases,

both worlwide with around 8.2 million deaths and in Europe with more than 1.7

million deaths in 2012. Lung cancer deserves special mention since it is clearly the

most lethal type of cancer, causing around 20% of all cancer deaths. These data

are even more shocking when they are compared with the corresponding incidence.

Colorectal cancer is also a very lethal cancer, ranking the 4th worlwide (6.4%) and the

2nd in Europe (12%). For its part, melanoma is in the 22nd place worlwide (0.7%)

and in the 19th position in Europe (1.3%).

The estimated 5-year prevalence of all cancers rises to almost 32.5 million patients

worlwide and more than 9 millions in Europe. By comparing the values for each cancer

type with the respective incidence, an idea of the survival rate can be extrapolated.

Again the lethality of the lung cancer can be confirmed by this way, especially in

Europe. Colorectal cancer is the third most prevalent cancer both worlwide (11%)

and in Europe (13%), meanwhile melanoma ranks the 11th worlwide (2.7%) and the

6th in Europe (4.3%).

According to the described figures, cancer constitutes a major public health

problem. In particular, colorectal cancer and melanoma can be considered as very

serious diseases with a high general impact on the population. Further details and

analyses of the cancer statistics from GLOBOCAN can be found in [48].

Cancer survival by stage of diagnosis

As commented, the 5-year prevalence compared with the incidence can be used as a

rough estimate of the survival rate for a specific cancer. However, knowing the exact

survival rate, especially by the stage at which cancer was diagnosed, is very valuable

to develop appropriate screening programs and surveillance guidelines.
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These values are not easy to get because not many countries have enough resources

to record high-quality national data with such richness. Despite that, some national

agencies have aggregated data where diagnosed cancers are broadly classified in few

categories depending on the spread of the lesion. Two main staging systems are

commonly used for all types of cancer:

� TNM Staging System: was developed and is revised jointly by the American

Joint Committee on Cancer (AJCC) [49] and the Union for International Cancer

Control (UICC) [50]. It specifies five stages in Roman numerals (0 -IV ).

� SEER Summary Staging : is promoted by the Surveillance, Epidemiology, and

End Results (SEER) Program of the National Cancer Institute of the United

States (US) [51]. It specifies four categories: in situ, localized, regional and

distant.

An additional stage or category called unknown is also considered in both staging

systems to catalogue those cases without enough evidence to be assigned to the other

stages. Although each cancer type may have its own variants, the overall stages are

common and can be illustrated for the particular case of colorectal cancer (Fig. 1.8).

In the case of melanoma, the transition from the first abnormal melanocytes to

metastatic melanoma can be divided into the same stages or categories, which are

mainly characterised by the vertical growth of the tumour. The stages of the TNM

Staging System, related to the categories from the SEER Summary Staging, are:

� Stage 0 : abnormal cells appear in the first tissue site, but they have not

spread to other tissues. In the case of colorectal cancer, these cells appear

in the epithelium of the mucosa layer without penetration of the basement

membrane (Fig. 1.8). This stage is equivalent to the in situ category of the

SEER Summary Staging.

� Stage I : cancer acquires invasive properties and spreads to nearby tissue

layers. In colorectal cancer, the malignant cells spread from the mucosa to

the submucosa and muscle layer (Fig. 1.8). In this stage, the cancer is still in

the localized category of the SEER Summary Staging because it is limited to

the organ where it started.
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� Stage II : cancer manages to spread through all the layers of organ (all the

intestine wall, including the external layers, in the case of colorectal cancer,

Fig. 1.8), and even invades nearby organs. According to the SEER Summary

Staging, this is an intermediate stage where the lesion may be defined as localized

or regional depending on whether the lesion does or does not remain confined

to the organ of origin, respectively.

� Stage III : this stage is more complicated and have a variety of different sub-

stages. In them, the cancer may or may not have locally spread from the original

organ, but it manages to access the lymphatic vessels and spread to nearby

lymph nodes. In the SEER Summary Staging, the cancer clearly reaches the

regional level but is still limited to a specific area of the body.

� Stage IV : cancer finally produces metastasis and spreads to other parts of the

body through the lymphatic or circulatory systems, giving rise to secondary

tumours. This phase corresponds to the distant category in the SEER Summary

Staging.

Fig. 1.8: Stages of colorectal cancer. Stages from the TNM Staging System are specified
in black fonts and the corresponding categories from the SEER Summary Staging in white
fonts. Adapted from [52] with permission from Terese Winslow (Illustrator).
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To the author’s knowledge, only two sources provide survival statistics specified by

stage of diagnosis for the two cancer types of interest here (colorectal or bowel cancer

and melanoma). The first source is Cancer Research UK [53], which summarises

the records of the adult cancer patients (aged 15-99 years), separated by sex, from

the Former Anglia Cancer Network in the period 2002-2006. The staging of this

source uses the TNM Staging System. The second source is the SEER Program [54],

which uses the SEER Summary Staging to distinguish the data obtained from the US

population in the period 2007-2013. The most relevant data from these sources are

graphically presented in Fig. 1.9.

The survival statistics in both sources are given in terms of 5-year relative survival.

It compares the survival during five years or more after diagnosis of a cohort of cancer

patients with the survival of another cohort of people from the general population with

similar characteristics (same age, race, and sex) but not diagnosed with cancer. If

this relationship is greater than 100%, it indicates that cancer patients in a specific

group have a better chance of surviving five years after diagnosis compared with the

studied general population.

As can be seen in Fig. 1.9.a and Fig. 1.9.c (top graph), colorectal or bowel cancer

has good expectancies of 5-year survival when it is detected at early Stage I or is still

localized (90-100% relative survival). The survival gradually decreases in intermediate

stages of spread (∼85% in Stage II, ∼63% in Stage III and ∼71% in regional stage).

But there is an abrupt drop in survival when the cancer produces metastasis (roughly

10% or less in Stage IV and distant stage). The data from US population (Fig. 1.9.c,

bottom graph) also inform about the percent of patients diagnosed at each stage.

According to them, colorectal cancer does not have good records of early diagnosis

with 39% of cases detected in the localized stage and 35% with regional spread. Sadly,

more than 20% of cases were diagnosed in the distant stage, with the worst prognosis.

Only 4% of cases could not be classified in a specific stage.

Similar survival trends can be observed in melanoma (Fig. 1.9.b and Fig. 1.9.d,

top graph). Cases diagnosed during first stages of localized primary tumours have

a high cure rate with almost and even more than a 100% 5-year relative survival.

The survival also gradually decreases in stages with intermediate spread (∼80% in

Stage II, ∼50% in Stage III and ∼63% in regional stage). However, patients whose

cancers have advanced up to metastatic stages only reach a 5-year relative survival
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Fig. 1.9: Survival by stage of diagnosis. First row: 5-year survival rate by stage in the period
2002-2006 of the adult cancer patients (aged 15-99 years), separated by sex, from the Former
Anglia Cancer Network who were diagnosed with (a) bowel cancer and (b) melanoma (Data
retrieved from [53] using the TNM Staging System; no significant differences were found
between men and women at any stage or type of cancer). Second and third row: 5-year
survival rate by stage (second row) and percent of cases per stage (third row) in the period
2007-2013 of the US population diagnosed with (c) colorectal cancer and (d) melanoma (Data
retrieved from [54] using the SEER Summary Staging).
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from around 10 to 20%. Again, the percent of patients diagnosed at each stage in

the US population is shown for melanoma (Fig. 1.9.d, bottom graph). The early

diagnosis in melanoma seems to be much more effective than in colorectal cancer in

this population: 84% of cases detected in the localized stage, 9% with regional spread

and just 4% with distant metastasis. In this case, just 3% of cases were not properly

catalogued.

As main conclusion of these figures, early diagnosis is the key factor to reduce

mortality. Current diagnosis protocols seem to have a low rate of early diagnosis

for colorectal cancer but a high rate for melanoma. Finally, it must be noticed that

these statistics correspond to two leading countries in screening programs and cancer

treatments.

1.1.6 Cancer diagnosis and research

Although some cancer lesions show different observable signs that allow its detection

in vivo (directly in the patient), ultimate diagnosis and staging is currently established

ex vivo by analysing biological samples extracted from the patient. Histopathology and

cytopathology are the main medical disciplines that analyse the ex-vivo specimens with

diagnostic purposes. On the other hand, in-vitro techniques, such as cell culture, play

a crucial role in cancer research and in the development of new diagnostic technologies.

Histopathology

Histopathology is the branch of anatomical pathology that uses histology (the science

that studies tissues) to diagnose diseases. Histopathology is considered the gold

standard or reference test to perform a final diagnosis of cancer. That is, although

different techniques such as endoscopy, radiology or blood test are used to detect the

lesion or even obtain complementary diagnostic information, the final evaluation and

staging depend on the histological findings.

In histopathology, small portions of tissue extracted from suspicious regions of

the patient are examined under a microscope to assess different properties, especially

their morphology. The pathologist must follow a series of steps in order to prepare

the sample for examination under a microscope. The main steps of a typical tissue

preparation are detailed below [55] and some of them are illustrated in Fig. 1.10:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1.10: Tissue processing for histopathology. (a) Fresh biopsy extracted from a patient.
(b) Fixation of the tissue. (c) Chemically processed tissue is placed into a metal mould
and embedded in molten paraffin. (d) Solidified block of paraffin with the embedded tissue.
(e) Cut of thin serial sections with a microtome. (f) Paraffinated sections are placed in
a warm bath to flatten them and then they are mounted on a microscope slide. (g) The
mounted tissue sections are stained, typically with Hematoxylin and Eosin (H&E). (h) The
final stained and mounted slides are ready to be examined with a microscope by an expert
pathologist. Images (a), (b), (e), (f) reproduced from [56]. Images (c), (d), (g), (h)
reproduced from [57].

� Biopsy extraction: a piece of tissue called biopsy is extracted from a patient;

for example, during surgery or endoscopy (Fig. 1.10a). The fresh biopsy must

be processed quickly to avoid its breakdown.

� Fixation: the fresh tissue is treated in order to harden it and preserve its

morphological structure with the time (Fig. 1.10b). Although fixation can be

accomplished by physical methods (e.g., heating, microwaving, or freeze-drying),

liquid chemical fixatives are commonly used. In particular, the most typical

fixative used in diagnostic pathology is formaldehyde in aqueous solution, which

is normally called formalin.

� Dehydration: water and aqueous fixatives are removed from tissue components
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by hydrophilic substances, such as ethanol. Immersion of specimens into

dehydrating reagents is performed through a series of baths of increasing

concentration in order to prevent cell distortion.

� Clearing : this is a necessary intermediate step because dehydration reagents are

not miscible with infiltrating solutions. The clearing substance must be miscible

with both the dehydration and infiltrating solutions. They normally have a

refractive index similar to protein and they produce a translucent appearance

in the tissue: hence the term clearing agent. One of the most used clearing

substance is xylene.

� Infiltrating and embedding : the clearing agent is replaced by an infiltrating

substance, typically molten paraffin wax. The specimen is placed in a metal

mould with a proper orientation and embedded in molten paraffin (Fig. 1.10c).

When the paraffin solidifies, the block with the embedded tissue gains rigidity,

which prevents distortion of its structure during microtomy (Fig. 1.10d).

� Cutting : the block of paraffin is cut with a microtome into very thin sections of

around 5 µm thickness (Fig. 1.10e). The cut sections are put into a warm water

bath in order to flatten them and then recovered with a microscope slide where

they get attached (Fig. 1.10f).

� Staining : the mounted slices of tissue are treated with chemicals to remove the

paraffin and then immersed in different stains (Fig. 1.10g). The excessive stains

are removed with water and the final slides get ready for observation with a

microscope (Fig. 1.10h).

Tissue processing is a complex procedure which employs chemical and physical

processes that can potentially alter and distort the characteristics of the tissue. For

diagnostic pathology, it is important to guarantee that induced undesired artifacts

are at least consistent. Therefore, a strict and repeatable protocol should be followed

during the whole tissue processing.

As described, the last step of the tissue processing is the staining. Processed tissues

are transparent in the visible light and they must be coloured with stains. Stains or

dyes are substances that have affinities with particular components of the tissue,
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(a) (b) (c) (d)

Fig. 1.11: Histopathological images of colorectal biopsies with different pathological
conditions and stained with H&E. Green scale bars represent 200 µm. (a) Normal sample.
(b) Hyperplastic polyp (benign). (c) Adenoma (precancerous). (d) Adenocarcinoma
(cancer).

promoted by specific chemical interactions. They have also absorptive properties to

electromagnetic radiation, typically in the visible light range, which give them colour.

Hematoxylin and Eosin (H&E) stain is by far the most used dye in anatomical

pathology and is actually considered the gold standard technique to diagnose tissue

diseases. Its popularity is based on its relative simplicity and its ability to reveal a

high number of different tissue structures. H&E is a combination of two chemical

substances with complementary properties. Hematoxylin is a basic dye that binds

to acidic (or basophilic) structures, such as cell nuclei, and colours them in dark

blue or violet. By contrast, eosin is a dye with varying shades and intensities of

pink, orange and red, which has an acidic nature and, therefore, it binds to basic

(or acidophilic) substances, such as proteins in the cytoplasm of cells or fibres of the

extracellular matrix. With these two dyes, the main tissue structures are revealed

and, by interpreting their morphological arrangement, the pathologist can assess the

underlying condition of the tissue and establish a diagnosis.

As an example, Fig. 1.11 shows four H&E histopathological images of colorectal

biopsies from lesions with different pathological conditions. These kinds of

histopathological samples will be employed in Ch. 4. Some typical characteristics

of each condition [28,58] can be identified in these images:

(a) Normal sample: nuclei of epithelial cells in the mucosa layer, stained with

hematoxylin in dark shades of violet, are aligned in the outer border of glands
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or crypts. As can be seen in Fig. 1.11a, glands have approximately round or

elliptical shapes, depending on their orientation with respect to the microtome’s

cutting plane. Cytoplasms of epithelial cells, coloured in a light purple, are

placed inward the glands enclosing the lumen, which mainly has white tones.

This spatial orientation is called polarity and facilitates the secretion of mucus

and other fluids into the lumen. Outside the glands, nuclei from different types

of cells of the rest of layers are surrounded by their cytoplasm and extracellular

matrix stained with pink eosin. Some breaks in the tissue can also be observed

in white.

(b) Hyperplastic polyp (benign): as in the normal state, epithelial nuclei are small,

regular and round. However, hyperplastic tissue presents increased cellularity

and mitotic activity, which can be mixed up with adenoma. In fact, they have

some mutations in common that make them adopt similar features. Hyperplastic

polyps have also simple tubular architecture with elongated and straight crypts,

which cannot be properly visualised in Fig.1.11b due to the cutting orientation.

Nonetheless, this view allows to identify the serrated (saw-tooth or star-

shaped) morphology of the glands, which characterises this abnormal and benign

condition.

(c) Adenoma (precancerous): this precursor lesion is defined by the presence

of intraepithelial neoplasia, which is characterized by hypercellularity with

enlarged, hyperchromatic nuclei, varying degrees of nuclear stratification, and

loss of polarity [28]. In some types of adenoma, glands also present a serrated

configuration if they are observed with a low magnification microscope, but the

epithelial cells are dysplastic unlike in hyperplastic polyps. Dysplastic cells lack

morphological uniformity, lose their architectural orientation and often contain

large hyperchromatic nuclei with a high nuclear-to-cytoplasmic ratio [3]. In

adenoma, dysplastic glandular structures normally occupy a great portion of

the luminal surface, as can be observed in the bottom-left region of Fig. 1.11c.

(d) Adenocarcinoma (cancer): its defining feature is invasion through the mucosa

into the submucosa, where it has higher risk of metastasis. The grade of

adenocarcinoma is mainly determined by the extent and appearance of the

glands, which become more heterogeneous and distorted. Depending on whether

the glands can be identified, the lesions can be divided into well, moderately and
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poorly differentiated adenocarcinoma. Fig. 1.11d is an example of a moderately

differentiated adenocarcinoma, where the epithelial cells are large and tall, and

the gland lumina have almost disappeared or contain cellular debris.

Tumours present a great histological diversity, showing different regions with

various degrees of differentiation, proliferation, vascularity, inflammation and/or

invasiveness [16]. Histopathological comparison of normal tissue and tumours,

although reveals morphological differences, also confirms common features in their

microarchitecture. The pathologist must be able to identify these (sometimes subtle)

differences in order to define the grade of cancer and then choose the best clinical

management. This assessment is even harder in intermediate phases of development,

when lesions are localised in small regions of the sample and may not show clearly

distinctive characteristics.

Cytopathology

In a similar way to histopathology, cytopathology studies and diagnoses diseases at

the cellular level [59–61]. In certain types of cancer, individual cells are examined

as a complementary test to histopathology or even as the main diagnostic tool. The

most typical examples are leukaemia, cervical cancer and bladder cancer, where cells

can be collected in a relatively simple way. However, a significant amount of cells

can be extracted from less accessible regions, for example, by fine needle aspiration

as in lymph nodes. Cytopathology gives valuable information about molecular and

morphological changes that helps in the diagnosis of precancerous and malignant

lesions.

Cytopathology, as well as a science, is considered an art even more challenging

than histopathology because changes in cells can be subtler or more hidden than

in tissue samples [59]. The quality of the preparation of cytological samples is

crucial to perform an accurate interpretation. As done with tissues, cell specimens

collected from suspicious sites by exfoliative procedures, fine needle aspiration or

even endoscopy, must be processed in different steps that typically include [62]:

cytocentrifugation, to separate cells; fixation, to maintain morphology; and staining,

to facilitate cell visibility, detection and interpretation with classical light microscopes.

A famous dye in cytopathology is the Papanicolau stain, which is a mixture of five

dyes including hematoxylin and eosin.
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Cell culture

In parallel with traditional cytopathology, where ex-vivo cells collected from

humans are directly studied for diagnostic purposes, cell culture consists of creating

cytological samples under controlled laboratory conditions (in vitro). Cell culture is

becoming more important in both academic research and industry to develop new

diagnostic technologies, to generate and use test or model systems, or to produce

biopharmaceuticals or other oncological products [63]. The main advantage of cell

cultures is the homogeneity of replicated samples, which normally belong to a specific

cell line. This is specially useful in the development of screening systems for diagnosis

and drug testing because the pathological conditions of the cell lines are known and

the obtained results can be potentially consistent and reproducible [64]. As main

limitations, culture techniques require high levels of expertise and relatively expensive

equipments in order to guarantee the quality of the cell culture. In addition, not only

for quality but also for safety reasons, people working with cultured cells must follow

standard protocols and specific practical guidelines [65–67].

As commented, cell cultures normally employ catalogued cell lines with known

properties that were originally extracted from human or other animal tissues. Fig.1.12

illustrates the evolution with the time, in terms of cumulative number of cells, of a

hypothetical cell line. After tissue removal or explantation, cells are isolated and

placed into a suitable culture environment to create the primary culture. These

original cells grow and proliferate until reaching confluence, that is, cells occupy all the

available substrate and make close contact with one another. At this point, cells are

detached from the substrate with enzymes and moved to a new substrate to produce

the first subculture or passage and give rise to the cell line. The process is repeated in

a series of passages where the most proliferative cell lineages gradually predominate

and the cell line becomes more stable.

Cell lines created from normal tissue, unlike malignant cells (Sec. 1.1.2), have a

limited number of replications due to the shortening of telomeres and finally undergo

senescence (non-proliferative state). The population of these finite cell lines reaches

a maximum and then decreases when the non-proliferative existing cells gradually

die (Fig. 1.12). However, some cultured cells experiment genetic transformations and

originate a continuous cell line capable of replicating infinitely. This transformation

or immortalisation may occur spontaneously or be chemically or virally induced. Not
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Fig. 1.12: Evolution of a cell line. The vertical axis represents total cell growth (assuming
no reduction at passage) for a hypothetical cell culture. Total cell number (cell yield) is
represented on this axis in a logarithmic scale, and the time in culture is shown on the
horizontal axis on a linear scale. Although a continuous cell line is depicted as arising at 14
weeks, with different cells it could arise at any time. Likewise senescence may occur at any
time. Reproduced from [64] with permission by courtesy of John Wiley & Sons Inc.

all types of cells have been successfully immortalised. The most famous case is normal

human fibroblasts, which never give rise to continuous cell lines [64].

Established cell lines can be cryopreserved and stored with liquid nitrogen,

perpetuating their characteristics indefinitely. A great diversity of cell lines are

available from recognised cell banks, which guarantee their authenticity and freedom

from microbial contamination [67]. Specialised laboratories, which must have trained

personnel and appropriate equipment (e.g., microbial safety cabinets, incubators,

autoclaves, water filtration units, etc.), can acquire batches of catalogued cell lines

from recognised cell banks or distributors and create their own cell cultures for

research purposes.

When culturing animal cells, it is essential to consider that they only survive

under relatively constant physiological conditions, which must simulate blood plasma

or interstitial fluids and avoid contamination with external microorganisms. They also

require a strict control of the physicochemical microenvironments in order to develop

their specific phenotype (distinguishable characteristics or traits). In particular, some

factors that determine the correct development of cultured cells are: the incubation
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temperature; the concentration of nutrients and growth factors in the supplied media;

the nature of the substrate, especially for cell adhesion; and the interaction and

contact between cells.

Cell proliferation is governed by the cell cycle (Fig. 1.2), which is regulated

by growth factors that must be artificially supplied and other signals from the

microenvironment. For instance, normal cells stop proliferating in highly dense

cultures due to cell contact inhibitions, whilst cancerous and other transformed cell

lines may keep dividing (Sec. 1.1.2). Each cell line, mainly specialised cells such as

epidermal keratinocytes, needs specific culture conditions and handling in order to

proliferate and keep differentiated.

Four different skin cell lines will be analysed in this thesis (Ch. 5): two of them

(HaCaT and NIH-3T3) derived from normal or healthy skin (Sec.1.1.4) and the other

two (A-375 and SK-MEL-28) from different melanoma lesions. Fig.1.13 shows images

from specific regions of cultures of each cell line, which were acquired with a phase

contrast microscope. Some characteristics of these skin cell lines can be described in

alphabetical order:

(a) A-375 : is a cell line derived from a 54-year-old female of unknown ethnicity

with malignant melanoma, which was established in 1973 [68]. When inoculated

subcutaneously in immunosuppressed mice in vivo, these cells rapidly develop

tumours resembling amelanotic melanomas.

(b) HaCaT : is an immortal cell line that was spontaneously transformed in vitro

from normal keratinocytes extracted form a 62-year-old Caucasian male in

1988 [69]. It presents unlimited growth potential but remains nontumorigenic

and is capable of reproducing the orderly structure of normal epithelial

tissue. Therefore, HaCaT cells tend to join together and form densely packed

monolayers in cultivations in vitro.

(c) NIH-3T3 : is an immortal non-pathological cell line created from NIH Swiss

mouse embryo fibroblasts in 1969 [70]. It is considered a standard fibroblast cell

line and has been used in numerous cytological studies as a substitute of human

fibroblasts, which have not been successfully immortalised and present critical

problems of instability in vitro [64].
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(a) (b) (c) (d)

Fig. 1.13: Phase contrast microscopic images (with corrected background) from cell cultures
of four different skin cell lines, including melanoma. Green scale bars represent 100 µm.
(a) A-375 (Malignant melanoma). (b) HaCaT (Non-tumoral keratinocytes). (c) NIH-3T3
(Non-tumoral mouse fibroblasts). (d) SK-MEL-28 (Malignant melanoma).

(d) SK-MEL-28 : is a malignant melanoma cell line that was established from an

axillary lymph node of a 51-year-old male of unknown ethnicity in 1976 [71].

SK-MEL-28 cells cultivated in vitro tend to grow as a monolayer and normally

present a polygonal morphology.

As can be observed in Fig. 1.13, each cell line has different morphological and

growing properties. HaCaT cells form the most organised and connected monolayer,

whereas NIH-3T3 fibroblasts and specially melanoma cells grow in a more disorganised

way with frequent areas of overlapping cells. In addition, individual melanoma

cells present more compact and rounded shapes, as a sign of their enhanced mitotic

activity (Sec. 1.1.2).

Finally, as in traditional cytopathology, cell cultures can be processed after growing

to be visualised with specific imaging methods and allow their storage for posterior

studies. In particular, they can be chemically treated with fixatives to keep their

morphology with the time. However, these treatments may alter the chemical

characteristics of the cells.

1.2 Motivation

As was described and supported with official statistics in Sec.1.1.5, cancer in general,

and colorectal cancer and melanoma in particular, are major health problems with
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high incidence and mortality. Besides, the survival of cancer patients dramatically

decreases when the lesion is not diagnosed at early stages of development. As also

commented before, histopathological (and in some cases cytopathological) analysis

remains the gold standard for the diagnosis of most types of cancer.

Nowadays, the final assessment of suspicious biopsies is still performed by an

expert pathologist, who visually inspects the prepared samples with a traditional

optical microscope and gives a qualitative judgement. This lengthy and tedious

methodology possesses a high degree of subjectivity and heavily relies on the

experience and skills of the clinician. Several studies, involving pathologists with

many years of experience, have revealed a suboptimal inter-observer variability in

the differentiation and reporting of both colorectal polyps [72–75] and melanocytic

neoplasms [76–79]. This diagnostic discordance is normally higher (even surpassing

30% of studied cases [78]) in early stages when abnormal tumours do not show clearly

discriminant signs yet. This circumstance leads to changes in clinical management

and gives rise to situations where a region of benign tissue is removed (overdiagnosis)

or, even worse, a malignant lesion is not properly treated (underdiagnosis). The

controversy in the diagnosis mostly disappears in advanced stages, but the lesion

is already lethal in most of those cases. Most reported studies conclude that more

objective criteria should be applied for risk stratification in screening and surveillance

guidelines.

1.2.1 Infrared spectroscopy and cancer diagnosis

One of the main targets in cancer research is the discovery and validation of new

biological markers (biomarkers), which are representative of the pathology. A cancer

biomarker is any functional entity that can be objectively measured, such as genes,

proteins, metabolites, morphological, cytogenetic or cytokinetic parameters, as well

as any other physical feature or detectable change in body fluids or tissues that can

be significantly related to a specific cancerous disease [80]. Infrared (IR) spectroscopy

(Ch.2) takes advantage of the ability of IR light to excite the vibrational modes of the

chemical bonds that form the biological matter. Its main generated signal provides

rich and concise information about the biochemical composition and the omics of the

illuminated specimen, fitting all the characteristics to become a useful biomarker of

cancer in clinical practice [81].
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Unlike other imaging techniques well-established in medical practice, such as

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [82, 83], IR

spectroscopy is still an emerging technology in the biomedical field. IR spectroscopic

techniques have been successfully used since the last century in chemical and

pharmaceutical industry, e.g., in the characterisation of polymers and drugs [84, 85].

Some attempts were made since the 1950’s to investigate biological specimens,

although they are far more complex than industrial material. But it has been

mainly in the current century when new advances in instrumentation, data acquisition

and data analysis have shown the potential of IR spectroscopy for biomedical

applications [86].

Many proof-of-concept studies have demonstrated the diagnostic capabilities of

IR spectroscopy in different types of cancer over the past decades [81, 87–89].

This incipient technology potentially offers objective and automated analyses of

biological specimens, which could even be adapted to routine screening. Therefore,

IR spectroscopy can play a significant role at different levels of cancer diagnosis

and research, from in-vitro applications such as analysis of cell cultures, ex-vivo

diagnosis such as histopathology and cytopathology, and even in-vivo screening

such as non-invasive early detection of skin cancer [90]. Nevertheless, translation

to clinical practice still must be justified with statistically relevant studies of

increasing complexity that gradually incorporate the current existing variability in the

instrumentation, sample preparation, measurement protocol and data processing [91].

1.2.2 MINERVA project

MINERVA is a project funded by the European Commission through its Seventh

Framework Programme (FP7) that brings together thirteen partners from across

Europe with the common objective of developing mid-IR technology to improve the

diagnosis and research of cancer [92,93]. MINERVA pursues several targets in parallel,

from developing new IR instrumentation, such as fibre lasers, Acousto-Optic (AO)

modulators, supercontinuum sources and detectors in the mid-IR range, to explore

the performance and limitations of current IR spectroscopic technology in cancer

identification.

The spectral region studied in MINERVA covers the so-called fingerprint region

(Sec. 2.4.1), which includes the most distinctive absorption peaks of biomolecules.
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By studying the pattern of IR spectroscopic signals it is possible to deduce

valuable information for disease diagnosis. But this process is not straightforward

because the useful molecular information is buried in the interrelated distribution

of biological species, which only differ in subtle biochemical changes. In addition,

IR spectroscopic signals are affected by different kinds of spectral artifacts, which

may arise from the preparation of the sample, the acquisition procedure or other

undesirable physicochemical effects. Therefore, advanced mathematical techniques,

such as multivariate analysis and machine learning, are required to extract the

relevant information from the large amount of spectral data in order to identify and

differentiate cancer.

This thesis has been developed within the framework of MINERVA project.

Universitat Politècnica de València (UPV), as a partner of MINERVA, has

collaborated in the acquisition, processing and analysis of IR spectra from biomedical

samples. In particular, two applications related to cancer diagnosis have been explored

in MINERVA:

� Histopathology : the main aim is to evaluate the capabilities of IR spectra to

discriminate colon cancer in tissue biopsy samples. In this task, UPV has

collaborated with University of Exeter (UoE) and Gloucestershire Hospitals

NHS Foundation Trust (GHFT), both from the United Kingdom (UK). A

significant number of tissue samples, extracted from patients with colon cancer

in different pathological conditions, was provided by GHFT. Hyperspectral

Fourier Transform Infrared (FTIR) images from all these samples were acquired

at UoE by using a state-of-the-art benchtop FTIR microspectroscope. Expert

spectroscopists from UoE and GHFT have been in charge of the acquisition

and analysis of this relevant dataset of hyperspectral FTIR images. UPV has

mainly played a supporting role in this application, by adapting and developing

algorithms from the fields of image processing and computer vision in order to

fuse the information of hyperspectral FTIR images and conventional microscopic

images (Ch. 4).

� Cytopathology : the aim is to assess the potential and limitations of IR

spectroscopy to distinguish different types of catalogued skin cell lines including

melanoma. To accomplish this task, UPV has collaborated with Westfälische

Wilhelms-Universität (WWU), from Münster (Germany). WWU provided the
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biomedical support by preparing the cell cultures of skin cell lines. UPV has

played a more significant role in this application by acquiring most of the

hyperspectral FTIR images from the cell cultures at UoE, as well as processing

and analysing them (Ch. 5). During this process, UPV counted on the valuable

help and supervision of experts from UoE and GHFT.

1.3 Objectives

This thesis aims at contributing to the improvement of the final diagnosis of cancer,

a real and relevant problem in the biomedical field, by means of new optical

technologies and analytical methodologies. In particular, the main aim is to contribute

to the development and assessment of objective decision support systems based

on images captured from tissue and cell samples with modern benchtop FTIR

microspectrometers. In order to fulfil this global and generic task, several specific

objectives are derived:

� Reviewing and synthesising the most relevant concepts from the biomedical field

which are essential to correctly deal with pathological samples.

� Reviewing and synthesising the most updated knowledge concerning the technol-

ogy of IR spectroscopy, including its instrumentation and the physicochemical

phenomena involved in the creation of FTIR spectral signals for the special case

of biological samples. These concepts are needed to collaborate in the correct

acquisition of FTIR hyperspectral images and to perform a sounder processing

of the spectral data.

� Reviewing and identifying the most relevant methods and algorithms currently

employed for the processing and analysis of the recorded hyperspectral FTIR

images. These methods belong to different interconnected areas, such as image

processing, computer vision, machine learning, pattern recognition, multivariate

analysis, chemometrics, as well as specific techniques from the spectroscopic

field.

� Applying all the concepts and methodologies together with preliminary studies

to real diagnostic problems based on histopathological and cytopathological
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samples. Special emphasis will be given to the correct assessment of the

obtained results and the possible limitations of the employed technologies and

methodologies.

1.4 Outline

In this chapter the most relevant notions from the biomedical field related to cancer

and its final diagnosis have been reviewed. This background helps to understand the

necessity for the studied technology. In addition, its knowledge is essential to perform

a correct treatment, measurement and analysis of the involved biological samples.

The rest of chapters focus on the technological concepts and their applications.

Ch. 2 will present the most relevant theoretical an practical aspects concerning

Infrared spectroscopy, which must be considered and understood to proceed correctly

in the later applications.

Ch. 3 will describe several techniques connected with the preprocessing of FTIR

spectra acquired from biological samples as well as the methods commonly used to

extract the most relevant information in these high-dimensional datasets.

Ch. 4 will thoroughly detail the first of the two main applications of this thesis,

which aims at helping to improve the diagnosis of histopathological samples. This

application consists of the development of a methodology that automatically aligns

different histological sections measured by two imaging modalities in order to combine

the spatial information extracted from those two techniques. To that end, the

theoretical background of FTIR spectroscopy described in previous chapters will be

fused with modern methodologies from the fields of image processing and computer

vision.

Ch.5 will present the second main application of this thesis, this time with the goal

of improving the diagnosis of cytopathological samples. Its main objective is to assess

the generalisation capabilities of FTIR signals to reliably discriminate different types

of skin cells containing malignant phenotypes. The followed methodology, which fuses

techniques described in previous chapters with new methods from the areas of machine

learning and pattern recognition, will be detailed together with the main reasoning

behind each applied step. In addition, the final results will be quantitatively assessed

and thoroughly discussed.
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Finally, Ch. 6 will summarise the most relevant conclusions derived from

the previous chapters with special attention to the most important findings and

limitations identified in the two main applications.
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2.1 Introduction

In this chapter, the fundamental concepts of Infrared spectroscopy, its practical

instrumentation, and the key ideas related to the signal and image formation will

be described. Special emphasis will be made in the practical aspects that will affect

the later applications. In particular, the main sources of artifacts and errors that may

hamper the posterior analysis of the measured signals will be detailed.

2.2 Infrared spectroscopy

Infrared spectroscopy together with Raman spectroscopy constitute the field

of analytical chemistry called vibrational spectroscopy. This field has many

diverse applications in biomedicine, biochemistry, forensic sciences or food and

pharmaceutical industry [94].

IR band covers the wavelengths (λ) of the electromagnetic spectrum which are

immediately superior to the visible spectrum (λ ∼380-780 nm). The division of the

IR band is not precise and can vary depending on the field of application or the

related publication. Considering the definitions of spectral bands specified by the

International Organization for Standardization (ISO) [95], IR band can be divided

into three main regions of increasing wavelength: near-IR (λ ∼780 nm-3 µm), mid-IR

(λ ∼3-50 µm) and far-IR (λ ∼50 µm-1 mm). Fig. 2.1 illustrates the most useful

bands of the electromagnetic spectrum with an enlarged view of the visible and

IR spectrum (wavelength axis is not scaled). In this figure, schematic drawings of

objects with different sizes have been added at the position of the approximate scale

of wavelength. It must be pointed out that the typical size of a human cell is around

tens of microns, which lies in the mid-IR region.

The most common spectral metric in spectroscopy is the wavenumber (ν̃), which

is the spatial frequency of a wave and is defined as the inverse of the wavelength:

ν̃ =
1

λ
(2.1)

ν̃ represents the number of wave cycles per unit length and its usual unit is

cm−1. Therefore, the mid-IR region defined by ISO [95] extends from 200 cm−1

to around 3300 cm−1. It must be remarked that bibliographic references in the field

of spectroscopy (e.g., [84, 98–101]) usually delimit the mid-IR region between 400-

4000 cm−1 (λ ∼2.5-25 µm).
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Fig. 2.1: Illustration of the electromagnetic spectrum. Adapted from [96] and [97].

The energy E of a photon is defined by the Planck-Einstein relation:

E = hf = h
c

λ
= hcν̃ (2.2)

where h is the Planck’s constant, f is the frequency of the radiation and c is the speed

of light in the vacuum. The energy of mid-IR photons extends from 0.025 to 0.4 eV

(according to ISO [95]) and covers the quantum values which are able to excite most

vibrational modes of matter [98].

Each kind of molecular bond has characteristic modes of vibration whose states of

energy are quantised. In a traditional absorption process, a resonance interaction

is produced when a photon of the incident light possesses the exact energy of a

specific molecular energy level. In that case, that molecule is promoted into a state

of higher excitation and the photon is absorbed [101]. Hence, if a sample of matter is

placed into the path of a mid-IR beam, its molecules will absorb those photons whose

frequencies match their resonant frequencies of vibration. This is the main principle

of IR spectroscopy. The fundamental vibrational modes which can be detected in

mid-IR spectroscopy are stretching (changes of bond lengths), both symmetric and
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asymmetric, and bending (changes of bond angles) modes [81]. These fundamental

vibrational modes are sketched in the case of a non-linear triatomic molecule, e.g.,

water, in Fig. 2.2.

symmetric stretching asymmetric stretching bending

Fig. 2.2: Diagram of the fundamental modes of molecular vibration detectable by mid-IR
spectroscopy in the case of a non-linear triatomic molecule, e.g., water.

2.3 FTIR spectrometers

Nowadays, FTIR spectrometers are the most widely used devices to perform IR

spectroscopy. A conventional FTIR spectrometer is composed of three main elements:

the source, the interferometer and the detector. Although there are many different

designs and combinations of these components, their main and most common

characteristics will be summarised in the following sections.

2.3.1 Source

The IR light in commercial spectroscopes is commonly generated by blackbody sources

with broadband spectra. The blackbody radiation is theoretically described by the

Planck’s law [102,103]:

Bλ(λ, Tk) =
2hc2

λ5

1

exp
(

hc
λkBTk

)
− 1

(2.3)

where Bλ is the blackbody spectral radiance, as a function of λ and the absolute

temperature of the source Tk, and kB is the Boltzmann’s constant. In the

International System of Units (SI), Bλ is expressed in W
sr·m3 . By means of Eq.2.3, the

blackbody spectral radiance emitted by the source can be estimated for some specific

values of its absolute temperature, resulting in the curves shown in Fig. 2.3.
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Fig. 2.3: Blackbody spectral radiance at different absolute temperatures.

As can be observed in Fig. 2.3, the overall radiated energy increases with the

source’s temperature and the maximum peak of the curve moves toward shorter

wavelengths (Wien’s displacement law). Therefore, although higher spectral radiance

is obtained in the IR region at higher temperatures, the proportion of IR radiation

compared to the total energy emitted is lower. As a compromise solution, thermal

sources operating in the range of 1400 to 2000 K are usually employed [101]. These

sources, normally heated by an electric current, consist of a filament or rod made of

materials that are relatively inert to atmospheric oxygen at the operating temperature.

Globar is a patented material of silicon carbide disposed in a diamond lattice, which

is widely used as blackbody IR source in FTIR spectrometers. Globar is relatively

stable at ∼1300 K (its typical operating temperature [98]) and does not need a special

inert atmosphere.

2.3.2 Interferometer

The interferometer is the key element of FTIR spectrometers. Its role is to separate

the contributions of the polychromatic spectrum provided by the blackbody source.

Commercial FTIR spectrometers typically use Michelson interferometers, whose

schematic is shown in Fig. 2.4. The light emitted by the IR source is collimated

to get a parallel beam that is directed towards a beam splitter. Half of the radiation

is reflected and the other half is transmitted by the beam splitter. The reflected
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split beam is reflected again by a fixed mirror, meanwhile the portion of transmitted

beam is reflected by a mirror that is continuously moving with a specific frequency

and amplitude. Both beams are directed back to the beam splitter where they are

recombined. Again, due to the construction of the interferometer, the beam splitter

conducts half of the recombined beam towards the source (this part of the light is lost

for the final measurement and it is not drawn in Fig. 2.4 for clarity) and the other

half follows the path towards the sample and the detector.

Fixed Mirror

Moving Mirror

Detector

Beam
Splitter

Recombined
Beam

Coherent
Light Source

Split Beam

Split Beam

Sample and
Substrate

Fig. 2.4: Schematic diagram of a Michelson interferometer configured for FTIR
spectroscopy. Adapted from [104].

The split beams travel along paths with different lengths due to the movement of

one mirror, making changes in the phases of the beams. Constructive or destructive

interference patterns are produced when the beams are recombined, depending on

their path difference or phase shift. The final intensity pattern of the recombined

beams measured by the detector is called interferogram J(ξ), which is a function of

the moving mirror displacement ξ. When a broadband source emitting light in a

continuous way at all wavenumbers (or wavelengths) is used to illuminate the sample,

J(ξ) can be represented by the following integral:

J(ξ) =

∫ ∞
−∞

I(ν̃) cos(2πν̃ξ)dν̃ (2.4)

where I(ν̃) is the spectral intensity passing through the sample and reaching the

detector at a specific wavenumber ν̃. Eq. 2.4 arises when the interference pattern of
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the recombined waves is studied [98, 101]. The integral of Eq. 2.4 has the form of a

Fourier cosine transform, which is the real part of a full complex Fourier Transform

(FT). I(ν̃) can be computed through the inverse FT, resulting in the integral (apart

from normalization constants [105], specified by the symbol ∝):

I(ν̃) ∝
∫ ∞
−∞

J(ξ) cos(2πν̃ξ)dξ (2.5)

Thanks to the duality between different domains granted by the FT, the

spectrum I(ν̃), which is an intensity distribution in the wavenumber domain ν̃, can

be obtained from the interferogram J(ξ), which is the intensity distribution actually

recorded by the detector and which depends on the moving mirror position ξ. This

is the main property of FTIR spectrometers.

Fig.2.5 presents an example of interferogram and its associated intensity spectrum

measured without any sample placed in the beam path between the interferometer

and the detector. Only the values and units of ν̃ in the intensity spectrum I(ν̃) have

been specified to identify some relevant absorption bands. As the plots correspond to

a measurement with no sample, these absorption bands are mostly produced by the

water vapour and CO2 which the IR beam encounters on the air along its travel from

the source to the detector (Sec. 2.6.2).

500 1000 1500 2000 2500 3000 3500 4000

ν,WwavenumberW(cm-1)

I 
(ν
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J
 (
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IntensityWSpectrumInterferogram

WaterWvapour
~3500-3900Wcm-1

WaterWvapour
~1300-2000Wcm-1

CO2

~2300-2400Wcm-1

~
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Fig. 2.5: Example of a recorded interferogram (left) and its associated intensity spectrum
computed by applying the Fourier transform (right). These graphics correspond to a
measurement with no sample. Some relevant absorption bands have been identified in the
intensity spectrum. Adapted from [106].
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2.3.3 Detector

Detectors for IR region are different from those designed for the visible spectrum

or other higher frequency regions because the energy of IR photons is lower. The

detectors used in FTIR spectroscopy can be classified in two classical categories [107]:

thermal detectors and quantum detectors.

Thermal detectors measure the heating effect produced in a material when it

absorbs IR radiation. Depending on the effect of the temperature change, thermal

detectors can also be divided into distinct subcategories: thermocouples, which

measure an electromotive force or voltage in a junction of different metals; bolometers

and thermistors, which respectively detect changes in the resistance of a conductor or

a semiconductor; pneumatic detectors, which measure the increase of pressure in an

enclosed gas; and pyroelectric detectors, which monitor metals behaving as a capacitor

whose charge on the surface changes with the temperature. All kinds of thermal

detectors have been used for mid-IR spectroscopy in the past. However, the main

drawback of thermal detectors is their response time (around several milliseconds),

which is too long for the high frequencies of modern FTIR spectrometers [98].

Nowadays, the only thermal detectors that have a practical use are made of a

pyroelectric material called Deuterated Triglycine Sulfate (DTGS). DTGS detectors

are equipped in low-cost, medium-performance devices and can be operated at room

temperature.

Quantum detectors respond to the direct interaction of IR photons with the

electrons of the detector material, which can be excited to a higher energy state.

This excitation only takes place if the energy of IR photons is higher than a

certain threshold Emin determined by the material properties. As the photon

energy is directly proportional to the wavenumber (Eq. 2.2), the lower the radiation

wavenumber, the higher the number of IR travelling photons for a given amount

of total energy. Because more electrons are excited by IR photons, the sensitivity

of quantum detectors increases when the wavenumber decreases. However, there is

a limit ν̃min related to Emin from which the response drops off abruptly. Quantum

detectors can be generally subdivided into photoemissive detectors and semiconductor

detectors.

Photoemissive detectors directly measure the number of electrons released from

an illuminated surface. This kind of detectors, which include phototubes and
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photomultipliers, cannot be used with IR radiation because they need higher energies

to release electrons from the photoemissive surfaces.

Semiconductor detectors are composed of materials with two bands of different

energy, namely valence band and conduction band, which are separated by a band gap.

If the energy of an incident photon is greater than the band gap, an electron will jump

from the valence band into the conduction band and the resistance of the detector will

diminish. These devices commonly work as photodiodes and the change in resistance

is measured as a variation in the current across the detector. Normally, materials with

band gaps between 400 and 800 cm−1 are used in FTIR spectroscopy [101]. Mercury

Cadmium Telluride (MCT), a mixture of HgTe and CdTe, is the material used in

the most common semiconductor mid-IR detectors. MCT has high sensitivity, fast

response times (∼ µs) and covers a spectral range from about 700 to over 5000 cm−1.

These types of detectors are normally cooled to 77 K with liquid nitrogen because the

thermal energy at room temperature (around 208 cm−1) produces unwanted electron

promotions to the conduction band, which increase the noise in the measurement.

2.4 FTIR spectra

There are different ways of measuring the interaction of IR light with the

sample. Three main sampling strategies or modes are normally applied in the

analysis of biological materials by FTIR spectroscopy: transmission, transflection

and Attenuated Total Reflection (ATR). Each mode has distinct advantages and

disadvantages [108], and its choice depends on the type of study and the available

resources. In this thesis, all the described and analysed FTIR measurements were

acquired in transmission mode.

In transmission measurements, the detector mainly receives the light which

passes through the sample, as was sketched in Fig. 2.4. Transmission is the most

straightforward and traditionally used sampling technique. It does not require

additional equipment to perform the measurements and allows quicker acquisitions.

Moreover, it is exempt from additional artifacts directly caused by reflection but does

not avoid scattering effects associated with transmission. Its main drawbacks are the

need for thin sections of samples, the complexity of the sample preparation and the

cost of the required auxiliary materials.
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The biological sample, such as fixed tissues or cells, must be specifically prepared

for transmission measurements and laid on a transparent substrate. In particular, the

substrate used in transmission commonly consists of windows made of CaF2 (calcium

fluoride). CaF2 is practically transparent from 1000 to 77000 cm−1 and its refractive

index is relatively low and similar to biological substances (1.4 at 2000 cm−1) [109],

which reduces the light loss at the window-sample interface. Moreover, CaF2 is

suitable for direct use in preparations of biological samples, such as cell cultures,

because it is chemically inert and water insoluble [84]. The principal inconvenience

of CaF2 is its cost, which can range from around 10 to more than 100 e for each

window [110], depending on its size and quality.

The final shape of the intensity spectrum computed from the recorded interfero-

gram is determined by the convolution of the source emission profile, the detector

sensitivity profile and the response of any optical component in the beam path [101].

Transmittance (T (ν̃)) is the metric used to extract the attenuations caused by the

molecules of the sample in the IR beam and (ideally) cancel out the rest of contribu-

tions. It is defined as the following ratio [111]:

T (ν̃) =
I(ν̃)

I0(ν̃)
(2.6)

where I(ν̃) is the transmitted intensity spectrum passing through the sample

(including the substrate) and reaching the detector, and I0(ν̃) is the transmitted

intensity spectrum reaching the detector in the absence of sample. I0(ν̃) is known as

the reference background spectrum and is commonly measured before I(ν̃) by selecting

a clean region of the substrate, as illustrated in Fig. 2.6.

I0(ν)

Detector

I(ν)
Sample 

(e.g. fixed cells 
or tissue)

Substrate
(e.g. calcium 

fluoride, CaF2)
From

interferometer

~~

Fig. 2.6: Schematic of the acquisition of the reference background spectrum I0(ν̃) and the
intensity sample spectrum I(ν̃) in transmission measurements.
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2.4.1 Absorption spectrum and Beer-Lambert law

The higher the amount of radiation absorbed by the sample, the lower the intensity

I(ν̃) reaching the detector and, as can be checked in Eq.2.6, the lower T (ν̃). In order to

operate with a direct relationship of the absorption level, the metric called absorbance

(A(ν̃)) is usually employed. For a specific ν̃, A(ν̃) is defined as follows [111]:

A(ν̃) = log10

(
1

T (ν̃)

)
= − log10

(
I(ν̃)

I0(ν̃)

)
(2.7)

Both T (ν̃) and A(ν̃) are dimensionless, as they are a ratio and the logarithm of

a ratio between intensities. The curve of absorbance values for a range of measured

wavenumbers is called absorption spectrum. As an example, Fig.2.7 shows I0(ν̃), I(ν̃)

and A(ν̃) spectra acquired from a region of a fixed skin cell as was sketched in Fig.2.6.

These spectra are presented both in the whole range of measured wavenumbers (1000-

3800 cm−1) and cropped to the fingerprint region (see below).

Absorbance is an experimental quantity that can be ideally related to the

theoretical physicochemical properties of the sample by the Beer-Lambert-Bouguer

law or commonly called the Beer-Lambert law [112,113]:

A(ν̃) = ` · C · ε(ν̃) (2.8)

where ` is the effective optical path length (length which the light beam travels

through the sample), C is the concentration of the sample and ε(ν̃) is the molar

attenuation coefficient or absorptivity. When the sample is a mixture of J chemical

components or constituents, which can absorb at the same ν̃ and have constant

absorptivity along the sample thickness, the total absorbance is given by the equation:

A(ν̃) = ` ·
J∑
j=1

Cj · εj(ν̃) (2.9)

where the subscript j identifies each chemical component or constituent. In the

previous equations, some complex optical phenomena have been neglected, such

as scattering due to inhomogeneous samples, reflections at the substrate-sample

interface, chemical changes due to intermolecular interactions and other additional
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Fig. 2.7: FTIR spectra from a region of a fixed skin cell. Top plots: reference background
spectrum I0(ν̃) (blue) and intensity sample spectrum I(ν̃) (red) for (a) the whole range
of recorded wavenumbers and (b) the fingerprint region. Bottom plots: corresponding
absorption spectrum A(ν̃) for (c) the whole range of recorded wavenumbers and (d) the
fingerprint region.

effects which may take place in the interaction of the light beam with the sample [113].

However, it highlights that the recorded absorbance is mainly determined by the

morphology of the sample (through `), the chemical abundance of its components

(through C) and their molecular transitions (through ε(ν̃)). Note that both ` and



54 Chapter 2. Fourier Transform Infrared Spectroscopy

C do not depend on ν̃ and produce multiplicative effects in the global shape of the

absorption spectrum, whose main peaks are determined by ε(ν̃).

Biological materials are made of organic macromolecules, which can be classified

as proteins, lipids, carbohydrates and nucleic acids. These macromolecules are

composed of different chemical bonds that create structures more complex than non-

biological compounds like industrial polymers. Thus, the final absorption spectrum

of a biological specimen reflects the overall attenuations of this big mixture of

biomolecules, which have strongly overlapping characteristics. Despite this chemical

complexity, some relevant peaks can be related to some vibrational modes in a typical

biological absorption spectrum, as shown in Fig. 2.8.

Huge efforts have been made in traditional FTIR spectroscopy to identify the most

characteristic peak frequencies in biological studies [100,114]. Most of these relevant

peaks are located within the so-called fingerprint region [81], which approximately

extends from 1000 to 1800 cm−1. This range also contains the strongest peak of a

typical biological spectrum, the Amide I peak (∼1640-1680 cm−1), which is associated

with the carbonyl stretching of the peptide bond in proteins (Fig. 2.8).

2.4.2 Limitations to the Beer-Lambert law

There are several factors that may cause deviations from the ideal linear relationships

with the measured absorbance proposed by the Beer-Lambert law (Eqs. 2.8 and 2.9).

Although not exhaustive, a list of some of these factors is presented below [112,113]:

� Real limitations: the Beer-Lambert law was designed to describe the behaviour

only of dilute solutions. Therefore, other kinds of samples, such as solid

mixtures, may not follow this law.

� Chemical deviations: the Beer-Lambert law supposes that the chemical

absorbers (molecules, ions, etc.) act independently of each other. On

the contrary, intermolecular interactions between chemical species may cause

changes in the absorptivity that lead to deviations from the Beer-Lambert

law. These effects are likely to occur in biological samples, which have complex

chemical compositions and structures.

� Instrumental and measurement deviations: several sources of deviations and

limitations due to measurement causes can be distinguished:
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Fig. 2.8: Typical FTIR absorption spectrum of a biological sample in the range
800-3000 cm−1. Some relevant peaks have been identified, which are associated with
vibrational modes (νs = symmetric stretching, νas = asymmetric stretching, δs =
symmetric bending) of different organic macromolecules (see respective colours). Adapted
from [108] with permission by courtesy of Macmillan Publishers Ltd.

– Polychromatic radiation: strictly speaking, the Beer-Lambert law only

applies when the incident light is monochromatic. In the case of using

polychromatic radiation, as the one that blackbody sources provide,

departures from the Beer-Lambert law will be higher when the differences

of absorptivity between wavenumbers increase.

– Stray light : it comprehends all the radiation measured by the sensor that

was not intended in the original design. This radiation does not pass

through the sample and often results from scattering and reflection off the

surfaces of the experimental components or the surrounding environment.

In this case, the measured absorbance is called apparent absorbance

(Aapp(ν̃)) and is lower than the true absorbance of the sample, which limits

the dynamic range of the system. These deviations are more significant at
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higher absorbance values. In the presence of stray light of intensity Is(ν̃),

Aapp(ν̃) for a specific wavenumber is defined as follows:

Aapp(ν̃) = − log10

(
I(ν̃) + Is(ν̃)

I0(ν̃) + Is(ν̃)

)
(2.10)

– Inhomogeneous or scattering medium: this is one of the most important

factors to disobey the Beer-Lambert law. Uneven optical properties or

thickness both in the analysed sample or the substrate, as well as the

presence of scattering centres, significantly modify the effective path length

and induce severe deviations from the Beer-Lambert law.

– Non-linearity of the detector : the non-linearity of the response is more

important in MCT detectors. The effect in the recorded spectrum is

very similar to that of stray light and the accuracy of the quantitative

measurement also decreases with higher absorbance values.

Although the restrictive conditions of the Beer-Lambert law are hardly fulfilled

in many situations, the linear relationships with the optical path length and the

concentration are used as a guide to develop some preprocessing and analysis

methods (Ch. 3).

As last remark, it is worth clarifying the subtle difference between absorption

spectrum and absorbance spectrum, which are sometimes mixed up. The absorption

spectrum normally only refers to the physicochemical process that occurs when the

molecules of the sample absorb the incident light, which actually would follow the

Beer-Lambert law. The absorbance spectrum, on the other hand, includes absorption

and others phenomena that attenuate the incident light, such as reflection, scattering,

and other physical processes that cause deviations from the Beer-Lambert law.

Despite of this difference, both terms are symbolised by A(ν̃) because the absorbance

spectrum is the one actually measured in real situations, whereas the ideal absorption

spectrum is commonly unknown.
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2.5 Micro-FTIR spectroscopic imaging

FTIR microspectroscopy arises when coupling a spectrometer with a microscope

whose optical components are adapted to the mid-IR region [101,115]. Fig. 2.9a illus-

trates the configuration of the main elements present in a common microspectrometer

and Fig. 2.9b shows a picture of a modern commercial microspectrometer.

FPA-detector

CCD-camera

Aperture

Objective

Microscope-stage

IR-source

Beamsplitter

Fixed-mirror

Moving-mirror

Single-point
detector

(a) (b)

Fig. 2.9: (a) Schematic of main components in a common microspectrometer (spectrometer
placed at left and microscope at right). Reproduced from [116] with permission by courtesy
of SAGE publications Inc. (b) Photograph of a modern commercial microspectrometer (in
this case, spectrometer placed at right and microscope at left). Reproduced from [117].

Basically, the microscope is an additional arrangement of optical components

located between the interferometer and the detector whose main task is to redirect

the IR light leaving the interferometer just into small regions of the sample. The core

elements to accomplish this task are a pair of optical components called objective

and condenser. Almost all FTIR microscopes are equipped with a Schwarzchild

objective and condenser [118], which are a special type of Cassegrain objectives.

Schwarzchild objective and condenser are composed of a convex and a concave mirror

which are concentric. This concentricity grants excellent imaging characteristics over

a surprisingly wide Field of View (FOV) [85].

As outlined in Fig. 2.10a, the condenser focuses the IR beam, coming from the

interferometer and properly reflected by several mirrors, into a small region of the

sample. The sample is mounted on a motorised stage which has a hole to let the IR

light pass through freely and whose position can be modified in three directions. The
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direction perpendicular to the stage (z axis) can be adjusted to place the sample into

the beam focus and the other two directions in the stage plane (x and y axes) allow

to choose the specific illuminated region. The objective gathers the light transmitted

through the substrate and sample and refocuses it to continue its travel towards the

detector. A small part of this light is guided to a traditional optical viewer and a

Charge-Coupled Device (CCD) camera, which provide a visible image of the sample.

This visible image is used during the acquisition to define the region to measure and

to focus the sample correctly. Most of the light leaving the Schwarzchild objective is

reflected by a series of mirrors and passes through an adjustable aperture that can

crop the Region of Interest (ROI) finally measured by the detector.

To Detector

Sample and 
Substrate

From Interferometer

Schwarzschild
Objective

Schwarzschild 
Condenser

Stage

(a)

Single-Point

Focal Plane Array

(b)

Fig. 2.10: (a) Sketch of the functioning of a Schwarzschild objective and condenser
configured in transmission mode. (b) Sketch of the regions covered with a single-point
(up) and a Focal Plane Array detector (down) in a cellular sample.

Two main types of detectors are commonly used to perform measurements of

IR spectra with micrometric resolution, namely single-point and Focal Plane Array

(FPA) detectors (Fig. 2.9a). Single element detectors have been employed since

the beginning of FTIR microspectroscopy by the middle of the last century [119].

The adjustable aperture plays a crucial role with single-point detectors because it
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is responsible for refining the spatial localisation of the measured ROI. As sketched

in Fig. 2.10b, in single-point measurements only one interferogram is acquired from a

squared region of the sample whose side is typically around 25-50 µm.

In the past, single-point detectors were used to create hyperspectral images by

mapping the sample point-by-point. However, with the introduction of FPA detectors,

originally designed and developed for military applications, the collection time of

images drastically decreased [120]. First successful applications of FPA detectors were

reported around 20 years ago [121,122]. Since then, FTIR microscopes equipped with

multichannel detectors have been the standard to perform IR imaging [116]. Focal

Plane Array detectors, also called multichannel detectors [123], are squared grids of

multiple small sensing elements, commonly known as pixels. Each one of these pixels

is capable of capturing an interferogram from a small region of the sample during a

single acquisition (Fig. 2.10b). Both single-point and FPA detectors are made of the

materials described in Sec. 2.3.3. In particular, MCT sensors require liquid nitrogen

for cooling and hence depleting the level of noise (Fig. 2.9a).

FPA detectors can provide spatially-resolved measurements in the form of

hyperspectral images in relatively short times of acquisition. As illustrated in Fig.2.11,

these hyperspectral images have two spatial dimensions (x, y) that indicate the

position of the pixels and a spectral dimension ν̃ corresponding to the wavenumbers

of the measured absorbance spectra.

All the FTIR images analysed in this thesis were captured with an Agilent 620

FTIR microscope coupled to an Agilent 670 FTIR spectrometer with a Globarr light

source (Fig. 2.9b). This device has a FPA detector composed of 128×128 (16384)

pixels, each one covering around 5.5×5.5 µm2 in the sample (see next section) when

using 15× Cassegrain reflective condenser and objective (NA = 0.62) and jointly

covering an effective FOV of 704×704 µm2 per frame. Normally, the hyperspectral

images from contiguous areas of sample, recorded in successive FPA acquisitions, are

stitched together in order to augment the total FOV. As a result, FTIR hyperspectral

images are information-rich entities containing huge loads of data, easily accounting

for several gigabytes.
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Fig. 2.11: Example of FTIR hyperspectral image (centre), which has two spatial dimensions
(x, y) and a spectral dimension ν̃. The absorbance spectra of two selected pixels are also
presented: one corresponding to an empty region of substrate (left) and the another one
corresponding to a region of a skin cell (right).

2.5.1 Spatial resolution

An important factor in any microscopy technology is spatial resolution, and more

specifically lateral spatial resolution. Several definitions of this concept exist

depending on the specific research community [124]. Roughly speaking, spatial

resolution is normally defined as the minimum distance at which two close points

of the same intensity can be clearly distinguished as two different points in the image.

Mathematically, this minimum distance d is commonly defined by the Rayleigh’s

criterion as a function of the wavelength λ or the wavenumber ν̃:

d =
0.61 · λ

NA
=

0.61

NA · ν̃
(2.11)

where NA is the numerical aperture of the optical setup, normally the objective,

which is determined by its optical properties. Following this equation, several curves

of d as a function of the wavenumber ν̃ and the wavelength λ for different values

of NA have been represented in Fig. 2.12. These NA values correspond to different

objectives that can be chosen for the microspectroscope used for the measurements

in this thesis [117]. In particular, all the samples that will be analysed were measured

with an objective with NA = 0.62.

As can be observed in Fig. 2.12, better resolution (lower d) can be achieved

with higher NA and higher wavenumbers (lower wavelengths). This theoretical

behaviour is normally followed in practice, although the final practical resolution
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Fig. 2.12: Rayleigh lateral spatial resolution d as a function of the wavenumber and
wavelength for several values of numerical aperture NA.

is not only determined by the used objective, but by the total optical system (e.g.,

internal optical elements). Therefore, the actual resolution of a specific system can

only be experimentally measured. A common methodology is using a USAF 1951

resolution target, which has geometrical patterns (e.g. vertical and horizontal bars)

at different scales and separated by calibrated distances [117,124–126]. This target is

normally composed of a glass substrate at which a chromium test pattern is vacuum-

deposited [124].

Resolution is normally wrongly mixed up with the concept of effective pixel size on

the sample. The effective pixel size, also called nominal pixel size or simply pixel size,

is mainly determined by the size of the individual elements in the FPA detector and

all the optical components of the system (not only the objective), which determine

the total system magnification [117, 125]. The pixel size is inversely related to the

spatial sampling rate, which is determined by the Nyquist criterion [126]. In order

to fulfil this criterion and not lose spatial information, the pixel size must be smaller

than the practical resolution. Anyway, the manufacturers of microspectroscopes and

objectives normally provide only the information of the pixel size on the sample and

favour this confusion between concepts. It must also be remarked that as the actual

resolution is not known, the pixel size has been used as a guide for different tasks

performed in this thesis. For instance, for the comparison of the spatial dimension

between different microscopy modalities (Ch.4) or for the representation of scale bars

in the microscopic images.
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2.5.2 Synchrotron light sources

Synchrotron radiation is a very bright broadband light, ranging from the X-ray to

the IR region (Fig. 2.1), which is emitted from electrons travelling at relativistic

velocities close to the speed of light. These extremely high velocities are achieved

by accelerating the electrons into circular trajectories through sequences of magnets.

Nowadays, synchrotron sources are built in large expensive facilities and their use is

mainly focused on research.

There are several synchrotron facilities around the world, but to access them a

well-defined research plan must be justified. Synchrotron radiation has been employed

in FTIR microspectroscopy for around two decades [127] and several biomedical

applications were reported shortly after [128–130].

The main advantage of synchrotron sources is their high brightness (about two

orders of magnitude) compared with common thermal sources [131]. This high flux

of photons makes possible to collect spectra with a very high Signal-to-Noise Ratio

(SNR) from regions around several microns (e.g., 3×3 µm2), achieving sub-cellular

resolution. However, its main drawback is that synchrotron beams are normally

confined into very narrow areas of around 10×10 µm2 and, typically, they are only

used in single-point measurements. Therefore, it takes much time to acquire a

hyperspectral FTIR image with a small FOV by sequentially scanning with the single-

point detector and the synchrotron beam.

Most of the pioneering work in biomedical FTIR microspectroscopy was

accomplished by using synchrotron sources. These works comprehend the reference

methodologies and theoretical background that is being extrapolated to thermal

sources. Recent advances in optical elements have made possible to develop FTIR

microspectrometers, with thermal sources and FPA detectors, capable of collecting

high-spatial resolution images with a nominal pixel size up to 1.1×1.1 µm2, similar

to that of a synchrotron [125].

Although the spectral SNR of these commercial devices is still lower than

synchrotron’s, they allow to measure larger FOV in shorter times and in a common

laboratory. In this thesis, all the analysed spectral measurements were collected with

commercial devices equipped with thermal sources, but some reference studies (which

will be properly cited) used synchrotron sources.
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2.6 Artifacts, anomalies and common errors

Artifacts, anomalies and errors are three nouns normally used to denote those spectral

features whose presence implies that the data are imperfect, that the data were derived

in an imperfect way or that the data are impure [132]. The word anomaly also implies

ignorance or lack of knowledge and normally refers to those unexpected phenomena

which cannot be explained with current existing theories [133]. In fact, historically,

IR spectroscopy has been mostly an empirical technique whose technology has been

always one or several steps ahead of its theoretical background, which has been driven

by the experimental findings.

Each new imaging technique introduces a new set of artifacts that may interfere

with clinical diagnosis [134]. The underlying mechanisms that generate such

artifacts should be identified in order to avoid incorrect interpretation or misleading

quantitative analysis of spectra. Nevertheless, the identification of a spectral feature

as an artifact is not easy and requires a deep knowledge of the spectroscopic technology

and the underlying physicochemical phenomena. In addition, the relevance of an error

or artifact will finally depend on the specific application.

The presence of some artifacts can be avoided, or at least minimised, before and

during the acquisition of the spectral data, e.g., during the design of the experimental

setup or during the preparation of samples. Nevertheless, different types of artifacts

appear in the final recorded spectra and they can only be corrected for by some kinds

of computerised processes (Sec. 3.2). Several lists of artifacts have been identified

in FTIR spectroscopy [132, 135], containing even up to 50 error sources [136]. They

range from stochastic measurement noise to various sources of systematic errors,

such as non-linear instrument responses, shift problems and interfering effects of

undesired chemical and physical variations [137]. Here, only the most relevant

artifacts and sources of error encountered during the development of this thesis

will be described, which have been grouped under several main topics: instrument,

environment, substrate, contamination, scattering and microscopy measurements.

2.6.1 Instrument

The contribution of the instrument is called the instrument response function [99].

This function is determined by the convolution of the source emission spectrum

(Fig. 2.3), the spectral sensitivity of the detector and the rest of optical components
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in the spectrometer, which define the overall or broad shape of the intensity

spectra (Figs. 2.5 and 2.7). In the case of the employed spectrometer, this broad shape

increases with the wavenumber until reaching a maximum around 1200-1300 cm−1

and then decreases monotonically. This suggests that the higher signal levels are

recorded approximately in the fingerprint region (∼1000-1800 cm−1).

The source and the rest of optical elements normally have a relatively constant

spectral behaviour during time, but their variations can cause unexpected baseline

curvatures in A(ν̃) [99]. In contrast, the detector response may experiment more

significant fluctuations during time. In the case of MCT detectors, these fluctuations

are constrained as far as the volume of liquid nitrogen in the cooling deposit is enough

to maintain a constant cryogenic temperature of 77 K, although some electrons may

still jump the band gap and produce random noise (Sec. 2.3.3).

In order to soften the instrumental fluctuations, the interferograms are remeasured

in the same region several times and averaged or co-added before computing the

intensity spectra by Fourier transform. These repeated measurements are called

scans and are normally carried out in powers of 2, e.g., 32, 64, 128 or 256 scans. As

the number of scans increases, the instrument interferences (mainly present as high

frequency random noise) are more negligible in A(ν̃). In some cases, a higher number

of scans are co-added when measuring I0(ν̃) than when I(ν̃) is recorded because each

I0(ν̃) measurement is used as a reference for several regions of the same sample. For

instance, in Fig. 2.7, 256 scans were co-added to compute I0(ν̃), meanwhile 128 scans

were averaged to obtain I(ν̃).

2.6.2 Environment

Some parts of spectrometers such as the interferometer are normally isolated from the

room environment, but other parts such as the analysed sample can be in contact with

the room atmosphere. In a laboratory of biospectroscopy, this atmosphere is normally

controlled to keep a nearly constant temperature and humidity, but the air existing

in the room is regular with no special filtrations. Therefore, the IR beam encounters

different gasses whose molecules can absorb mid-IR photons and have influence in the

final measurements. In particular, the interferences caused by CO2, and especially by

water vapour, are major problems in FTIR spectroscopy.
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Some spectrometers have an isolation chamber to introduce the sample, which

is purged with dry air having a very low water content. Fig. 2.13 shows an

intensity spectrum recorded after isolating and purging the sample chamber with

dry air (blue), which lacks the peaks associated with water vapour that can be

observed in the spectrum recorded without purging (red). Fig. 2.14 also presents

an absorption spectrum from a different un-purged spectroscope cropped to the

range 1300-1800 cm−1. Minimising the presence of water vapour in the isolated

atmosphere requires much time (around one hour) and impedes the manipulation

of the sample during the isolation. Some spectrometer manufacturers get rid of the

isolation chamber and try to alleviate the problem of water vapour by directly purging

the environment surrounding the sample with dry air. This system is far from being

efficient and the water vapour peaks appear in the recorded spectra, as can be checked

in the spectra that were presented in Fig. 2.7.
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Fig. 2.13: Water vapour intensity spectrum. Intensity spectrum recorded when purging
(blue) and not purging (red) the isolated sample compartment with dry air. Adapted
from [138] with permission by courtesy of Macmillan Publishers Ltd.

Carbon dioxide (CO2) has a strong absorption band quite concentrated in the

range 2300-2400 cm−1, where no relevant biomolecular absorbers exist. On the

contrary, water vapour molecules have a more complex vibrational mechanism and

their absorption bands occupy a broad spectral range, from about 1300 to 2000 and

from 3500 to 3900 cm−1. The attenuation peaks induced by the water vapour are

weaker than those of CO2 and their pattern resembles high frequency noise. As can

be observed in Fig.2.14 and also in Figs. 2.5, Fig.2.7 and 2.13, the first range of water
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Fig. 2.14: Absorption spectrum of water vapour at room temperature and ambient humidity
in the range 1300-1800 cm−1, measured through an un-purged infrared microscope with a
path length of about 1 m. Adapted from [101] with permission by courtesy of John Wiley
& Sons Inc.

vapour absorption overlaps the fingerprint spectral region and is particularly stronger

in the Amide I and Amide II peak regions (Fig. 2.8). Due to the gaseous nature

of water vapour, the interaction of its rotational and vibrational transitions create

a complex absorption spectrum that strongly depends on the local temperature and

humidity, and which is extremely difficult to model during the spectral preprocessing

of the recorded data [101].

Biological samples with low concentrations, such as cells, produce relatively low

absorption signals. Therefore, their spectra are particularly sensitive to environmental

interferences and other sources of noise. Especially in those cases, there is a critical

trade-off when selecting the number of scans. A higher number of scans reduces the

random noise mainly generated by the detector but involves a longer acquisition time,

which produces changes in the concentrations of gases surrounding the sample. As

a final consequence, the CO2 and, more importantly, the water vapour peaks appear

superimposed in the absorption spectra and distort the shape of relevant peaks in the

fingerprint region (e.g., compare the Amide II peak in Fig.2.8 and Fig.2.7). This fact

must be considered when comparing spectra acquired with different devices or even

with the same spectrometer operating at different conditions (e.g., at different times).
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2.6.3 Substrate

As was depicted in Fig. 2.6, the background spectrum I0(ν̃) is recorded in a region of

substrate containing no biological sample. Although the CaF2 substrate is normally

manufactured with high standards, it may contain some chemical impurities or

physical defects (e.g., thickness variability or scratches) that may affect the correct

ratioing of I0(ν̃) and I(ν̃). However, the most important differences between I0(ν̃)

and I(ν̃) due to the substrate can be caused by the presence of chemical contaminants

on its surface. These contaminants may come from a deficient manipulation or

preservation, but they can also be introduced during the sample preparation.

For instance, when culturing cell populations on the substrate, different chemical

compounds such as cell medium are used, which is a mixture of organic substances.

Although these compounds are normally removed by washing with water, relevant

concentrations can remain adhered to the substrate. The spectral interferences owing

to the substrate may be minimised by selecting a clean region of substrate with no

defects. Nevertheless, sometimes this task is not feasible because the contaminants

extend all over the empty surface of substrate.

Another problem associated with the substrate is the effect of reflection loss in the

sample-substrate interface [111]. This effect takes place when the refractive indices

of sample and substrate differ. Although the substrate materials are selected so that

their refractive indices are very close to those of biological samples (e.g., CaF2, see

Sec. 2.4), they can differ in some regions of the sample. Nevertheless, its influence

is normally neglected in the analysis of spectra mainly because the exact optical

properties of the biological samples are unknown or very sample-dependent and its

quantification is infeasible.

2.6.4 Contamination

The final sample can contain substances or materials different from the biological

specimens intended to measure, which create absorption bands that can be incorrectly

attributed to the studied specimens. These contaminants may come from the sample

preparation or may have been accidentally introduced at any phase of the handling.

In the first case, the substances may unintentionally remain in the sample, such as

residual chemical agents used in cell culture, or left on purpose. For instance, paraffin

may not be removed in histological samples to prevent chemical distortions (Ch. 4).
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Detecting a contaminant involves checking if its spectrum is similar to the expected

absorption profile. This task is challenging because sometimes the expected spectrum

may be totally unknown or may be too ideal for the imperfect recorded spectra, which

can contain other kinds of artifacts (Sec.3.2.1). Moreover, the undesired contaminants

may give rise to spectra very similar to the studied specimens, such as cell media,

which have a biomolecular composition similar to cells. Finally, in some cases a

contaminant may not be detected, mainly because its concentration is not high enough

and it gets masked under the specimen’s absorption, or it may be confounded with

other types of anomalies or artifacts.

Anyway, the most straightforward method to detect a contaminant is applying

heuristic rules depending on the problem in hand. For example, one solution is

removing the specific spectral regions containing the characteristic absorption peaks

of a known contaminant, such as paraffin (Sec.4.2.3). But in other cases, the features

of a reference spectrum can be used to reject contaminated spectra, e.g., the Amide I

peak is normally the maximum absorbance in a typical biological spectrum (Fig.2.8).

2.6.5 Light scattering

Light scattering may be the most distinctive problem in biomedical applications of

FTIR spectroscopy. Most problems associated with scattering are generated by the

morphological and optical properties of the analysed sample. In applications involving

artificial materials, the sample preparation and presentation for FTIR measurements

may be adapted in order to avoid or minimise scattering. However, the preparation

of biomedical samples is much more restricted and is normally determined by clinical

routine or laboratory procedures.

The general phenomenon of scattering in FTIR spectral acquisition is coarsely

illustrated in Fig. 2.15. In an ideal homogeneous flat sample (left side of Fig. 2.15),

a fraction of the collimated IR light is absorbed by the sample and practically the

rest of radiation (neglecting the reflection at interfaces) continues its travel towards

the detector without significant deviations. Nevertheless, in a real biological sample

with heterogeneous morphological and optical properties, such as a single cell (right

side of Fig. 2.15), the incident light is scattered, giving rise to significant deviations

in the photon paths. As the scattered rays may not reach the detector, the recorded

absorption spectrum may be higher than it would be in the absence of scattering. As
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a result, this virtual increment in absorption can be wrongly interpreted as chemical

absorptions by the biomolecules of the sample [139].

Detector

Heterogeneous 
biological sample 

(e.g. fixed cell)

Collimated IR light

Homogeneous
flat sample

(ideal)

Fig. 2.15: Illustration of scattering phenomena. In an ideal homogeneous flat sample (left)
the transmitted light has the same direction of the incident light. However, in a real biological
sample with heterogeneous morphological and optical properties (right) the incident light is
scattered, giving rise to significant deviations in the photon paths.

In biological samples, many scattering sources are still unknown or require

extremely complex mathematical modelling, but few of them have been identified

and (at least partially) understood. This last category comprehends the so-called Mie

scattering and resonant Mie scattering, which are mainly related to the morphology

and size of the sample.

Mie scattering

In 1908 [140], Mie formulated the theoretical bases of the scattering phenomena

produced when dielectric spheres are irradiated with a light whose wavelength is

comparable to the size of those spheres. The typical size of animal cells ranges

between 8-30 µm and the size of subcellular structures or organelles is between

1-10 µm [86]. These dimensions are comparable and even coincident with the

wavelength range commonly used in FTIR spectroscopy, approximately between 2.5-

10 µm. Therefore, biological specimens are ideal candidates to experiment the type

of scattering formulated by Mie.

Mie-type scattering was firstly identified in cytological samples by Mohlenhoff et al.

in 2005 [141], although atypical absorbance spectra related to the cell cycle had been
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reported several years before [142,143]. The main sources of Mie scattering seem to be

the nuclei of cells, especially when the chromatin is more compact and dense. These

compact states are experimented when the cell is close to the mitotic phase (Sec.1.1.2)

or when the nucleus permanently shrinks due to cell death (piknosis) [141, 144].

Nevertheless, it is still not clear if the real sources of scattering are only the nuclei, the

entire cells or their combination. The distortions caused by Mie scattering are more

pronounced in cytological samples but they can also be present in spectral histology,

particularly at the edges of the tissue [86].

The most prominent features caused by classical Mie scattering in spherical

particles are alterations in the baseline of the absorbance spectra. These baseline

artifacts are normally modelled as undulating functions with broad sinusoidal shapes,

such as the one presented in Fig. 2.16a, which are superimposed on the spectra of

biological specimens [101, 145]. Nevertheless, the undulations of the background

observed in cells have more maxima and minima than expected from single scattering

objects, such as simple spheres, maybe because the size and morphology of cells are

not uniform [141].

Resonant Mie scattering

Apart from the relatively simple broad baseline oscillations caused by classical Mie

scattering, most severe artifacts appear in real measurements of single cells. One of the

artifacts identified so far is the so-called resonant Mie scattering, which was suggested

by Bassan et al. in 2009 [146] and tries to explain the anomalies that were previously

attributed to the dispersion artifact [147,148]. These anomalies consist of significant

derivative-like distortions of band shapes, which highly modify the intensity and the

positions of the maxima of relevant absorption peaks. As an example, Fig. 2.16b

shows an absorbance spectrum contaminated by resonant Mie scattering, which can be

compared with the corresponding pure absorption spectrum of the same protein sphere

(Fig. 2.16c.). The most prominent distortion can be observed in the Amide I peak,

whose relative intensity drastically decreases when it is compared with other peaks

such as the Amide II and whose maximum is shifted towards lower wavenumbers.

As commented, Bassan et al. [146] was the first in describing that the underlying

phenomenon of this type of artifacts is also related to Mie scattering interactions. In

classical Mie scattering, the dielectric non-absorbing spherical particles are assumed
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Fig. 2.16: Illustration of Mie and resonant Mie scattering. (a) Example of a classical Mie
scattering curve of a spherical particle. (b) Example of absorbance spectrum contaminated
with resonant Mie scattering. (c) Pure absorption spectrum of a protein sphere. Adapted
from [101] with permission by courtesy of John Wiley & Sons Inc.

to have constant values of the real refractive index, independently of the wavenumber.

Nevertheless, in absorbing materials with phenomena of absorption resonance (i.e.,

the chemical molecules absorb the photons at the illuminated wavenumber), the

real refractive index rapidly changes across the wavenumbers of the resonant

absorption bands, causing sudden variations in the measured absorbance spectra.

In that publication, Bassan et al. [146] experimentally demonstrated its theoretical

supposition with the absorbance spectra from polymeric microspheres of Poly(methyl

methacrylate) (PMMA) measured with synchrotron FTIR microspectroscopy and

suggested the potential application to biological samples, especially single cells.

Further details of the scattering phenomena will be described in Sec. 3.2.1.
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2.6.6 Micro-FTIR imaging measurements

The use of optical objectives and FPA detectors introduces spatial variability in

the recorded spectra. The objectives are not ideal and they introduce a series of

aberrations in the final image, especially in the borders of the image. In addition, the

elements composing the array of pixels are not exactly equal and do not operate at

the same conditions. This is reflected in a difference in the sensitivity and, therefore,

the registered intensity may vary between pixels even with homogeneous illumination.

As an example, Fig. 2.17 shows a pseudocolour image constructed with the values

extracted from the hyperspectral image of the intensity reference spectrum I0(ν̃) at

a specific wavenumber (ν̃ = 1300 cm−1, approximately the maximum of intensity).

This image also shows the I0(ν̃) spectra of four selected pixels in the pseudocolour

image.
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Fig. 2.17: Intensity refererence spectra I0(ν̃) of a FPA detector. Left: Pseudocolour image
with its colourbar of the intensity values corresponding to a wavenumber ν̃ = 1300 cm−1.
Right: Intensity reference spectra I0(ν̃) of the pixels selected in the pseudocolour image.

In this case, the region of illuminated substrate is pretty homogeneous and the

spatial variability is mainly determined by the sensitivity of the pixels. Nevertheless,

the possible spatial inhomogeneity in the substrate is another source of artifacts that

introduces undesirable variations in the final measured spectra. This unevenness is

tangled with other spatial inhomogeneities, for instance, coming from the sensor, the

illumination source and the optical components.
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As can be observed in the pseudocolour image of Fig.2.17, the registered intensity

values are higher in the lower part of the image, meanwhile there is a small region close

to the upper-right corner (pixel 4) where the sensitivity of the sensor is significantly

lower. This spatial variability can be confirmed in the spectra of the selected pixels,

where the pixel 4 shows lower intensity at lower wavenumbers, but higher sensitivity

than the rest of selected pixels at higher wavenumbers.

These spatial differences, although are supposed to be compensated when

computing the transmittance and absorbance, introduce variations in the SNR of

the measured spectra. In particular, the pixels with lower sensitivity will have a

poorer detection limit [101] and will be more prone to different sources of noise. In

addition, the sensor can present specific pixels working at saturated levels (hot pixels)

or not registering any current (dead pixels), which normally will provide anomalous

measurements that can be identified as outliers.

The spatial variability introduced by FTIR microspectrometers can increase the

presence of the artifacts described in previous sections and complicate their removal.

For instance, some methods exist to reduce the influence of water vapour in the

spectrum, which are mainly based on modelling the contributions of a pre-recorded

reference spectrum of water vapour [149]. However, that methodology requires to

record a battery of reference spectra at different temperatures and concentrations

of water vapour in order to model the possible variability. Therefore, if the spatial

variability is added to that problem, the model complexity and the risk to introduce

additional artifacts highly increase.

Finally, as was commented in Sec. 2.5.1, the use of microscopy instruments is

always linked with spatial resolution. Resolution, theoretically determined by the

optical power of the instrument and the wavelength of the used light (Fig. 2.12),

defines the concept of diffraction limit [150], i.e., maximum resolution from which

diffraction phenomena occur. Although the advances in optical instrumentation have

made progress in the spatial resolution, the diffraction limit will be always present

mainly due to the restriction of the wavelength. In addition, practical resolution also

depends on the analysed sample.

The main consequence of the diffraction limit is the uncertainty of knowing

the spectral purity of a pixel [132]. That is, knowing if the recorded spectrum

from one pixel only contains contributions from the material within the physical
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region covered by that pixel or if there are intrusions from nearby regions due

to diffraction phenomena. These undesirable interactions are more critical for

lower wavenumbers (Fig. 2.12), which contain more useful biological information

(Fig. 2.8). This problem can seriously hamper the analysis of spectral signals,

especially in highly heterogeneous samples. Some empirical methods have been

proposed to computationally improve the spatial resolution and try to deconvolve

the contributions of pixels’ spectra [124]. Nevertheless, although these methods

can perform an aesthetic improvement in images, their real accuracy and practical

improvement for spectral analysis have not been proved.

The theoretical bases of the physicochemical phenomena occurring in modern

FTIR microspectroscopes have started to be understood and formulated very recently,

both for homogeneous [151] and heterogeneous samples [152]. As stated in [152], the

scattering phenomena, sampling geometry, sample morphology and spectral profile

in heterogeneous samples (such as biological specimens) are strongly coupled to

diffraction effects and jointly perturb the ideal chemical spectrum of the sample.

However, these phenomena are not well-understood yet and most practical methods of

processing and analysis consider the spectra as obtained with classical spectroscopes.

This is the line that will be followed in this thesis, but the advances in the theory of

FTIR microspectroscopy will be an important issue to consider in any future research.



Chapter 3

Spectral processing

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Spectral preprocessing . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Model-based methods . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Filtering methods . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.1 Principal component analysis . . . . . . . . . . . . . . . . 105

3.3.2 Partial least squares . . . . . . . . . . . . . . . . . . . . . 112

75



76 Chapter 3. Spectral processing



3.1. Introduction 77

3.1 Introduction

FTIR spectra are high-dimensional data structures that contain huge loads of

information, part of which can be very useful or, on the contrary, irrelevant and

spurious, depending on the specific study or application. This chapter describes

several techniques, which can be categorised as spectral preprocessing and feature

extraction, that specifically try to get better versions of the FTIR spectra and try to

separate the most relevant information in order to improve the performance of later

analyses.

3.2 Spectral preprocessing

As was described in Sec. 2.6, FTIR measurements are affected by a number of

unwanted phenomena that can hamper their quantitative analysis, which ideally

should be based on the chemical information encoded within the absorbance spectra.

Although some errors or artifacts may be avoided by good sample preparation and

measurement protocols, many of the undesired phenomena remain in the measured

spectra and should be corrected for computationally by preprocessing.

Preprocessing is normally a determining step in the analysis of FTIR spectra [153–

155]. Its main objective is to remove or at least minimise the spectral variability

not related to the chemical information of interest. Correct preprocessing can

improve the graphical interpretation of the data, as well as reduce the complexity

and improve the robustness of the subsequent data modelling (e.g., less biased future

predictions) [156]. However, preprocessing of spectral data must be applied with

caution and with supporting physical or chemical bases. Incorrect data preprocessing

introduces artificial artifacts which can reduce or distort the spectral variance specific

of each chemical species and mislead the later analysis. Nevertheless, preprocessing

is still an open field with no standard solutions and deep knowledge of spectroscopy

theory is normally required to select a specific method, which mainly depends on the

final application.

Depending on the bibliographic reference or the application field, spectral

preprocessing methods are catalogued into different categories. Here, it will be

adopted the classification proposed in [157], where preprocessing methods are coarsely

divided into two main groups, namely filtering methods and model-based methods.
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Filtering methods include all those techniques that discard some kind of undesired

spectral variation and transform the data into a presumably better version. Model-

based methods try to get also a better version of the data but creating a more

explicit mathematical model, which is used both to estimate the useful and the

unwanted information. Filtering methods are simpler techniques that have been used

traditionally in FTIR spectroscopy, whereas model-based methods have attracted

increasing attention in the last few years due to their potential ability to cope with

more complex phenomena.

Below, the model-based methods relevant for this thesis will be introduced in the

first place. The reasoning and concepts explained in those methods will help to justify

the aims of some traditional filtering methods that will be used in later applications.

3.2.1 Model-based methods

Currently, the most advanced model-based techniques used in vibrational spec-

troscopy are adaptations of the so-called Extended Multiplicative Signal Correction

(EMSC). EMSC is a flexible preprocessing method based on linear statistical regres-

sion modelling where the influence of unwanted spectral variation is estimated and

corrected [137, 157]. The main difficulty of model-based methods in general, and

EMSC in particular, is the requirement of knowing the unwanted sources of variation

and their theoretical formulation in order to model them in a precise way. The basic

principles (which are not trivial) and the versions of EMSC used to correct the FTIR

data analysed in this thesis will be discussed in the following paragraphs.

Extended Multiplicative Signal Correction (EMSC)

EMSC allows more selective corrections for various types of unwanted effects,

such as scattering, than what is feasible with standard filtering methods. EMSC

demonstrated its utility to separate light scattering effects from chemical information

in near-IR measurements [158]. Shortly after, this method was also applied to isolate

scatter (physical information) from chemical absorbance changes in FTIR images

taken from biological samples, in particular from cryo-sections of beef loin [159]. Since

then, EMSC has been used as the main preprocessing tool in different problems of

FTIR spectroscopy involving biological samples due to its versatility [157].
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The starting point for deriving EMSC models is the Beer-Lambert law. As was

stated in Sec. 2.4.1, biological samples are complex mixtures of biomolecules whose

ideal chemical absorption spectrum would obey the Eq. 2.9. Notwithstanding, as

was also described in Secs. 2.4.2 and 2.6, different undesired phenomena mask the

ideal chemical absorption spectrum within the real measured absorbance spectrum.

The key idea of EMSC is approximating the measured absorbance spectrum A(ν̃) as

physical modifications of an idealised chemical spectrum Achem(ν̃) [137]:

A(ν̃) = b ·Achem(ν̃) +Aphys(ν̃) + e(ν̃) (3.1)

where scalar b is a multiplicative physical scaling parameter that mimics the effective

optical path length ` (Eq. 2.9), Aphys(ν̃) represents additive physical contributions to

the absorbance spectrum and e(ν̃) is the residual absorbance which denotes the sum

of all other unmodelled effects and measurement errors. This theoretical formulation

must be converted into a practical mathematical form, which is accomplished by

constructing a linear model with multiplicative and additive terms adapted to the

corresponding problem at hand.

First, it is often assumed that the FTIR absorbance spectra obtained from

biological samples are very similar [157] and the chemical contributions can be

expressed as deviations, ∆εj(ν̃), from a (hypothetical or real) reference spectrum

Aref (ν̃) [159]:

Achem(ν̃) =
J∑
j=1

Cj · εj(ν̃) =
J∑
j=1

Cj ·Aref (ν̃) +
J∑
j=1

Cj ·∆εj(ν̃) (3.2)

In some cases, Aref (ν̃) is computed as the mean spectra of the dataset, but the

selection of this ideal reference spectrum depends on the specific problem. In most

situations the specific chemical constituents, and particularly their absorptivity values

εj(ν̃), are not known or difficult to obtain. Thus, the last term of Eq.3.2 is frequently

incorporated into the unmodelled residuals e(ν̃). In addition, considering that the

sum of constituents’ concentration sums up to 1 (
∑J
j=1 Cj = 1), Eq. 3.1 becomes:

A(ν̃) = b ·Aref (ν̃) +Aphys(ν̃) + e(ν̃) (3.3)
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The physical contributions Aphys(ν̃) are mainly related to scattering effects

involved in the measurement. Therefore, Aphys(ν̃) is maybe the most problem-

dependent term and its particular modelling has given rise to different versions of

EMSC, some of which are later discussed. In some basic versions of EMSC models

the scattering effects are represented by an offset parameter a and a polynomial

baseline of order N along the wavenumbers ν̃ with coefficients dn, that is:

A(ν̃) = b ·Aref (ν̃) + a+

N∑
n=1

dn · ν̃n + e(ν̃) (3.4)

The particular case of extending the polynomial baseline up to the quadratic term

is normally called the basic EMSC model :

A(ν̃) = b ·Aref (ν̃) + a+ d1 · ν̃ + d2 · ν̃2 + e(ν̃) (3.5)

As can be observed, the most relevant simplification of EMSC is the assumption

that only linear relationships exist in the models. Although this linear restriction

may oversimplify the physicochemical phenomena in some cases, it facilitates the

estimation of the model parameters by statistical techniques. In particular, the

unknown model parameters are normally estimated simultaneously by multiple linear

regression solved by ordinary or weighted least squares [157, 159]. In the case of

weighted least squares, specific weights can be assigned to particular regions of

wavenumbers. For example, some ranges containing excessive contaminants, such

as the CO2 region (∼2300-2400 cm−1), can be given a very low weight (e.g., 10−6) in

order to reduce their influence in the parameter estimation.

Once the EMSC parameters are estimated, the spectra can be corrected by

subtracting the unwanted modelled contributions. For instance, the corrected

absorbance spectrum Acorr(ν̃) corresponding to the EMSC model described in Eq.3.4

would be computed according to:

Acorr(ν̃) =
A(ν̃)− a−

∑N
n=1 dn · ν̃n

b
(3.6)

Note that in this equation the division by the multiplicative scaling parameter b

implies a normalisation of the corrected spectrum.
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Mie Scattering-EMSC

In some biological samples with relatively homogeneous spatial properties, such

as tissues, the scattering effects can be modelled with relatively simple functions,

e.g., the polynomial baselines described before. However, biological samples with

more complicated optical and morphological characteristics, such as single cells,

may produce more complex scattering phenomena, which are reflected in fancier

absorbance spectra.

As was described in Sec. 2.6.5, Mie-type scattering is one of the physical artifacts

that have been identified and modelled in single cell samples [141, 145]. Mie theory

was adapted in 2008 by Kohler et al. [160] to develop a version of EMSC that tries

to correct Mie scattering artifacts. Full Mie theory [140] describes the scattering

produced by an ideal homogeneous non-absorbing sphere in terms of the extinction

cross section Qext(ν̃) [145]:

Qext(ν̃) =

(
1

ρ(ν̃)2

) ∞∑
m=1

(2m+ 1)< (am + bm) (3.7)

where am and bm are the scattering coefficients, which are complicated Bessel

functions in cylindrical coordinates; < symbolises the real part of those functions;

and ρ(ν̃) is the size parameter, which is defined as:

ρ(ν̃) = 4πr(n− 1)ν̃ (3.8)

where r denotes the radius of the scattering sphere and n the ratio of the real refractive

indices of the particle and the surrounding medium. In the FTIR measurements that

will be studied here, the surrounding medium is air (whose real refractive index is

essentially 1) and n simplifies to the real refractive index of the scattering particle.

The original full formulation of Qext(ν̃) expressed in Eq.3.7 is normally substituted

in many practical applications by an approximation described by van de Hulst in

1957 [161]:

Qext(ν̃) ≈ 2−
(

4

ρ(ν̃)

)
sin ρ(ν̃)−

(
4

ρ(ν̃)2

)
(1− cos ρ(ν̃)) (3.9)
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This formula approximates the original Qext(ν̃) predicted by Mie within 1%

precision in the case of spheres with a large size parameter and a refractive index close

to unity [141, 160]. Fig. 3.1 shows some examples of these curves for a specific real

refractive index n = 1.3 and a range of radii of the scattering sphere r = 2− 14µm.

This graphic reveals the undulating nature of the damped sinusoidal functions in

Eq. 3.9, which fluctuate around the asymptotic value Qext(∞) = 2.
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Fig. 3.1: Examples of Mie extinction cross section functions Qext(ν̃), according to van de
Hulst approximation (Eq. 3.9), for n = 1.3 and several values of r (see the legend).

By computing Qext(ν̃), the baseline fluctuations attributed to Mie scattering could

be estimated through the parameter f , together with an offset a and a multiplicative

effect b, in the initial version of the EMSC model proposed by Kohler et al. [160]:

A(ν̃) = b ·Aref (ν̃) + a+ f ·Qext(ν̃) + e(ν̃) (3.10)

Nevertheless, in practical situations the exact values r and n of the studied

biological specimen are unknown and the corresponding Qext(ν̃) cannot be computed.

One possible solution is to consider a set of Mie extinction functions Qext(ν̃), covering

a range of feasible values of r and n, and try to find the combination of those functions

that best fits the baseline deviations in the measured absorbance spectrum. The main

problem of this approach is the non-linear nature ofQext(ν̃) functions, which can cause
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problems of stability and speed in the correction algorithm.

In order to simplify this problem, Kohler et al. [160] proposed to apply multivariate

metamodelling [162, 163]. This technique consists of computing the set of Qext(ν̃)

curves for a range of possible values of r and n, which are placed (e.g., by rows) inside

the matrix Q, and then decomposing this matrix by non-centred Principal Component

Analysis (PCA) (Sec. 3.3.1) into the corresponding matrices of scores T and loadings

or eigenvectors P:

Q = T ·PT + E (3.11)

Thus, the original set of functions can be approximated up to a certain degree (see

Sec.3.3.1) by the subspace determined by the first eigenvectors placed by columns in P

and the errors of this approximation are gathered within the residual matrix E. As an

example, with the permutations of 10 equidistant values in the range r = [2, 8] µm and

10 equidistant values in the range n = [1.1, 1.5], a total of 100 Mie extinction curves

Qext(ν̃) can be computed to create the matrix Q. When this matrix is decomposed

by non-centred PCA according to Eq. 3.11, the first six loadings or eigenvectors pi

(first six columns of matrix P) account for nearly 100% of the explained variance. As

can be observed in Fig. 3.2, the loadings of this example have different characteristics

of frequency and damping with the wavenumbers.

By using this new compressed subspace, the Qext(ν̃) curve within the EMSC model

formulated in Eq. 3.10 is approximated by the first K loadings or eigenvectors pi(ν̃)

and the original factor f is divided into K new scalar coefficients gi. The errors due

to this approximation are accumulated in the unmodelled residual e(ν̃), resulting the

equation:

A(ν̃) = b ·Aref (ν̃) + a+
K∑
i=1

gi · pi(ν̃) + e(ν̃) (3.12)

Finally, as in any EMSC model, the coefficients can be estimated by ordinary

or weighted least squares regression and the corrected absorbance spectrum can be

computed as:

Acorr(ν̃) =
A(ν̃)− a−

∑K
i=1 gi · pi(ν̃)

b
(3.13)
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Fig. 3.2: Example of the first six loadings (accumulating nearly 100% of explained variance)
of the non-centred PCA metamodel of matrix Q, which contains 100 Mie extinction curves
Qext(ν̃) covering the range of parameters r = [2, 8] and n = [1.1, 1.5]

Resonant Mie Scattering-EMSC

As was commented in Sec. 2.6.5, the phenomenon termed as resonant Mie scattering

was firstly identified by Bassan et al. in 2009 [146] as the responsible for the sudden

changes in intensity peaks and shifts in the maxima of relevant absorption bands

in the measured spectrum. Shortly after, the researchers from the same group

published a version of EMSC which tries to correct the artifacts caused by resonant

Mie scattering and which was called Resonant Mie Scattering (RMieS)-EMSC [164].

In order to understand the main novelties introduced by the RMieS-EMSC algorithm,

some concepts of optics must be described before.

Optical parameters and anomalous dispersion

The absorption of radiation and the interaction of a sample with a medium are

governed by two optical parameters, n(ν̃) and k(ν̃), which respectively constitute

the real and the imaginary parts of the complex refractive index, ñ(ν̃) [98]:

ñ(ν̃) = n(ν̃) + ik(ν̃) (3.14)

where i =
√
−1. n(ν̃) is often simply called refractive index and k(ν̃) is known as
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the absorption index. For pure materials containing a single chemical component, the

absorption index k(ν̃) is also related to the absorptivity of the material ε(ν̃) by the

following equation [98,101,165]:

k(ν̃) =
ln 10 · C · ε(ν̃)

4πν̃
(3.15)

In cases where the Beer-Lambert law applies, considering the Eq. 2.8 for a pure

substance, the Eq. 3.15 can be rewritten as:

k(ν̃) =
ln 10 ·A(ν̃)

4πν̃ · `
(3.16)

This last equation suggests that (under the ideal conditions when the Beer-

Lambert law applies) the absorption index k(ν̃) essentially follows the behaviour of

the measured absorbance spectrum A(ν̃). And particularly, the function k(ν̃) will

have equivalent peaks to the absorption bands in A(ν̃).

Eq.3.14 states that the refraction and the absorption of light are coupled processes

and the absorption of light is always accompanied by changes in the refractive

index [101]. This relationship between n(ν̃) and k(ν̃) is mathematically expressed

by the Kramers-Kronig transforms, which are based on the principle of causality and

connect the real and imaginary parts of many complex quantities in physics [103,165]:

nKK(ν̃) = n(ν̃)− n∞ =
2

π
P
∫ ∞

0

s · k(s)

s2 − ν̃2
ds (3.17a)

k(ν̃) = −2ν̃

π
P
∫ ∞

0

n(s)− n∞
s2 − ν̃2

ds (3.17b)

where n∞ is the average real refractive index and P symbolises the Cauchy principal

value of the integral, which tries to resolve the singularity of the denominator at s = ν̃.

The output of the first Kramer-Kronig transform is termed as nKK for convenience

in later deductions.

As commented before (Eq. 3.16), k(ν̃) will present absorption bands at the

corresponding wavenumbers (resonant wavenumbers) where the molecules of the

sample absorb photons. Consequently, following the Eq. 3.17a, the refractive index
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n(ν̃) changes across the absorption bands in k(ν̃). As an example, Fig. 3.3 shows the

refractive index (Fig. 3.3a) and the absorption index (Fig. 3.3b) for a measurement

of the polymer Poly(methyl methacrylate) (PMMA). As can be seen, the transitions

experimented by n(ν̃) are sharper when the corresponding absorption bands in k(ν̃)

are stronger and narrower. The most representative example of this behaviour is the

absorption band in k(ν̃) associated with the carbonyl stretching bond at ∼1730 cm−1,

which creates a sharp derivarive-like transition in the refractive index n(ν̃) . As

can also be observed, outside the regions containing absorption bands, the refractive

index n(ν̃) is approximately constant. The change of n with the wavenumber is

called dispersion of the refractive index and the sudden change experimented across

an absorption band is normally known as anomalous dispersion [98, 101,165].

RMieS-EMSC algorithm

Bassan et al. [164] merged in 2010 the described phenomenon of anomalous dispersion

with classical Mie scattering theory to create an improved version of the EMSC

algorithm proposed by Kohler et al. in 2008 [160] in order to correct for resonant Mie

scattering. The rest of this section will explain the main ideas behind the RMieS-

EMSC algorithm described in [164].

As already commented, classical Mie scattering assumes a constant refractive index

to compute the broadband baseline oscillations approximated by the curves Qext(ν̃)

(Eq. 3.9) because it was originally formulated for dielectric non-absorbing spheres.

The main novelty suggested in [146] to explain resonant Mie scattering is considering

that the scattering spheres can also absorb light and, therefore, the refractive index

can vary with the wavenumber in order to compute Qext(ν̃). The main problem of this

approach is that the exact curves n(ν̃) and k(ν̃) of a sample are normally unknown

and they must be approximated.

The key step of RMieS-EMSC is computing the evolution of the refractive index

n(ν̃) by means of the first Kramers-Kronig transform. To do so, an ideal reference

spectrum Aref (ν̃), free of scattering artifacts, is used to approximate the absorption

bands within the absorption index k(ν̃), whose actual value is unknown. In fact, in

analogy with Eq. 3.16, k(ν̃) is supposed to be nearly proportional to Aref (ν̃):

k(ν̃) ∝ Aref (ν̃) (3.18)
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(a)

(b)

Fig. 3.3: Spectra of optical indices of PMMA. (a) Real refractive index spectrum n(ν̃).
(b) Absorption index or imaginary refractive index spectrum k(ν̃). Reproduced from [98]
with permission by courtesy of John Wiley & Sons, Inc.

Considering this equation and omitting the 2
π factor in Eq. 3.17a, the following

proportional relationship can be stated for the output nKK of the first Kramer-Kronig

transform:

nKK(ν̃) ∝ P
∫ ∞

0

s · k(s)

s2 − ν̃2
ds ∝ P

∫ ∞
0

s ·Aref (s)

s2 − ν̃2
ds (3.19)
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As the last proportionality is obtained after several approximations, two new

parameters, an and bn, are introduced to estimate the refractive index:

n(ν̃) = an + bn · nKK (3.20)

where an is an approximation of the average real refractive index n∞ and bn is an

amplification factor for nKK , which mainly tries to correct the approximation of k(ν̃)

by Aref (ν̃) in Eq. 3.19. With this definition of n(ν̃), Eq. 3.8 can be modified to

compute the size parameter ρ(ν̃):

ρ(ν̃) = 4πr(an + bn · nKK − 1)ν̃ (3.21)

Following the same multivariate metamodelling defined by Koler et al. [160] to

estimate the particular value of Qext(ν̃), a range of possible values for the model

parameters can be considered in order to compute a set of scattering curves Qext(ν̃)

and create the matrix Q. In this case, instead of two, a total of three parameters

must be explored: r, an and bn. The ranges of values that will be considered here

were suggested by Bassan et al. in another publication [166], where the RMieS-EMSC

algorithm was applied to a small set of synchrotron FTIR spectra taken from fixed

cultured cells of a human prostate adenocarcinoma cell line. These ranges of values,

specially for r (which is supposed to be mainly related to the radii of compact nuclei),

are compatible with the type of cells that will be analysed in this thesis. In particular,

1000 Mie extinction curves Qext(ν̃) can be computed with the permutations of 10

equidistant values in the range r = [2, 8] µm, 10 equidistant values in the range

an = [1.1, 1.5] and 10 equidistant values in the range bn = [0, an−1] (see [164,166] for

further details in the selection of these ranges). This set of 1000 Qext(ν̃) scattering

curves can be approximated (up to 99.9% of explained variance [164]) by the first 7

loadings computed via the non-centred PCA model (Eq. 3.11).

Finally, the RMieS-EMSC algorithm assumes that the measured spectrum A(ν̃) is

a linear combination of a scaled reference spectrum, an offset, a linear baseline (this

term was not considered by Koler et al. [160]), a scattering curve (defined by the PCA

metamodelling) and a spectrum of unmodelled features:

A(ν̃) = b ·Aref (ν̃) + a+ d1 · ν̃ +
7∑
i=1

gi · pi(ν̃) + e(ν̃) (3.22)
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And as in other EMSC models, the coefficients can be estimated by ordinary

or weighted least squares regression and the corrected absorbance spectrum can be

computed as:

Acorr(ν̃) =
A(ν̃)− a− d1 · ν̃ −

∑7
i=1 gi · pi(ν̃)

b
(3.23)

The weakest part of RMieS-EMSC is the selection of a correct reference spectrum

Aref (ν̃) free of scattering to perform the estimation of both n(ν̃) (and consequently

the scattering Qext(ν̃) curves) and the multiplicative parameter b in the final linear

regression model. The main problem is that the perfect reference spectrum would

be the pure absorption spectrum of the sample, which is precisely the ideal output

of the algorithm. The practical solution adopted in [164] is converting the described

method into an iterative process where an approximately correct reference spectrum

is used in the first iteration and the corrected spectrum Acorr(ν̃) for each following

iteration is considered as the reference spectrum of the next iteration.

The pipeline with the main steps of the iterative RMieS-EMSC algorithm is

presented in Fig. 3.4.
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Fig. 3.4: Pipeline of the RMieS-EMSC algorithm. Adapted from [164] with permission by
courtesy of The Royal Society of Chemistry.
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The selection of the initial reference spectrum Aref (ν̃) has been a great source of

discrepancies in the spectroscopic community [167] mainly because it can potentially

introduce serious chemical deviations from the original spectrum. It has been argued

that this selection is not critical and the corrected solution finally converges for

different reference spectra after a sufficient number of iterations [168]. Nevertheless,

this number of iterations can be very high and in the order of hundreds of

iterations [168]. A spectrum of a thin layer of Matrigel (an artificial basement

membrane consisting mainly of proteins), which does not present fluctuations due to

scattering and whose absorption peaks are similar to biological samples, is normally

used as the initial reference spectrum [164, 166]. Following this practice, Matrigel is

the initial Aref (ν̃) that has been used here in all the applications of RMieS-EMSC.

Examples of corrections by EMSC models

In order to illustrate the outputs obtained by Mie-EMSC [160] and RMieS-

EMSC [164], two spectra corresponding to two different pixels from hyperspectral

images of A-375 skin cells have been selected. As can be observed in the first row

of Fig. 3.5, the selected raw spectra present clear differences although both of them

cover approximately the same range of absorbance values.

The presence of resonant Mie scattering (compare with Fig.2.16) is less pronounced

in the first spectrum (Fig. 3.5a), which only shows a slight depression beyond

the Amide I peak (∼1650 cm−1) and whose characteristic peaks are well defined.

Nevertheless, resonant Mie scattering is much more present in the second spectrum

(Fig.3.5b), which is mainly reflected in a fancier baseline, more distorted peaks and a

stronger derivative-like depression beyond the Amide I peak. Another distinguishing

factor is the presence of random noise, which is higher in the second spectrum and

more pronounced at higher wavenumbers (possibly due to the lower sensitivity of

the detector at those wavenumbers). In addition, a range enclosing the CO2 region

(∼2250-2450 cm−1) has been discarded to avoid additional artifacts.

In the rest of subfigures of Fig. 3.5, the Matrigel reference spectrum has been

plotted for comparison. It can be observed that the Matrigel spectrum presents ideal

characteristics regarding scattering, specially evident in the null absorption region

approximately between 1900 and 2500 cm−1, and the position of its characteristic

peaks are very similar to the raw cell spectra.
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Fig. 3.5: Example of corrections by EMSC models in two different pixels’ spectra (a) and
(b) extracted from hyperspectral images of A-375 skin cells. First row: Raw spectra. Second
row: Matrigel reference spectrum and corrected spectrum by Mie-EMSC [160]. Third row:
Matrigel reference spectrum and spectra corrected by RMieS-EMSC [164] after different
iterations (specified by the subscripts in the legends).
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The results of the spectra corrected by Mie-EMSC can be seen in the second row

of Fig. 3.5. When comparing with the raw spectra, Mie-EMSC seems to decrease

the baseline artifacts in most parts of the wavenumber range. Unfortunately, the

depression beyond the Amide I peak is even accentuated, suggesting a suboptimal

correction or amplification of the resonant Mie scattering artifacts. The implicit

normalisation performed by the model can be appreciated in the change of covered

absorbance values. With respect to the random noise, Mie-EMSC seems to slightly

smooth the spectra.

The outputs for different iterations of RMieS-EMSC are shown in the last row

of Fig. 3.5. As described before, the iterative RMieS-EMSC algorithm considers

the Matrigel spectrum as the initial reference Aref (ν̃) in the first iteration and the

corrected spectrum becomes the Aref (ν̃) in subsequent iterations. This mechanism

gradually makes the corrected spectra more different from the Matrigel spectrum and

hypothetically more similar to the corresponding ideal absorption spectra. Moreover,

the random noise present in the raw spectra is also recovered in increasing iterations.

In view of the represented spectra, the corrected spectra seem to become very stable

after the 10th iteration and no differences can be appreciated between the 20th

and 30th iterations (totally overlapped in the figures). Apart from the commented

characteristics, the most relevant difference between the corrections of Mie-EMSC and

RMieS-EMSC is the better compensation for the derivative-like artifacts supposedly

created by resonant Mie scattering, clearly appreciated in the depression beyond the

Amide I peak.

The stability of the iterative RMieS-EMSC algorithm and the increasing presence

of the random noise with the number of iterations have been further studied in a

dataset of 300 skin cell spectra. Fig. 3.6a displays the 300 raw spectra extracted

from pixels of hyperspectral images of four different cell lines (A-375, HaCaT,

NIH-3T3, SK-MEL-28). All those pixels contained different regions of cellular

material and were randomly selected so that each cell line was equally represented (i.e.,

75 spectra/cell line). The heterogeneity introduced by the physical phenomena can

be clearly appreciated in the variations of offsets, baselines and ranges of absorbance

values in the raw spectra. The 300 corrected spectra after 30 iterations of RMieS-

EMSC are shown in Fig.3.6b. It can be observed that the corrected spectra are much

more similar between them and the remaining variability is supposed to be mainly
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governed by the chemical contributions and the unmodelled effects, which include the

random noise. This random noise is more evident in the spectra with lower signal

levels after the normalisation, which amplifies the absorbance values equally in the

whole range of wavenumbers.
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Fig. 3.6: Example of corrections by the RMieS-EMSC algorithm in a small dataset of 300
pixels’ spectra from hyperspectral images of four types of skin cells (A-375, HaCaT, NIH-3T3,
SK-MEL-28). (a) Raw spectra. (b) Spectra corrected by RMieS-EMSC after 30 iterations.
Error bars (mean values symbolised by a circle and standard deviation by bars) for different
iterations of RMieS-EMSC of (c) Root-Mean-Square Error (RMSE) and (d) Signal-to-Noise
Ratio (SNR).



94 Chapter 3. Spectral processing

The stability of RMieS-EMSC has been quantified by the Root-Mean-Square Error

(RMSE), which basically accounts for the differences between the corrected spectra

at a specific iteration and at the previous iteration. That is, for a generic iteration j,

RMSE is computed as:

RMSEj =

√√√√ 1

N

N∑
i=1

[
Ajcorr(ν̃i)−Aj−1

corr(ν̃i)
]2

(3.24)

where N here indicates the total number of discrete wavenumbers measured in the

absorbance spectra. The values of RMSE were computed for all the iterations of the

300 spectra of the selected dataset. The obtained results are summarised in terms of

the mean and the standard deviation with the error bars depicted in Fig.3.6c. As can

be seen, the mean value of RMSE gradually decreases with the number of iterations,

being lower than 10−3 from the 8th iteration. In addition, the standard deviation

also diminishes with the number of iterations, denoting a stabilisation even for the

most problematic spectra from around 20 iterations.

The level of random noise can be assessed in the corrected spectra after each

iteration by computing the Signal-to-Noise Ratio (SNR) with the methodology

explained in section Sec. 3.2.2. Similarly to RMSE, the values of SNR for the

300 selected spectra are summarised in terms of mean and standard deviation in

Fig. 3.6d. As was already observed in the individual spectra of Fig. 3.5, the presence

of random noise is lower after the first iteration giving the highest SNR. In this

case, the mean and standard deviation values of SNR become approximately steady

after around 4 iterations, suggesting that the random noise is quickly recovered. It

must be highlighted the high dispersion existing in the SNR values, mainly caused

by the relevant differences in the signal measured at different regions of the cell. In

particular, pixels containing only cytoplasm generate lower absorbance values than

pixels containing nuclear regions and have lower values of SNR. Finally, it can be seen

that the SNR is slightly higher in the corrected spectra than in the raw spectra.

Comments and limitations of RMieS-EMSC

Some comments should be made regarding the RMieS-EMSC algorithm:

� The selection of the number of iterations is not a trivial task. On the one

hand, the more iterations, the closer the corrected spectrum should be to the
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ideal absorption spectrum. On the other hand, the computational cost can be

prohibitive for real practical solutions, specially with FTIR images containing

thousands of spectra. As a reference, the current implementation of the RMieS-

EMSC algorithm takes around 1-2 seconds per iteration and per spectra in

an average up-to-date computer. It has been argued that few iterations (<10)

could be enough for classification purposes, at least for histological images [168],

although a reliable interpretation of the biochemical information would require

more iterations. As has been shown here in a small dataset of 300 skin cell

spectra, most corrected spectra seem to converge from the 10th iteration, but

more stable solutions are obtained with 20 iterations.

� The noise in the measurements can be amplified in the corrected spectra with

poorer SNR due to the intermediate computations of the method, specially in

the Kramer-Kronig transform [166]. For example, when the corrected spectrum

is used as a reference in the second and successive iterations, the water vapour

peaks and the random noise of the detector can mislead the estimation of the

scattering curves, which are supposed to be affected only by the absorbance

of the sample. These problems may be minimised in practice in synchrotron

measurements, where ideal measurement conditions are highly controlled. In

fact, all the algorithms described so far to correct scattering in FTIR spectra

were mainly supported by measurements performed in synchrotron facilities.

Nevertheless, in a common laboratory of biospectroscopy, the measurement

conditions may experiment fluctuations that may be more critical for some final

applications, such as the analysis of single cells.

� Its effectiveness has mainly been demonstrated in polymeric (PMMA)

spheres [146]; in simulated spectra of cells with resonant Mie scattering ar-

tifacts, which were artificially introduced [164]; and reduced dataset of cells,

mostly measured with synchrotron microspectroscopes [166]. In addition, this

effectiveness has only been supported by qualitative or visual graphics, such as

representations of the corrected spectra and PCA score plots.

� Despite the relatively complex formulations considered by RMieS-EMSC, it

still assumes severe simplifications, e.g., in the Mie scattering theory or

in the computation of the real refractive index. In the last years, more

advanced theoretical background has been formulated to cope with the physical
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phenomena in FTIR microspectroscopy [169, 170]. Even very recently a

revised and faster version of RMieS-EMSC, which seems to incorporate

some improvements (still to demonstrate), has been described [171, 172].

Unfortunately, no practical implementations of these improved methodologies

were available during the development of this thesis.

Despite all these limitations, the RMieS-EMSC algorithm described here is the

most advanced practical implementation currently available and has been used as the

reference preprocessing method in the applications involving single cells.

3.2.2 Filtering methods

As previously commented, filtering methods are simpler techniques than model-

based methods which transform the spectra with the aim of discarding the unwanted

information and retaining or enhancing the useful information. The main filtering

techniques that were used in this thesis are: smoothing or denoising, baseline

correction, differentiation and normalisation.

Smoothing/Denoising

Smoothing filters basically try to reduce the presence of random noise in the spectrum.

The main challenge is to remove this noise without degrading the underlying

information within the signal. By far, the most used smoothing filter in spectroscopy

is the Savitzky-Golay (SG) filter [173]. This filter works by moving a sliding window

which is sequentially centred in each point of the spectrum and spans a specified

number of points. The absorbance values of those points are used to fit a polynomial

by least squares (computed with convolution functions previously calculated) and the

absorbance value of the central point is substituted by its corresponding value in the

polynomial.

Two parameters must be defined in Savitzky-Golay (SG) filters: the order of the

fitting polynomial and the points that define the size of the sliding window. The least

squares fitting is normally performed with a 2nd or 3rd order polynomial to avoid

excessive distortions. The number of points must be odd and has a major impact in

the final solution. Fig. 3.7a illustrates the influence of the points used in the sliding

window when using a SG filter with 2nd order fitting polynomial to smooth a skin
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cell spectrum. As can be observed, the higher the number of points, the more high

frequency random noise is removed. However, the characteristic peaks also lose more

details and become more distorted. This smoothing procedure was applied to the

small dataset of 300 raw spectra that were plotted in Fig.3.6a and their corresponding

SNRs were computed. Fig. 3.7b summarises the variations of SNR with the number

of points of the sliding window in terms of the mean and standard deviation. As

expected, the SNR gradually increases with the number of fitting points, but this

increment is not homogeneous as demonstrated by the simultaneous growth of the

standard deviation.
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Fig. 3.7: Example of smoothing by Savitzky-Golay filtering with a 2nd order fitting
polynomial and different window sizes (points). (a) Raw and smoothed spectra of a single
pixel from a skin cell. Artificial offsets have been added for clarity. (b) Error bars (mean
values symbolised by a circle and standard deviation by bars) of the Signal-to-Noise Ratio
(SNR) of the raw and smoothed spectra of Fig. 3.6a.

Smoothing must be applied with extreme caution. Moderate smoothing does not

have a relevant influence but excessive smoothing can introduce critical artifacts. In

general, smoothing provides only an aesthetic improvement in the visualization of

spectra although it is sometimes used to reduce noise in the generation of 2D images

from the hyperspectral data cube (e.g., Sec. 4.2.3). As an alternative, in quantitative

analysis the huge information contained in the multidimensional spectra can be used

to discard the influence of random noise by means of multivariate techniques, e.g.,

PCA (Sec. 3.3.1).
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Signal-to-noise ratio

Signal-to-Noise Ratio (SNR) is the variable commonly used to assess the quality of

a spectrum with respect to the presence of noise. The generic definition of SNR is

pretty simple:

SNR =
Signal

Noise
(3.25)

Nevertheless, there is not a general consensus about the specific features of the

spectrum which must be considered as Signal and Noise, giving rise to different

practical implementations of the SNR in spectroscopy [99,174–176]. Fig. 3.8 sketches

the elements used in this thesis to compute the SNR of individual spectra:

� Signal : following the general trend, it is chosen as the amplitude of the strongest

peak in the spectrum, that is the Amide I peak. This amplitude is computed

with respect to the absorbance minimum inside a range of wavenumbers

enclosing the Amide I peak (1480-1780 cm−1).

� Noise: this is the greatest source of discrepancies. As a rule, it must be

computed in a region without absorption bands so that only random noise

should be present. Here, the noise is computed as the root-mean-square

level (rms) in the region 1950-2150 cm−1, where no absorption peaks should

exist. However, as shown in Fig. 3.8, the presence of other types of artifacts

that generate complex baselines, such as Mie scattering, can mislead the

contributions of noise. Therefore, a broad baseline (computed with an aggressive

SG smoothing filter of 51 points) is removed from that spectral region before

calculating the rms.

Baseline correction

As was described in Sec. 3.2.1, spectral baselines can be distorted due to different

physical contributions, such as scattering, changes in measurement conditions or other

instrumental factors. The complexity of the baseline distortions can be high, such

as in cell samples affected by strong Mie scattering. In those cases, model-based

techniques may be the proper solution to remove baseline artifacts. Nevertheless, in

applications where those baseline distortions are not critical, simpler techniques may
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Fig. 3.8: Sketch of the elements used to compute the Signal-to-Noise Ratio (SNR).

provide acceptable results. Different baseline correction methods can be applied in

FTIR spectra [153], but two methods have been mainly applied in this thesis are:

� Offset correction: it is the simplest baseline correction method. It consists

in subtracting a constant value of absorbance (i.e., an horizontal line) to the

whole spectrum. The subtracted value is normally the minimum or the mean

absorbance value of the spectrum. This method is equivalent to estimate and

subtract the parameter a in EMSC models (Sec. 3.2.1).

� Rubberband baseline correction: it consists in automatically finding a convex

polygonal line which does not intersect the spectrum and whose edges are

relative minima within the spectrum [177]. Although being automatic is the

main advantage of this method, it can introduce severe artifacts specially in

spectra with complex baselines, such as cell spectra.

Fig. 3.9 illustrates the offset and baseline estimated by the previous methods in

a raw cell spectrum cropped to the fingerprint region and the resulting corrected

spectra after their removal. As can be observed, the relative heights of characteristic

peaks slightly change with the rubberband method, but these distortions may be

higher in cases with more complex baselines. Finally, as was sketched in Fig. 3.8, SG
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smoothing filter with a high number of fitting points can also be used to estimate a

broad baseline, but its use is merely restricted to regions without broad absorption

peaks that can interfere with the baseline estimation.
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Fig. 3.9: Example of baseline correction methods.

Differentiation

Derivative filters are widely used in spectroscopy to enhance spectral features and

identify overlapping absorption bands in complex spectral profiles [153, 177–179]. In

addition, derivative filters reduce baseline artifacts: first differentiation removes an

additive offset, meanwhile second differentiation also removes a linear baseline.

The main drawback of differentiation is the simultaneous enhancement of noise

and the consequent degradation of the SNR. Not only random noise can be enhanced,

uncompensated absorption bands from water vapour will also be enhanced by the

derivative filters [138]. In order to slightly alleviate this problem, a version of

Savitzky-Golay filters exists to compute the derivatives by least squares fitting of

a polynomial [173]. In fact, SG differentiation is normally the default technique to

compute derivatives in spectroscopy.

As an example, Fig. 3.10 shows the outputs after applying the 1st (DiffSG1) and

2nd (DiffSG2) order differentiation by SG filters with different window sizes (points)

to a raw spectrum of skin cell. The spectral information contained in the absorption
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peaks of the original spectrum augments with derivative filters, as can be seen with the

increase of the number of spectral peaks. However, noise also grows, specially at higher

wavenumbers, and almost completely hides the signal in the 2nd order differentiation.

The noise is reduced with higher numbers of fitting polynomial points, but the useful

signal is also distorted. Traditionally, 2nd order differentiation has been preferred

over 1st order derivatives, but its use may be detrimental in applications involving

low-SNR spectra.

Normalisation

According to the Beer-Lambert law (Eqs. 2.8 and 2.9), the absorption spectra depend

on the thickness (optical path length) and concentration of the sample. Depending on

the application, this information may be useful whereas it can mislead the analyses

that focus on the biochemical information. In the last cases, several normalisation

methods exist that mitigate the influence of the sample thickness and concentration,

which are individually applied to each pixel’s absorbance spectrum:

� Min-Max normalisation: it consists in firstly subtracting the minimum

absorbance value of the spectrum (similar to the simple offset correction) and

then dividing the whole spectrum by the maximum absorbance. In cases where

the spectrum is cropped to the fingerprint, this maximum value is normally

the Amide I peak. It is the simplest normalisation method but it may provide

acceptable results in situations where the scattering phenomena are not critical.

� Standard Normal Variate: the mean absorbance value is subtracted from the

whole spectrum and the resulting spectrum is divided by the standard deviation

of the whole absorbance spectrum. Originally applied in 1989 to remove

the multiplicative interferences of scatter and particle size in near-IR diffuse

reflectance spectra [180], this approach has been historically used in different

spectroscopic problems to reduce scattering effects.

� Vector normalisation: the whole absorbance spectrum is divided or scaled by its

Euclidean or L2 norm. In some cases, the mean absorbance value of the whole

spectrum is previously subtracted [153]. This type of normalisation is normally

used after differentiation [177].
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Fig. 3.10: Example of spectral differentiation. Top subfigure: raw spectrum of a skin
cell (A-375). Middle and bottom subfigure: 1st and 2nd order differentiation by Savitzky-
Golay (SG) filtering with a 2nd order fitting polynomial and different window sizes (points)
specified in the legends. Artificial offsets have been added for clarity.

The importance of normalisation can be better understood with the two raw

spectra from pixels containing structures of the same skin cell line (HaCaT) presented

in Fig. 3.11. The first impression is that each spectrum spans along different ranges
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of absorbance values and that there is an offset between them. In spite of that, both

spectra seem to have similar shape (characteristic peaks) but at different scale.
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Fig. 3.11: Example of raw spectra from pixels containing structures of the same skin cell
line (HaCaT), which are normalised in Fig. 3.12.

The coarse differences observed in the raw spectra of Fig. 3.11 are presumably

caused by variations in thickness and concentration of the biological material

within the areas covered by the pixels. Fig. 3.12 depicts the same spectra of

Fig.3.11 after applying the normalisation methods described above, together with the

resulting corrected spectra after 30 iterations of RMieS-EMSC, which also performs

a normalisation of the spectra. As can be observed, the normalised spectra are much

more similar, presenting almost the same spectral features and mainly differing in

random noise content. In spite of that, the results of the normalisation methods

differ even in this simple example without relevant distortions due to scattering and

other complex perturbations.

3.3 Feature extraction

Chemometrics [174, 181–183] is an interdisciplinary field that includes all those

methods related to the mathematical manipulation and interpretation of chemical

data [182], which are normally characterised by having multiple variables. Chemo-

metrics shares many techniques with other disciplines, such as pattern recogni-
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Fig. 3.12: Example of spectral normalisations of the raw spectra shown in Fig.3.11. (a) Min-
Max normalisation. (b) 2nd order differentiation by Savitzky-Golay (SG) filter (2nd order
polynomial and 19 fitting points) and vector normalisation. (c) Standard Normal Variate
(SNV). (d) RMieS-EMSC after 30 iterations.
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tion [184, 185], machine learning [186] or data mining [187]. Nevertheless, chemo-

metric methodologies are specially oriented toward the analysis of data with multiple

variables, normally called multivariate data.

As FTIR spectra are multivariate data structures with hundreds or even thousands

of variables (i.e., the measured absorbance values at different wavenumbers), they

have been traditionally treated by chemometric methods associated with multivariate

analysis. Among these methodologies, feature extraction techniques have special

relevance. They treat to extract the most relevant characteristics within the huge

loads of information contained in the FTIR spectra. Two of the most important

feature extraction techniques in chemometrics have been used during the development

of this thesis: Principal Component Analysis (PCA) and Partial Least Squares (PLS).

3.3.1 Principal component analysis

Principal Component Analysis (PCA) [188–190] is the most widespread technique in

multivariate analysis. Multivariate data consist of a large number of variables which

are normally highly correlated, giving rise to a huge amount of redundant information.

The main aim of PCA is to reduce the dimensionality of multivariate datasets while

retaining as much of their variation as possible.

PCA looks for a linear transformation of the initial variables so that the new

variables, called Principal Components (PCs), are aligned with the directions of

maximum variation of the data. This new set of variables has two distinguishing

characteristics: they are uncorrelated and they are ordered in terms of explained

variance. Mathematically, the original multivariate dataset, which consists of I

samples or objects (e.g., spectra) with J variables (e.g., absorbance values at

specific wavenumbers), can be used to construct the original data matrix X. The

transformation computed by PCA can be expressed as follows:

X = T ·PT + E (3.26)

where T is the matrix of scores, P is the matrix of loadings, the superscript T indicates

transpose and E is the residual matrix. The corresponding dimensions of the matrices

involved in this relationship are sketched in Fig. 3.13.
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Fig. 3.13: Sketch of the matrices involved in the decomposition by PCA.

Each row of the matrix T contains the scores of each sample or object of the

dataset. These scores are the coordinates of that object in the new space of K PCs.

Each column of P (note the transpose in Eq. 3.26) corresponds to the loadings or

eigenvectors of the new space of PCs. These eigenvectors form a basis of the new

vector space of PCs. The number of computed PCs, K, is a parameter that must be

selected and is limited by the minimum dimension of the original data matrix X. That

is, K ≤ {I, J}. Depending on the selected K, the original dataset is approximated

up to certain degree of intrinsic variation by the product T ·PT and the errors of this

approximation are accumulated in the residual matrix E.

In order to compute this transformation, the following steps are normally applied:

1. Translation of the origin of the initial axes to the mean point of the dataset.

This step, normally called mean-centring, is not a requirement but it is often

applied because it removes offset effects [191]. When it is not applied, the global

method is called non-centred PCA. Unless explicitly stated, mean-centring will

be applied when performing PCA.

2. Computation of the eigenvalues of the covariance matrix of the dataset. The

sum of all these eigenvalues accounts for the total variance within the dataset.

The magnitude of each eigenvalue is related to the explained variance along a

specific direction in the centred space.

3. Sorting of the computed eigenvalues in decreasing order so that the first

eigenvalues explain the highest variance in the data.

4. Calculation of the eigenvectors corresponding to each ordered eigenvalue in a
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sequential way so that they form an orthonormal basis capable of generating a

vector subspace within the original vector space.

5. Finally, the scores are computed as the projections of the variables in the original

space into the new subspace of eigenvectors.

The result of the PCA process is sketched in Fig. 3.14. In this figure, an artificial

two-dimensional dataset (blue stars) defined by the variables (x1, x2) is used to

compute the new variables or principal components (PC1,PC2), which are centred in

the mean point of the whole dataset (x1, x2). As can be observed, in the new feature

space the first axis PC1 is aligned with the direction of highest variation or dispersion

of the original dataset, whereas PC2 is orthogonal to PC1.

x1

x2

PC 1

PC
2

x1

x2

Fig. 3.14: Sketch of the Principal Component Analysis (PCA) transformation for a
hypothetical two-dimensional dataset.

The applications of PCA include the reduction of dimensionality, denoising and

the detection of outliers.

Dimensionality reduction

As described above, when the first PCs are retained and the rest are discarded, a new

feature space of lower dimensionality is obtained, which keeps the main information

(in terms of variation) of the original dataset. The level of kept information is

determined by the percentage of cumulative explained variance, which is related to

the corresponding eigenvalues of the retained components.

The benefits of dimensionality reduction include, for instance, the visualisation

of the data, the simplification of the modelling and later analysis of the dataset or
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the compression of the data. Among these applications, the visualisation of high-

dimensional data in 2D or 3D spaces has special interest to perform an exploratory

analysis of the intrinsic structure of the dataset. The information obtained with the

exploratory analysis can be very valuable as a complement or as a guide for the later

processing and analysis.

As an example, the dataset of 300 pixels’ spectra of four types of skin cells

that was presented in Fig. 3.6 has been decomposed by PCA. Fig. 3.15 shows the

main results both for the raw spectra and the spectra corrected by RMieS-EMSC

after 30 iterations. The score plots of the two first PCs (Figs. 3.15a and 3.15d)

allow to appreciate an approximation of the proximity of the spectra in the original

multidimensional space. Attending to the colours of the score plots, the spectra

belonging to the same cell type tend to form more clear groups or clusters in the

raw spectra, meanwhile there is a higher spread when they are corrected by RMieS-

EMSC. This behaviour suggests that the initial differences between cell lines in the raw

spectra may be mainly driven by physical effects, which are mostly removed during

the preprocessing by RMieS-EMSC. It must be highlighted that the information of

the cell types (labels) has only been used a posteriori to colour the points of each

spectrum but not during the processing by PCA (see Sec. 3.3.2).

The plots of the loadings or eigenvectors (Figs. 3.15b and 3.15e) give information

about the relative weights that each measured wavenumber has in the corresponding

PC. Hence, they inform of the relative importance of each absorption band in

the existing variations within the dataset. For instance, the two first PCs in the

raw spectra (Fig. 3.15b), give higher weights to the Amide I (∼1650 cm−1) and

Amide II (∼1550 cm−1) peaks. The loadings of the spectra corrected by RMieS-

EMSC (Fig.3.15e) also assign higher weights to the regions around the Amide I peak,

but the position of the maximum weight is slightly shifted depending on the PC. This

behaviour warns about suboptimal corrections of resonant Mie scattering, which is

supposed to be the main responsible for the position shifts of the strongest absorption

peaks (Sec. 3.2.1).

The evolution of the cumulative explained variance with the number of retained

PCs (Figs. 3.15c and 3.15f) also gives important information regarding the complexity

of the relationships between the spectra of the datasets. In this case, there is a clear

difference between the raw and the corrected datasets. Meanwhile in the raw spectra
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Fig. 3.15: Example of dimensionality reduction and visualisation by PCA of the dataset
of skin cell spectra that was presented in Fig. 3.6, both for raw spectra (upper row) and
spectra corrected by RMieS-EMSC after 30 iterations (bottom row). (a),(d) Score plots of
the two first PCs with the corresponding percentage of explained variance in parentheses.
Colours indicate the specific cell type corresponding to each spectrum. (b),(e) Loadings or
eigenvectors of the 4 first PCs with the corresponding percentage of explained variance in
parentheses. (c),(f) Evolution of the cumulative explained variance for the first 25 PCs.

the two first PCs accounts for more than 98% of the total variance, in the corrected

spectra the 95% of explained variance is not reached even retaining the first 25 PCs

and the two first PCs roughly explain 50% of the total variance. This difference, for

instance, has two consequences:

� Simpler models can be constructed for the raw spectra because most of the

information can be condensed by fewer PCs.

� The score plot of the raw spectra (Fig.3.15a) provides more reliable and further

information of the intrinsic structure of the multidimensional dataset than the

spectra corrected by RMieS-EMSC (Fig. 3.15d).
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Denoising

Another application or consequence of PCA is the reduction of noise when the

data are approximated by the first PCs. This is because the first PCs are mainly

associated with genuine variations within the dataset, whereas the last PCs just

measure uncorrelated noise [189,192]. Nevertheless, the number of components from

which the explained variation is essentially noise depends on the specific problem or

dataset. In a practical way, PCA is normally used as an indirect denoising method,

rather than an explicit smoothing methodology. It is important to realise that with

this methodology the amount of random noise present in an individual spectrum is

reduced by using the total information provided by all the spectra from the dataset.

In contrast, common filtering methods only use the information of individual spectra.

In order to illustrate the denoising functionality of PCA, Fig. 3.16a displays the

spectra obtained when different numbers of PCs are retained for the same spectrum,

which belongs to the dataset of 300 spectra corrected by RMieS-EMSC that was

presented in Fig.3.6b. As can be observed, the reconstructed spectra do not show the

high-frequency fluctuations present in the original spectrum even when 20 PCs are

kept. In addition, Fig. 3.16b shows the error bars of the SNR for different numbers of

retained PCs after applying PCA to the aforementioned dataset of 300 spectra. The

reduction of SNR with the number of PCs again demonstrates the increase of noise

content when more PCs are retained.

Detection of outliers

There is no clear definition of outliers. In general, outliers are samples that are

somehow anomalous or unusual. However, outliers do not necessarily mean wrong

samples, but they may belong to sub-populations that are not sufficiently represented

in the studied dataset [174, 190]. What to do with the outliers depends on the

application, but having a way to automatically detect such anomalous samples is

very useful.

The ambiguous definition of outliers is coupled with the lack of a universal method

for their detection. Here, the Mahalanobis distance is employed as a tool to assess

how far each object or spectrum is from the centre of the reduced space of PCs.

Mahalanobis distance [193,194] is a distance widely used in multivariate analysis that
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Fig. 3.16: Example of spectral smoothing or denoising by PCA. (a) Original and
reconstructed spectra of the same spectrum after retaining the number of PCs specified
in the legend. Artificial offsets have been added for clarity. (b) Error bars (mean values
symbolised by a circle and standard deviation by bars) of the Signal-to-Noise Ratio (SNR)
of the original and reconstructed spectra after applying PCA to the dataset of 300 spectra
corrected by RMieS-EMSC that was presented in Fig. 3.6b.

takes into account the intrinsic variations of the dataset by applying a normalisation

with the covariance matrix S. Formally, the Mahalanobis distance is defined as:

dMah(xi) =
√

(xi − x)S−1(xi − x)T (3.27)

where xi is the coordinate vector of the specific object (e.g., the vector of scores), x is

the vector of the mean point of the dataset (in the case of centred PCA it is the zero

vector) and S is the covariance matrix of the dataset. As the PCs are uncorrelated,

S is a diagonal matrix whose values are the eigenvalues of each PC.

Once computed the values of dMah for all spectra, the highest values will be

associated with extreme samples. Again, the number of PCs used to construct the

reduced space also has influence in the value of dMah. Fig.3.17 treats to illustrate the

procedure and results of the detection of outliers when retaining 2 and 25 PCs in the

dataset of 300 spectra corrected by RMieS-EMSC that was presented in Fig. 3.6b.

Fig. 3.17a shows the box plots of the values of the Mahalanobis distance for the

whole dataset when retaining 2 and 25 PCs. In these box plots, whiskers extend to the

most extreme data point that is no more than 1.5 times the Interquartile Range (IQR)

from the edge of the box. All the values outside the whiskers’ range are considered
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Fig. 3.17: Example of outlier detection by PCA and Mahalanobis distance in the dataset
of 300 spectra corrected by RMieS-EMSC that was presented in Fig. 3.6b. (a) Box plot
of the Mahalanobis distance when retaining 2 and 25 PCs (outliers are symbolised by red
plus signs). Score plots of the two first PCs with the outliers marked by red squares when
retaining 2 PCs(b) and 25 PCs (c). The points of each score plot are coloured according to
the corresponding colour bar of Mahalanobis distance values.

as outliers and are symbolised by red plus signs. The corresponding points designed

as outliers in the box plots can be identified (red squares) in the score plots of the

first two PCs. When 2 PCs are retained to find the outliers (Fig. 3.17b), the points

marked as outliers are approximately located outside an elliptical region centred in

the origin of the reduced space of two PCs. However, the position of the outliers is

not so evident when 25 PCs are retained to detect the outliers (Fig. 3.17c) and even

some of them are surprisingly close to the centre of the reduced space of two PCs.

In this dataset, the last option for detecting outliers when 25 PCs are retained seems

more logical as they account for a higher level of explained variance (Fig. 3.15f).

3.3.2 Partial least squares

Partial Least Squares (PLS) is another methodology very popular in the chemometric

field [174, 181, 183]. Whilst PCA is an unsupervised method of dimensionality

reduction, as it only takes into account the information contained in the data matrix

X, Partial Least Squares (PLS) can be considered as a supervised methodology. That

is because it also uses the information of the response vector y to compute a reduced

space of components, also referred to as latent variables, from the original input

variables. This is performed by defining the latent variables through the covariance

between the response and the input variables [195].
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PLS essentially tries to relate two types of variables: the measurements or

independent variables contained in the data matrix X and the response or dependent

variable y. This is performed by linearly decomposing those variables in a similar

way as in PCA:

X = T ·PT + E (3.28a)

y = T · qT + f (3.28b)

where the first equation has the same form as Eq. 3.26 (but the values obtained by

PLS are different), and q and f are respectively analogue to a vector of loadings and

a vector of residuals for the response vector y. Note that the vector of scores T is the

same in both decompositions of variables X and y. The matrices involved in Eq.3.28a

have the same structure that was sketched in Fig. 3.13, meanwhile the matrices and

vectors of the new equation Eq. 3.28b are sketched in Fig. 3.18.
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Fig. 3.18: Sketch of the matrices and vectors involved in the decomposition of the response
vector by PLS.

Several algorithms exist in the literature to compute the described decomposition

by PLS. Here, a variant of the algorithm called PLS1 [181,183] is applied to establish a

relationship between both types of variables (X and y). PLS1 is an iterative algorithm

where the desired number of PLS components K are computed in each iteration. Each

iteration of PLS1 consists of the following steps:

1. Compute the weight vector w of the current PLS component:

w = XT · y (3.29a)
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2. Compute the vector of scores (corresponding column of the matrix T) for the

current PLS component:

t =
X ·w
‖w‖

(3.29b)

3. Compute the vector of loadings of data (corresponding column of the matrix P)

for the current PLS component:

p =
XT · t
‖t‖2

(3.29c)

4. Compute the loading of the response (corresponding scalar element of the vector

q) for the current PLS component:

q =
tT · y
‖t‖2

(3.29d)

5. Calculate the residuals of the data matrix Xres and the response vector yres by

subtracting the effect of the current PLS component:

Xres = X− t · pT (3.29e)

yres = y − t · q (3.29f)

6. If more PLS components are needed, X and y are respectively replaced by Xres

and yres and the process is repeated from step 1.

In the above equations, ‖·‖ symbolises the Euclidean norm of a vector. In PLS1

algorithm, the computed scores T are orthogonal (as in PCA), but the loadings P are

neither orthogonal nor normalised. Moreover, an additional matrix W of dimensions

J ×K, whose columns correspond to the weight vectors w of each iteration, is also

obtained.

Originally, the PLS method was designed for regression problems, that is, those

cases where the response vector y is a continuous variable [196]. Nevertheless,

it has been successfully adapted to classification and discrimination applications,

where it is normally called PLS-Discriminant Analysis (DA) (Sec. 5.2.8). Indeed, in

discrimination problems with high number of correlated variables (e.g., FTIR data)

where dimensionality reduction is needed, PLS normally outperforms PCA. This is
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because unsupervised PCA basically computes the new reduced space of variables

based on the gross variability of the dataset but it is not capable of distinguishing

among-groups and within-groups variability [197]. Nevertheless, PCA is an important

preliminary step of purely discriminative algorithms, which otherwise would have a

poor performance with high-dimensional multivariate data.
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4.1 Introduction

In this chapter, the first application of this thesis, aimed at improving the diagnosis of

histopathological samples, will be thoroughly described. It consists of an automated

framework to spatially align different sections of tissue measured by two distinct

imaging modalities: FTIR microspectroscopic imaging and conventional optical

microscopy. In addition, the usefulness of its development and application will be

supported by data that demonstrate the improvement in classification accuracy of

different pathological states of colorectal cancer when it is combined with other

approaches to extract information from the tissue.

As was described in Sec.1.1.6, the final diagnosis of colorectal cancer is performed

by expert pathologists, who examine histological sections extracted from suspicious

biopsies acquired during colonoscopy. These slices of tissue are commonly stained

with H&E to colour the tissue structures (nuclei in blue or purple, cytoplasm and

connective tissue in pink) and observed with an optical microscope illuminated

with visible light. However, this assessment is still done in a qualitative manner,

relying heavily on the judgement and experience of the pathologist. Indeed,

several studies [74, 75] have revealed a suboptimal inter-observer variability in the

differentiation and reporting of colorectal polyps, suggesting that more objective

criteria should be applied for risk stratification in screening and surveillance

guidelines.

FTIR images are information-rich data structures that can be analysed, alone or

together with other imaging modalities, to provide objective pathological diagnoses.

In order to develop new diagnostic algorithms, the different regions of tissue should be

correctly labelled and must spatially match between images of distinct modalities. As

commented, the H&E stained samples are the gold standard where the pathologists

can distinguish and label different anatomical and pathological structures within the

tissue. Therefore, H&E images may be the most interesting imaging modality to be

fused with FTIR images. However, the H&E stain irreversibly changes the chemical

composition of the tissue and introduces confounding artifacts in the FTIR spectra

[198]. In some cases, the tissue is measured by FTIR spectroscopy before applying

the H&E stain. Nevertheless, this option is technically challenging and it impedes

performing posterior FTIR measurements and retrospective studies. Therefore, a

common solution is to measure different slices of tissue with each imaging modality.
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4.1.1 Objective

The main objective of this application is to establish a methodology where the

two types of images (H&E and FTIR) from different tissue sections are aligned or

registered. The aim of this alignment is to compute the spatial transformation that

communicates the coordinate systems of the two images. This transformation makes

possible to translate or fuse the spatial information contained within each imaging

modality. In particular, the position and auxiliary information (e.g. pathological

labels) of different regions of interest, identified by an expert pathologist in the

H&E images, can be transferred to the FTIR coordinates with the calculated spatial

transformation. In doing so, objective diagnostic algorithms may be created in future

studies by employing the fused pixels’ information from each imaging modality.

The developed registration method must be robust against the different sources

of variability intrinsic to the problem (Sec. 4.1.2). Therefore, another important

objective is to assess the robustness and effectiveness of the proposed methodology in

a real-world dataset.

4.1.2 Problem overview

Fig. 4.1 outlines the problem faced in this application. Different histological sections

are extracted with a microtome from a colon biopsy that has been chemically treated

and fixed in a paraffin block for preservation purposes. Some sections follow the

H&E staining process and one of them is carried to an optical microscope to take

Red-Green-Blue (RGB) images in the visible spectrum range. This colour image is

composed of three channels (red, green and blue) so that a three-valued intensity

vector is associated with each pixel.

Another section is directly analysed by means of FTIR spectroscopy without any

further chemical processing. In the ideal case, this last section would be adjacent to

the one used in the optical microscope. However, this ideal case cannot be guaranteed

in clinical routine due to problems in the handling and cutting of the biopsy sample.

FTIR sensors can measure a large quantity of wavelengths in the near and mid-IR

range, providing hyperspectral images that may have hundreds or even thousands

of channels. As can be seen in Fig. 4.1, FTIR images are three-dimensional data

structures with two spatial dimensions (x,y) that define the position of each pixel and

a third spectral dimension (ν̃), which consists of the recorded wavenumbers. Thus,
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Fig. 4.1: Registration problem overview. Several histological sections are extracted from
a paraffin-fixed colon biopsy. One of the sections is stained with H&E and analysed with
an optical microscope to take a three-channel RGB image. A different section is directly
measured with a FTIR spectrometer to obtain a hyperspectral image, where each pixel has
an associated spectrum of hundreds or thousands of channels.

each pixel has an associated absorption spectrum that represents the overall chemical

composition of a tissue portion of several squared microns.

The variability between the images of both modalities can be divided into four

main sources:

� Intensity values: due to the distinct range of wavelengths covered by each image

detector. Finding a correct relationship between intensities of corresponding

pixels is one of the challenges of this multimodal problem.

� Pixel size: owing to the characteristics of the optics and the detectors. This can

be solved by applying a proper scaling if the exact resolutions in both images

are known or by introducing a scaling factor in the spatial transformations.
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� Coarse spatial differences: because each image device has its own spatial

reference. Therefore, large differences in spatial positions and orientation may

exist between corresponding anatomical structures.

� Local spatial differences: as a consequence of not using the same tissue

sections. These dissimilarities may be divided into anatomical differences

naturally present in the tissue and local deformations introduced by the physical

manipulation, such as cutting with the microtome. If the sections are not

adjacent, these local differences are further exaggerated.

The process of finding the alignment between images acquired with different types

of sensors and matching their spatial references is called multimodal registration.

Classical reviews of image registration can be found in [199–202] and a recent

comprehensive overview in [203, 204], where the most recent advances in this field

are described as well as the techniques applied to medical images. In the problem

addressed in this paper, the use of images from different modalities along with the

fact that they come from different sections of tissue complicate this task.

4.1.3 Related work

Many approaches exist to deal with the problem of multimodal registration, mainly

because the decisions made in each step of the process depend on the application

and on the characteristics of the involved images. To the author’s knowledge, only

two recent studies [205,206] tackle the problem of registering H&E and FTIR images.

Nevertheless, in both of them the same histological sections were firstly measured by

FTIR spectroscopy and later stained with H&E to be analysed by optical microscopy.

In [205], the images were taken from Tissue Microarrays (TMAs) of prostate cancer

and converted into binary form by trying to separate the pixels that contained tissue

from the background. As stated in [205], this binarisation bypasses the multimodal

problem because the only reliable features to establish a spatial correspondence

between these kinds of images are macroscopic sample shapes and empty spaces

(glandular lumens and breaks) inside the tissue.

A more general problem is treated in [206], where images of small regions of tissue

obtained using FTIR or other spectroscopic modalities are registered with whole-slide
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H&E images by a template matching procedure. In that study a pre-segmentation step

is performed on each image through k-means clustering, taking the FTIR spectrum

and the RGB vector as input features for each pixel. The spatial arrangement

of the segmented pixels is then matched through an exhaustive sparse search with

geometrical restrictions (only translations or little rotations up to ±30 degrees) due

to its computational complexity. However, the pre-segmentation step diminishes the

spatial local information and can also introduce severe mistakes because the natural

clusters may not reflect the same spatial structures in both images due to the different

information contained in the RGB vectors and the FTIR spectra.

A different multimodal registration problem involving microscopic images from

adjacent sections of prostatic tissue is addressed in [207]. In that study, several

adjacent sections with different grades of cancer are stained with either H&E,

immunohistochemical or fluorescence dyes. The spatial correspondence between

adjacent sections is obtained by means of a rigid registration based on the

features automatically provided by the Scale Invariant Feature Transform (SIFT)

algorithm [208, 209] and filtered using the Random Sample Consensus (RANSAC)

algorithm [210]. This approach is similar to the one used in the first step of the

registration framework proposed here (Sec. 4.2.5).

4.1.4 Proposed framework

As stated in Sec. 4.1.1, the objective of this application is to establish a complete

pipeline where the two types of images of the different sections of tissue are aligned.

After setting some parameters, this alignment is performed in an automatic way

through two registration steps which analyse different characteristics of the grayscale

images obtained from the initial images. The key step of the suggested method is to

obtain these grayscale images from the FTIR hyperspectral data cube.

The proposed framework starts by obtaining grayscale images from the two

imaging modalities, which are the inputs of the registration method. The main aim

of this preliminary step is to get images with similar local contrast where analogous

anatomical structures are easily distinguishable.

The registration process consists of two steps. The first step produces a fast coarse

alignment that offers good initial conditions for the finer registration performed in the
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second step. The first registration step is a feature-based registration that uses the

SIFT algorithm [208,209] to automatically find and match relevant keypoints in both

images. These matches are filtered with the RANSAC algorithm [210] to estimate a

coarse rigid transformation. Several combinations of SIFT parameters were considered

due to the wide spatial variability between the studied sections of tissue, which may

not be immediately adjacent. The best combination of parameters in each sample

was chosen through the maximisation of a multimodal similarity measure between

the aligned images.

The second registration step consists of an intensity-based registration that seeks

to refine the alignment and to compensate for the local spatial differences between

the tissue sections of the two imaging modalities. In this last stage, a non-rigid

transformation is iteratively estimated to maximise again the same multimodal

similarity measure. Several parameters must be adjusted in the intensity-based

algorithm, but this time a global combination of parameters was empirically fixed

to reach a reasonable fine alignment.

The obtained results for the available dataset were qualitatively and quantitatively

assessed. The rigid transformation obtained with the first registration step was

evaluated by comparison with a gold standard rigid transformation that was estimated

based on manually selected landmarks. The evaluation of the second non-rigid

registration step is more difficult because no gold standard can be practically

established for comparison. Therefore, the results were assessed by studying the

modification of a different multimodal similarity measure before and after this last

registration step.

4.2 Materials and methods

4.2.1 Dataset

The available dataset consists of 47 colon samples from different pathological groups:

16 normal (non-cancerous), 16 intermediate (comprising adenoma and hyperplastic

tissue) and 15 tumoral (cancerous). All samples were fixed and embedded in paraffin

blocks. One slice of 7 µm thickness and several contiguous slices of 3 µm were

extracted from each block with a microtome. The thicker slice was not further treated
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and was measured with the micro-FTIR imaging system that was described in Sec.2.5.

The samples were measured in transmission mode and the absorption spectra were

acquired between 1000-3900 cm−1 with a wavenumber interval of 4 cm−1. Multiple

frames were acquired and combined to allow a larger overall FOV, which varied

depending on the size of the sample and the particular ROI.

The rest of sections were chemically deparaffinated and stained with H&E. One

of these sections, ideally contiguous to the one measured by FTIR spectroscopy, was

chosen to acquire RGB images with an optical microscope. A Philip Harris DMSK211

microscope with a coupled digital camera of 1280 × 1024 pixels was used to record

sequential images that covered the full H&E sample. An objective lens of 20× was

used, giving a pixel size of 0.4× 0.4 µm2. The movement of the microscope stage was

automatised with a custom hardware based on Raspberry Pi. The tiled images were

stitched with Microsoft Image Composite Editor (ICE) in order to obtain the final

RGB image of the whole sample.

4.2.2 Registration pipeline

A block diagram with the main steps of the proposed registration pipeline is shown in

Fig. 4.2. In order to illustrate the outputs of each step, a representative image from

a specific sample is shown next to each block.

The inputs of the process are the two raw data structures of each imaging modality

(RGB and FTIR), which were described in Sec.4.1.2. The first stage of the framework

consists of obtaining representative grayscale images from the two raw inputs. This

is the key step in the pipeline and allows to apply registration methods that have

proven to be effective in other medical areas that operate with multimodal grayscale

images [203,204,211,212]. The aim is to obtain two images with similar local contrast

where analogous anatomical structures can be easily observed. These two grayscale

images, named T1 (RGB) and R (FTIR), are the inputs of the next step.

A feature-based registration with a rigid spatial transformation is performed in

the second level of the pipeline. Its main objectives are to compensate for the coarse

spatial differences between images and to provide an initial alignment based on the

correspondence of keypoints, which are automatically detected and matched in both

images using SIFT and RANSAC as described in Sec. 4.2.5. In this initial alignment,
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Fig. 4.2: Block diagram of the proposed registration framework. The outputs of each step
are illustrated with a representative image from a single sample.

the representative FTIR grayscale image R acts as the reference image and the H&E

grayscale image T1 is the target image that is shifted through a rigid transformation

to produce image T2.

In the third and final step of the framework, an intensity-based registration is

applied to perform a non-rigid spatial transformation. It takes as inputs the unaltered

reference image R and the target image T2 to produce the final output image T3. The

aim of this step is twofold: on the one hand, to refine any remaining misalignment

and on the other hand, to diminish local spatial differences due to the use of different

slices of tissue.

4.2.3 Representative images

The critical step in this work is converting the data structures of each modality into

grayscale images such that registration can be performed in the grayscale domain.

The goal is to create two images with similar local contrast where corresponding

anatomical structures can be easily observed. The process to obtain these grayscale

images is different for each imaging modality.
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H&E grayscale image

Two steps were applied to construct the H&E grayscale image:

1. Resizing: A bi-cubic interpolation with an antialiasing filter was performed

to downscale the original H&E colour images to the same pixel size as FTIR

images.

2. Transformation to grayscale: The RGB values of the resized images were

converted to grayscale by computing the luma Y, which is the achromatic

component representing luminance in the Y IQ colour space [213]. In the studied

dataset, luma component demonstrated to have a high rate of convergence

to an optimal solution, especially in the first registration step, as described

in Sec. 4.3.2. In addition, it demonstrated to be more robust against different

illumination conditions (some samples had uneven spatial illumination) and

staining variability (e.g. cancerous regions stain darker than normal ones) than

other chromatic components. In a theoretical way, human visual system is

more sensitive to luminance differences rather than chromatic differences. The

luminance is closely related to the perceptual attribute called brightness, which

is the visual sensation according to which a source appears to emit more light or

less than another does [213]. On the other hand, absorbance values of the FTIR

images may be interpreted as the capability of an object to absorb more light

or less than another does. Therefore, theoretically luma component may be a

good candidate to be inversely related to a transformation that condenses the

absorbance values of the FTIR images (see next section). As commented before,

this theoretical intuition was empirically supported by the results obtained and

compared with a manual gold standard registration. The specific conversion to

obtain Y is a weighted combination of the three-valued vector (R,G,B):

Y = 0.299 · R+ 0.587 · G + 0.114 · B (4.1)

FTIR grayscale image

Before transforming the FTIR hyperspectral data into a single grayscale image, the

spectra must be preprocessed. As was extensively described in Sec. 3.2, preprocessing

is a relevant stage in FTIR data analysis and interpretation [153, 177]. It is
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essential to remove the unwanted effects involved in the spectral data acquisition

and to highlight specific information within the spectra. No universal preprocessing

method exists [108]; the specific combination of preprocessing steps depends on the

application.

In order to illustrate the applied preprocessing, the final representative FTIR

grayscale image of one sample is shown in Fig. 4.3d. In this image five pixels have

been coarsely marked with different colours and numbers. Pixels 1 and 2 exemplify two

regions without tissue (substrate), pixel 3 corresponds to a region where there is a low

amount of sample (interior of lumen), pixel 4 represents a region where the presence

of organic material is higher than in pixel 3 (outer region of lumen) and, finally, pixel

5 illustrates a region with the highest content of tissue of the selected pixels. The

same colours and numbers are used to represent the corresponding raw spectra in

Fig. 4.3a. Strong peaks due to contaminants such as CO2 (∼2300-2400 cm−1) and

paraffin (∼2800-3000 cm−1) can be easily observed in the raw spectra because they

are even present in the substrate regions (pixels 1 and 2).

The preprocessing steps applied in these images, with the reasoning behind their

use, were:

1. Spectral window selection: The raw absorption spectra were cropped to the

so-called fingerprint region (1000-1800 cm−1), which contains the vibrational

frequencies of the chemical bonds from the most relevant biomolecules [81].

Thus, attention is focused on the most informative wavenumbers and the

stronger contaminant bands are rejected (Fig. 4.3b).

2. Removal of remaining spectral contaminants: Relatively strong peaks due to

paraffin still appear in the fingerprint region (1360-1390 and 1430-1490 cm−1).

The absorbance values corresponding to those ranges of wavenumbers are

removed from the spectra to reduce the noise produced in the final images by

the interference of these contaminants and the rest of meaningful biochemical

peaks.

3. Denoising: A Savitzky-Golay filter was applied to smooth the spectra and

reduce the random noise. Its parameters were fixed to a window size of 15

points and a 2nd order fitting polynomial, which were a good trade-off between

noise attenuation and signal distortion in the studied dataset.
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Fig. 4.3: (a) Full-range raw spectra drawn in the same colour of their corresponding pixels.
(b) Raw spectra cropped to fingerprint region. (c) Preprocessed spectra after cropping to
the fingerprint region (1000-1800 cm−1), smoothing by Savitzky-Golay filtering, rejecting
the paraffin ranges (1360-1390 and 1430-1490 cm−1) and applying rubberband baseline
correction. (d) Representative FTIR grayscale image of a colon sample where five pixels
have been marked and numbered with different colours. Cyan scale bar represents 200 µm.

4. Baseline correction: It is crucial to diminish the spectral baseline effects due

to scattering, heterogeneity in external illumination, supporting substrate or

sensor’s sensitivity and other changing conditions during data collection [153].

There is a large variety of baseline correction algorithms. Here the rubberband

baseline correction method was employed [177], which subtracts a convex

polygonal line whose edges are minima within the spectrum. In particular, the

parameterless implementation of the rubberband baseline correction included in

the IRootLab toolbox [214] was used.
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The final preprocessed spectra of the selected pixels are shown in Fig. 4.3c. The

selected pixels have been numbered in increasing order of maximum absorbance values.

Absorbance is related to the concentration and thickness of the biological content

as stated by the Beer-Lambert law (Sec. 2.4.1). There are some metrics commonly

used in vibrational spectroscopy to condense the absorbance measurements, such as

peak height or peak integral [215]. In this study, different combinations of these

metrics were explored, such as finding the maximum or computing the integral of

the complete fingerprint region or only the strongest peak (Amide I peak, between

1630-1670 cm−1). However, it was found that the standard deviation (std) of each

spectrum was the most robust metric (in terms of noise, sharpness and independence

of previous preprocessing steps) to produce an image with a local contrast similar to

the corresponding H&E grayscale image. In particular, the intrinsic removal of the

mean absorbance value performed by std reduces the influence of spectral baseline

artifacts (e.g. produced by scattering) inefficiently removed in the baseline correction

preprocessing step. More specifically, if A = {A1, . . . , ANw} is the associated

absorption spectrum of a pixel with Nw wavenumbers, then the assigned value to

that pixel was computed as:

std(A) =

√√√√ 1

Nw − 1

Nw∑
i=1

(
Ai −A

)2
, (4.2)

where A = 1
Nw

∑Nw

i=1Ai is the mean absorbance value of A. The obtained std values

were linearly mapped to get a grayscale image with intensities between 0 and 255.

However, this gives the substrate low gray values, as opposed to the H&E grayscale

image where the substrate has high values and appears white. For this reason the

gray values were inverted to obtain the reference image R in the proposed registration

method.

4.2.4 Similarity measures

Images from different imaging modalities have different intensity characteristics due

to the specific properties of each sensor. Thus, multimodal registration problems

require similarity measures based on statistical relationships between the pixels of

the images rather than direct intensity relationships as in monomodal scenarios [216].
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Two similarity measures widely used in multimodal problems were employed: the

correlation ratio and the mutual information.

Correlation ratio

The correlation ratio (CR) assumes a functional relationship between the intensities

of the registered images [217, 218]. CR does not consider any specific relationship,

whereas the correlation coefficient does. The correlation coefficient assumes a

linear relationship between intensities, making it more appropriate for monomodal

registration problems. CR can take values from 0 (no functional dependence) to 1

(purely deterministic dependence) [218]. The closer CR is to 1, the more similar R

and T are and, in the extreme case (CR = 1), it would inform of a hypothetical

perfect alignment. To compute CR, the reference image R and the target image T

are viewed as random variables. Let x denote a pixel that has an intensity T (x) in

image T ; Ω the set of pixels in the overlapping region between R and T ; Np the total

number of pixels in Ω; Ωi the subset of Ω whose pixels have the same intensity level

i in R, that is, Ωi = {x ∈ Ω, R(x) = i}; Np,i the number of pixels in Ωi; then, CR is

defined as:

CR(R, T ) = 1− 1

Npσ2

∑
i

Np,iσ
2
i , (4.3)

where

σ2 =
1

Np

∑
x∈Ω

T (x)2 −m2, m =
1

Np

∑
x∈Ω

T (x),

σ2
i =

1

Np,i

∑
x∈Ωi

T (x)2 −m2
i , mi =

1

Np,i

∑
x∈Ωi

T (x).
(4.4)

Mutual information

Mutual information (MI) is a measure from information theory that characterises

the amount of shared information between the registered images [219]. It assumes a

probabilistic relationship between the intensities of the registered images R and T .
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MI can range from 0 (statistical independence) to any positive quantity and, as in

CR, the higher MI, the more similar R and T are. However, interpretation of MI is

difficult because there is not a maximal value that can be used as a reference for a

hypothetical perfect alignment. MI is computed in terms of image entropies:

MI(R, T ) = HR +HT −HRT . (4.5)

The three involved entropies are defined as:

HR = −
∑
i

Pi log2(Pi),

HT = −
∑
j

Pj log2(Pj),

HRT = −
∑
i,j

Pij log2(Pij),

where Pi is the probability of an intensity level i occurring in image R; Pj is the

probability of intensity level j occurring in image T ; Pij is the joint probability of

both intensity levels i in image R and j in image T occurring at the same position.

4.2.5 Feature-based registration

Scale Invariant Feature Transform (SIFT) is an algorithm to detect and describe local

features in images [208, 209]. The main characteristic of SIFT is its ability to find

distinctive keypoints that are invariant to location, scale and rotation, and robust to

affine transformations (changes in scale, rotation, shear and position) and changes in

illumination, which makes it usable for object and pattern recognition. SIFT is the

core algorithm employed for keypoint selection and feature extraction. In the SIFT

algorithm, a series of keypoints that are invariant to scale and orientation are firstly

detected by seeking extrema in a Difference-of-Gaussian (DoG) transformation. At

each candidate keypoint, a local descriptor relative to scale-invariant coordinates is

computed based on local image gradients. The feature descriptors of the candidate

keypoints in both images are matched by a nearest-neighbour strategy through

minimum Euclidean distance.
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The values of four relevant SIFT parameters have been explored to get different

rigid transformations for each sample:

� Number of orientations (r) and width of the descriptor (n): these two

parameters change the size (rn2) of the local descriptor vector, which is

computed in a n × n array of histograms of r orientations. When these values

increase, the descriptor complexity and discriminative properties grow. The

highest rates of convergence were achieved with values of r = {4, 8} and

n = {4, 6}.

� Number of scale samples per octave (s): this parameter modifies the number of

extrema detected in the DoG transformation. The higher its value, the more

candidate keypoints are detected. Although Lowe [209] experimentally found

an optimal value of 3, more robust results (higher rates of convergence) were

obtained with values of s = {6, 10} in the studied dataset.

� Ratio of distances closest/next closest (rod): each candidate keypoint is only

retained if the ratio of distances between the first and the second nearest

matched neighbour is below rod. When this threshold decreases, a higher

number of false matches is discarded although good matches can also be rejected.

The highest rates of convergence were obtained with rod = {0.8, 0.9}.

Afterwards, the Random Sample Consensus (RANSAC) algorithm [210] is used

to filter the candidate keypoints matched by means of the SIFT descriptors. In

RANSAC, a spatial transformation model between both images must be imposed in

order to estimate its parameters. In this case, a rigid transformation T is considered,

which follows the equation:

T (x) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
·

(
x

y

)
+

(
tx

ty

)
, (4.6)

where the original spatial coordinates x = (x, y) are converted into the new ones by

applying a global translation (tx, ty) and a rotation of angle θ.

RANSAC computes the parameters tx, ty and θ by considering a minimum

percentage of inlier matched keypoints (5% in this case) and a maximal alignment
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error between the transformed keypoints and their corresponding matches. For this

work the alignment error was limited to a maximum of 15 pixels.

Due to the spatial variability between samples, a rigid transformation may not be

constructed for some combinations of parameters because no inlier correspondences

are detected. The selection of the best combination of parameters for each sample

was therefore based on the maximisation of a similarity measure (Sec. 4.2.4) between

the output target image T2 and the reference image R. In particular, the correlation

ratio (CR) was the variable to maximise.

4.2.6 Intensity-based registration

The second registration step is based on a variational approach, which has been

formulated in the frequency domain [220,221] and also implemented in the frequency

domain [222], providing a fast and efficient registration method. This method

produces a non-rigid displacement field u that compensates for the remaining

differences between the reference R and the target T2 images caused by an imperfect

alignment in the first registration step and the local spatial differences between

tissues. The obtained non-rigid displacement field u : R2 → R2 will make the

transformed target image similar to the reference image, T2(x−u(x)) ≈ R(x), where

u(x) = (ux(x), uy(x))> and x is the spatial position x = (x, y) ∈ R2.

The non-parametric registration can be approached in terms of calculus of

variations by defining the following energy functional to be minimised:

J [u] = D [R, T2; u] + αS [u] . (4.7)

The energy term D measures the distance between the deformed target and the

reference images; S is a penalty term which acts as a regulariser and determines

the smoothness of the displacement field; and α > 0 weighs the influence of the

regularisation.

The distance measure D is chosen depending on the datasets to be registered. In

this application, since the H&E and FTIR datasets do not share the same intensity

range (multimodal problem), statistical-based measures are more appropriate. Among

the similarity measures described in Sec. 4.2.4, the correlation ratio (CR) was used in

this case because it provided more accurate alignments and had a better behaviour
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against wrong global minima during its optimisation. The regularisation term S gives

the smoothness characteristics to the displacement field [223]. In this problem, the

diffusion term was used, which is given by the energy of the first derivatives of u [220].

As described in [220], the energy functional (Eq. 4.7) can be translated into

the frequency domain by means of Parseval’s theorem. Then J [u] = J̃ [ũ],

with ũ(ω) = (ũx(ω), ũy(ω))> being the frequency counterpart of the displacement

field, ω = (ωx, ωy) is the two-dimensional variable in the frequency domain. The

minimisation of the energy functional J̃ [ũ] leads to the translation of the Euler-

Lagrange equation into the frequency domain and provides the following iteration for

the Fourier transform of the l-th component of the displacement field:

ũ
(η)
l (ω) = H(ω)

(
ũ

(η−1)
l (ω)− α f̃ (η−1)

l (ω)
)
, (4.8)

where η ∈ N is the iteration index, l = {1, 2} in this 2D problem, H(ω) is a low-pass

filter in the frequency domain and f̃(ω) = (f̃x(ω), f̃y(ω))> is the Fourier transform

of the external forces field. For further details, please refer to [220,221].

From Eq. 4.8, the target image is iteratively modified by u and goes through

different intermediate states Ti until the final image T3(x) = T2(x−u(x)) is obtained.

Eq. 4.8 provides a stable implementation for the computation of a numerical solution

for the displacement field in a more efficient way than existing approaches if the

two-dimensional fast Fourier transform is used [221].

The values of the most relevant parameters in this step were: a maximum number

of iterations (ηmax) equal to 400 and α = 500. The images R and T2 were preprocessed

with a 3×3 and a 5×5 median filter, respectively, before applying this last registration

step to avoid excessive local distortions that may be induced by noise artifacts.

4.2.7 Evaluation

No ground truth for alignment evaluation exists in this problem mainly for two reasons:

placing external fiducial marks in the microscopic tissue is not trivial; the deformations

produced during the processing of the different slices of tissue can be highly variable.

Even so, special care was taken to evaluate the obtained results in both registration

stages.
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The rigid registration step (Sec. 4.2.5) was assessed by a procedure similar to the

one used in [207]: an artificial rigid transformation was computed in each sample as

a gold standard for comparison. This gold standard transformation was estimated

by applying Procrustes analysis [224–226] to a set of manually selected landmarks

or control points. These sets of landmarks were manually chosen by trying to select

anatomical structures shared by both images to register (R and T1), such as distinctive

points in the glands or in the tissue border. Formally, a set of Np pixels or spatial

points {xi} were selected in the original target image T1 and their corresponding

set of points {yi} were marked in the reference image R, where i = 1, . . . , Np. For

each sample, five corresponding points (Np = 5) were selected in both images. As

an illustration, Fig. 4.4 shows the images T1 and R of one tissue sample where the

two corresponding sets of points {xi} and {yi} are marked with different coloured

diamonds.

1

23

4

5

fxig

(a) T1

1

23

4

5

fyig
fTPA(xi)g
fTFB(xi)g

(b) R

Fig. 4.4: Illustration of the sets of manual landmarks used in the evaluation of the feature-
based registration step. Cyan scale bars represent 200 µm. (a) Target image T1 with
five manually selected points {xi} marked with diamonds. (b) Reference image R with
the corresponding set of manually selected points {yi} (diamonds), the transformed set
{TPA(xi)} (asterisks) obtained by Procrustes analysis and the transformed set {TFB(xi)}
(circles) obtained by the feature-based registration step.

The set {xi} can be mapped into the reference space of image R with a generic

rigid transformation (Eq. 4.6) to give a set of transformed points {T (xi)}. The root-

mean-square of the distances between the points of a generic transformed set {T (xi)}
and their corresponding {yi} points is the Fiducial Registration Error (FRE) [226]:
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FRE(xi,yi, T ) =

√√√√ 1

Np

Np∑
i=1

({T (xi)} − {yi})2
, (4.9)

Two FRE values can be computed for each sample by applying each rigid

transformation: one for the gold standard transformation computed with Procrustes

analysis (FREPA) and one for the transformation obtained with the proposed feature-

based registration (FREFB). These values respectively inform of the mean alignment

error in pixel units of the transformed sets {TPA(xi)} and {TFB(xi)}. Procrustes

analysis [224] computes the optimal linear transformation (rigid in this case) by least

squares minimisation of the distances between the cloud of landmarks selected in

the reference image R ({yi}) and their corresponding transformed landmarks from

the target image T1 ({T (xi)}), i.e., by minimising FRE [225, 226]. Thus, FREPA

represents the lowest possible error (in terms of minimum least squares) for the

manually selected sets of landmarks, what justifies the use of Procrustes analysis as the

gold standard rigid transformation. The difference error (∆FRE = FREFB−FREPA)

was also computed for each sample to show explicitly the disagreement between both

rigid registration methods. The transformed sets {TPA(xi)} and {TFB(xi)} for one

tissue sample have been represented in Fig.4.4b with asterisks and circles, respectively.

As can be seen, the agreement between the two rigid registrations in the chosen sample

is very high.

The evaluation of the non-rigid transformation performed in the intensity-based

registration step (Sec. 4.2.6) is not an easy task and no well-established validation

methods exist [201,216]. The comparison with a manual gold standard transformation

based on selected landmarks is not appropriate due to the local deformations produced

by the non-rigid transformation. These spatially uneven deformations may lead

to a deceptive estimation of the errors in the positioning of the manually selected

landmarks, which are actually very difficult to pick due to the use of different slices

of tissue. A usual validation method for non-rigid intensity-based approaches is the

computation of a similarity measure (Sec. 4.2.4) between the target and the reference

images before and after applying the non-rigid registration [216]. In order to avoid

false conclusions, the similarity measure used for this evaluation must be different

from the one (CR) maximised during the registration. In this case, MI was computed

for each sample and its improvement was statistically analysed by pathological group
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and over the whole dataset. In each group, the right-tailed Wilcoxon signed-rank

test [227] was applied, whose null hypothesis states that the differences before and

after applying the intensity-based registration step have zero median, meanwhile the

alternative hypothesis states that the median of these differences is positive. A p-

value was obtained for each group to assess the statistical significance of rejecting the

null hypothesis in favour of the alternative hypothesis of this non-parametric test.

Finally, careful visual assessment remains the first and most important validation

check [201,216] especially in this multimodal registration problem which involves non-

rigid deformations. The best visual results were obtained when CR was considered

as the similarity measure to maximise through the complete registration pipeline. It

must be remarked that the subjectivity in this last assessment is unavoidable due to

the high variability introduced by the non-rigid distortions.

4.2.8 Implementation

All the steps of the suggested registration framework, including its evaluation, were

implemented in MATLAB. As external programs, the IRootLab toolbox [214] was

used to perform the preprocessing of FTIR images and the implementation of SIFT

and RANSAC algorithms included in the software Fiji/ImageJ [228,229] were linked

with in-house MATLAB algorithms through the MIJ Java package [230].

The implemented code was applied to the available dataset (Sec. 4.2.1) in a

computer with a processor Intelr CoreTM i7-4790K @ 4.00GHz and 16GB of RAM

memory, running under Windows 8.1 and with the version R2016b of MATLAB

installed. Fig.4.5 shows the running times in this computer platform versus the size of

the reference image R, in terms of total number of pixels. As described in Sec. 4.2.1,

the FTIR reference image R is composed of different frames of 128 × 128 pixels

which cover the corresponding region of interest in each sample. As can be seen

in Fig. 4.5a, the computation time for the complete proposed framework varies from

around 40 to 360 seconds, with an increasing but not clear relationship with the size

of the reference image R. However, as presented in Fig. 4.5b the running time in

the intensity-based registration step does follow a linear relationship with the size of

R with an estimated slope by least-squares (coefficient of determination R2 = 0.99)

of 1.6 miliseconds/pixel. The variability in the total running time comes from the
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feature-based registration step, whose computation not only depends on the size of

the images to be registered but also on their content. Images with higher number

of relevant structures increases the detection of candidate keypoints and the time for

matching and filtering them with SIFT and RANSAC algorithms (Sec. 4.2.5).
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Fig. 4.5: Running times (in the computer platform described in the main text) vs. number
of pixels of reference image R using the samples of the available dataset for (a) the complete
proposed framework and (b) the intensity-based registration step.

Tab. 4.1 summarises the most relevant parameters of both registration steps,

including the applied values in the available dataset and the risks of using too

low or too high values. The relevance of SIFT parameters in the feature-based

registration step were described in Sec. 4.2.5. Choosing incorrect values of these

parameters would create incorrect or insufficient matches between keypoints, leading

to the computation of wrong rigid transformations or, even worse, the failure of finding

any transformation. In the intensity-based registration step, the main parameter that

can be tuned is α, which controls the smoothness of the applied deformation. The

higher α, the smoother the deformation, at the risk of not compensating sufficiently

for the local spatial differences. On the contrary, the lower α, the more unrealistic

excessive deformations may be applied. Finally, ηmax is mainly related to the chosen

α. In this case, a relatively high value of ηmax was selected to be conservative.

As last remarks, the suggested parameter values should be a good starting point

for other datasets with different sources of variability between images. In the feature-

based registration step, the indicated methodology of exploring different combinations
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Tab. 4.1: Summary of the most relevant parameters of each registration step

Registration
step

Parameter
Applied
values

Risk of
low values

Risk of
high values

Feature-based

r {4, 8} Descriptor with
lacking information

Descriptor with
excessive noisen {4, 6}

s {6, 10} Not enough
keypoints

Many confounding
keypoints

rod {0.8, 0.9} Right matches
discarded

Wrong matches
retained

Intensity-based
α 500

Excessive
local deformation

Insufficient
local deformation

ηmax 400
Optimal solution

not reached
Excessive

computation time

of parameters and choosing the one that maximises a similarity measure between

images (CR in this case) proved to be able to handle satisfactorily different scenarios.

In the intensity-based registration step, no significant changes in the results were

observed in the range between a double and a half of the suggested values.

4.3 Results

4.3.1 Qualitative results

One sample per pathological group has been chosen to present the most relevant

images obtained in the different steps of the proposed registration framework. Fig.4.6

shows the images of the chosen intermediate sample, Fig. 4.7 the normal sample

and Fig. 4.8 the tumoral sample. In these figures, the automatically-detected inlier

keypoints of the feature-based registration step (Sec. 4.2.5) have been marked in the

original target T1 and reference R images. The output target images of the feature-

based T2 and the intensity-based T3 registrations are also shown. These output images

have been independently overlaid with the reference image R to create composite

RGB images whose gray levels denote regions with similar intensities in the two

overlaid images, whereas magenta and green regions correspond to different intensities.

Although the presence of magenta or green in some cases does not mean a bad

alignment (due to the multimodality of the overlaid images), these representations

allow a better visualisation of the alignment produced by each registration step.
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(a) T1

(b) R (c) T2 (d) T3

(e) R-T2 composite (f) R-T3 composite (g) Deformation

Fig. 4.6: Registration results for an intermediate sample. Cyan scale bars represent 200 µm.
(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R
with automatically-detected inlier keypoints. (c) Feature-based registration output image
T2. (d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid
images R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid
deformed with the non-rigid displacement field computed in the intensity-based registration.

Finally, and also for better visualisation of the applied deformation, the figures show

synthetic grids with the same dimensions as T2 and T3, which were deformed with

the non-rigid displacement fields u computed in the intensity-based registration step.

Each squared interval of the undeformed synthetic grids was chosen to occupy 16

pixels both in horizontal and vertical directions.

As can be seen in figures 4.6 to 4.8, the feature-based registration step is capable

of compensating for coarse misalignment (very relevant in the chosen intermediate

sample) and cropping the initial target image to the region of interest of the reference

image. It can be observed that the detected inlier keypoints of the tumoral sample

are placed near the edge of the tissue. In the intermediate and the normal samples,

the keypoints are also identified in the inner region of the tissue, mainly close to the

glandular regions. As the SIFT algorithm detects keypoints at different resolutions,

the ones which appear outside the tissue at this resolution belong to the border of

the tissue at a lower resolution.
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(a) T1

(b) R (c) T2 (d) T3

(e) R-T2 composite (f) R-T3 composite (g) Deformation

Fig. 4.7: Registration results for a normal sample. Cyan scale bars represent 200 µm.
(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R
with automatically-detected inlier keypoints. (c) Feature-based registration output image
T2. (d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid
images R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid
deformed with the non-rigid displacement field computed in the intensity-based registration.

It can also be seen that the intensity-based registration step refines the general

misalignment (better appreciated in the chosen normal sample) and also produces

local deformations that improve the correspondences inside the tissue. These local

modifications can be better viewed in the glands of the intermediate and normal

tissues.

4.3.2 Quantitative evaluation

Tab.4.2 summarises the quantitative evaluation of the results for the 16 Intermediate

(INT), 16 Normal (NOR) and 15 Tumoral (TUM) samples of the dataset, identified by

the code IDsample. The feature-based registration results show: the combination of

SIFT parameters that has been chosen as optimal (IDcomb; see Tab.4.3); the fiducial

registration error for the Procrustes analysis (FREPA) gold standard registration, for

the proposed feature-based registration (FREFB) and the difference between them
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(a) T1

(b) R (c) T2 (d) T3

(e) R-T2 composite (f) R-T3 composite (g) Deformation

Fig. 4.8: Registration results for a tumoral sample. Cyan scale bars represent 200 µm.
(a) Target image T1 with automatically-detected inlier keypoints. (b) Reference image R
with automatically-detected inlier keypoints. (c) Feature-based registration output image
T2. (d) Intensity-based registration output image T3. (e) Composite RGB image of overlaid
images R and T2. (f) Composite RGB image of overlaid images R and T3. (g) Artificial grid
deformed with the non-rigid displacement field computed in the intensity-based registration.

(∆FRE = FREFB − FREPA); all FRE values are expressed in pixels. The intensity-

based registration results show the mutual information between the reference and

the target images before the non-rigid registration (MIbefore), after the non-rigid

registration (MIafter) and the difference between them (∆MI = MIafter−MIbefore); all

MI values are expressed in bits. The raw results presented in Tab.4.2 will be analysed

in the next sections.

Feature-based registration

Due to the variability between tissue sections in the studied samples, 16 combinations

of the SIFT parameters (Sec. 4.2.5) were considered in order to increase the

probabilities of convergence and optimisation of the first registration step. Tab. 4.3

shows the 16 combinations (IDcomb) of the four SIFT parameters (r, n, s and

rod) explored for each sample. The table also presents the number (#) and the
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Tab. 4.2: Quantitative evaluation of all the samples in the dataset.

IDsample
Feature-based registration Intensity-based registration

IDcomb FREPA FREFB ∆FRE MIbefore MIafter ∆MI

INT1 3 5.6 6.2 0.6 1.666 1.743 0.077
INT2 1 8.2 10.4 2.2 1.249 1.410 0.161
INT3 8 6.0 6.5 0.5 1.300 1.701 0.400
INT4 9 3.6 10.8 7.2 1.413 1.377 -0.037
INT5 13 1.8 2.3 0.5 2.310 2.312 0.002
INT6 1 1.2 1.4 0.2 1.870 2.195 0.325
INT7 16 2.8 3.9 1.1 2.273 2.342 0.069
INT8 14 4.7 5.4 0.7 1.713 1.790 0.078
INT9 6 18.4 46.1 27.7 0.948 1.324 0.376
INT10 5 3.1 3.5 0.4 1.478 1.709 0.232
INT11 8 10.1 23.0 13.0 1.470 1.632 0.163
INT12 16 5.2 5.9 0.7 1.322 1.389 0.067
INT13 6 6.3 31.5 25.2 1.174 1.446 0.272
INT14 11 3.2 3.4 0.2 1.065 1.127 0.062
INT15 7 5.2 6.0 0.8 1.435 1.594 0.159
INT16 11 7.8 7.9 0.1 1.418 1.508 0.090
NOR1 8 11.8 15.5 3.7 1.748 1.832 0.085
NOR2 16 10.4 10.7 0.3 1.532 1.759 0.227
NOR3 1 6.5 14.6 8.1 1.549 1.470 -0.079
NOR4 7 4.1 9.6 5.5 1.767 1.856 0.089
NOR5 1 11.8 25.8 14.0 1.245 1.405 0.160
NOR6 13 2.0 2.3 0.3 1.711 1.748 0.037
NOR7 4 1.6 1.6 0.1 1.864 1.894 0.030
NOR8 8 4.1 7.5 3.3 1.575 1.731 0.157
NOR9 6 6.4 93.3 86.9 1.327 1.398 0.070
NOR10 4 3.2 3.3 0.1 1.249 1.289 0.040
NOR11 3 5.5 6.7 1.1 1.674 1.803 0.130
NOR12 1 7.3 9.2 1.9 1.357 1.465 0.109
NOR13 6 16.0 24.4 8.5 1.734 1.658 -0.075
NOR14 5 9.3 11.1 1.7 0.985 1.110 0.125
NOR15 3 6.5 9.0 2.5 1.073 1.243 0.170
NOR16 8 2.7 3.2 0.5 1.635 1.772 0.138
TUM1 8 4.8 5.1 0.3 1.511 1.622 0.110
TUM2 8 6.4 6.6 0.1 1.258 1.407 0.148
TUM3 8 7.7 15.3 7.6 1.073 1.334 0.261
TUM4 8 2.7 3.5 0.8 1.086 1.192 0.106
TUM5 15 5.4 7.6 2.2 1.097 1.166 0.069
TUM6 15 16.2 20.4 4.3 0.844 0.865 0.021
TUM7 15 3.4 3.8 0.3 1.133 1.293 0.159
TUM8 13 10.4 12.4 2.1 1.304 1.473 0.169
TUM9 3 5.1 5.9 0.8 1.367 1.501 0.134
TUM10 15 4.1 4.3 0.1 2.303 2.350 0.047
TUM11 7 7.5 7.8 0.3 1.295 1.542 0.247
TUM12 14 10.6 11.0 0.4 1.710 1.940 0.229
TUM13 - - - - 1.134 1.153 0.019
TUM14 1 6.6 10.0 3.5 1.437 1.576 0.139
TUM15 6 15.5 17.0 1.4 1.049 1.325 0.276
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percentage (%) of samples which each combination has chosen as optimal (in terms

of maximal CR) in the feature-based registration step. As can be seen, although

three combinations of parameters have not been selected as optimal, there is not a

clearly prevailing combination. This fact justifies the exploration of different SIFT

parameters in this dataset. The exact combination (IDcomb) of SIFT parameters

that each sample has chosen as optimal is shown in Tab. 4.2.

Tab. 4.3: Explored combinations, identified by a number (IDcomb), of the four SIFT
parameters (r, n, s and rod) with the number (#) and the percentage (%) of samples which
has chosen each combination as optimal in the feature-based registration step.

IDcomb
SIFT parameters

# %
r n s rod

1 4 4 6 0.8 6 13.0
2 4 4 6 0.9 0 0.0
3 4 4 10 0.8 4 8.7
4 4 4 10 0.9 2 4.3
5 4 6 6 0.8 2 4.3
6 4 6 6 0.9 5 10.9
7 4 6 10 0.8 3 6.5
8 4 6 10 0.9 9 19.6
9 8 4 6 0.8 1 2.2
10 8 4 6 0.9 0 0.0
11 8 4 10 0.8 2 4.3
12 8 4 10 0.9 0 0.0
13 8 6 6 0.8 3 6.5
14 8 6 6 0.9 2 4.3
15 8 6 10 0.8 4 8.7
16 8 6 10 0.9 3 6.5

By using the manually selected landmarks, the fiducial registration error for the

Procrustes analysis FREPA considered as the gold standard registration, the proposed

feature-based registration FREFB and the differences between them (∆FRE =

FREFB−FREPA) were computed for each sample (see Tab.4.2). Fig.4.9 presents the

box plots [231] which summarise the distributions of these error metrics if the samples

are divided into the three pathological groups or if all samples are considered. In these

box plots, whiskers extend to the most extreme data point that is no more than 1.5

times the IQR from the edge of the box. All the values outside the whiskers range

are considered as outliers (red plus signs).

As can be seen in Fig. 4.9a, the FREPA values (blue box plots) are very similar

between pathological groups, being their medians around 6 pixels. Only one outlier
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Fig. 4.9: Evaluation of the feature-based registration step. Box plots for the Intermediate
(INT), Normal (NOR), Tumoral (TUM) and ALL samples groups representing (a) the
fiducial registration error for the Procrustes analysis FREPA gold standard registration
(blue), the proposed feature-based FREFB registration (green) and (b) their differences
(∆FRE = FREFB − FREPA). In both subfigures, the empty regions of the vertical axes
have been cropped to improve the visualisation.

exists for the intermediate group, although three samples (with FREPA values above

15 pixels) are considered as outliers in the group of all samples. A higher dispersion

exists in FREFB values (green box plots) although their distributions are also similar

between pathologies and their median values remain under 10 pixels for all the groups.

Three outliers are present in the intermediate group with values between 20 and 50

pixels and one extreme outlier with a FREFB value over 90 pixels exists in the normal

group.

In Fig. 4.9b, the distributions of the paired differences of errors (∆FRE) show

a bit higher dispersion in the normal group with a median of 2.2 pixels meanwhile

the rest of pathological groups have a median error difference under 1 pixel. If all

the samples are considered, the median of (∆FRE) is also under 1 pixel with a low

dispersion, excluding the 5 outlier samples with (∆FRE) values above 10 pixels. It

must be remarked that there was one tumoral sample (TUM13; see Tab. 4.2) where

no evaluation was performed because no corresponding points could be manually

identified.
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Intensity-based registration

In order to assess the improvement due to the non-rigid transformation provided

by the intensity-based registration, the reference image R was compared with the

initial target image T2 and with the final target image T3. To that end, the

mutual information before (MIbefore; computed between R and T2) and after (MIafter;

computed between R and T3) the last registration step as well as their difference

(∆MI = MIafter −MIbefore) were computed for each sample (see Tab. 4.2). Fig. 4.10

shows the box plots of the distributions of these MI values divided by pathological

groups and considering all the samples. The rules regarding the notches, whiskers

and outliers of these box plots are the same as in Fig. 4.9.
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Fig. 4.10: Evaluation of the intensity-based registration step. Box plots for the Intermediate
(INT), Normal (NOR), Tumoral (TUM) and ALL samples groups representing (a) the mutual
information before (MIbefore; computed between R and T2) the intensity-based registration
(blue), after (MIafter; computed between R and T3) the intensity-based registration (green)
and (b) their differences (∆MI = MIafter −MIbefore).

As observed in Fig. 4.10a, the distributions of MIafter are above their respective

distributions of MIbefore for all the groups. Although these tendencies suggest an

improvement in the alignment of the images, it is not possible to state confidently such

an improvement due to the partial overlap caused by the spread of the corresponding

distributions. The analysis of the paired differences ∆MI removes the within-sample

variability and reduces the source of uncertainty to the spread in these differences

[232]. The distributions of ∆MI (Fig. 4.10b) present predominant positive values
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(with the exception of one intermediate and two normal samples; see Tab. 4.2) with

medians around 0.1 bits in the three pathological groups and a median of 0.125 bits

in the group of all samples. The right-tailed Wilcoxon signed-rank test [227] returned

p-values under 0.001 for all the groups, supporting the alternative hypothesis that the

medians of all ∆MI distributions are greater than 0. This result suggests that there

is a statistically significant improvement in the alignment of the images.

4.4 Discussion

The main novelty of this work is the use of a representative grayscale image

extracted from the FTIR hyperspectral data cube which condenses the most relevant

information of the biological structures of the tissue. The preprocessing to extract

this grayscale image is crucial to get a spatial contrast similar to the grayscale

image obtained from the H&E image. This grayscale image provides higher spatial

information than the binary or the clustered images which were used as inputs

in other previous approaches that treated to solve similar multimodal registration

problems [205, 206]. This increase in local information is essential in this work in

order to tackle the additional problem of aligning different sections of tissue.

In the feature-based registration step a medium level of information at different

levels of resolution is explored by the SIFT algorithm to automatically detect relevant

landmarks. No optimal combination of SIFT parameters clearly prevailed in the

studied samples (Tab. 4.3), which justifies the use of different SIFT values and an

optimisation procedure in terms of CR. This fact also confirms the wide morphological

variability between samples, whose sections of tissue may not even be adjacent.

Regarding the differences in pathology, normal and intermediate samples have more

distinctive references inside the tissue due to the presence of glandular structures,

whilst tumoral tissue contains more heterogeneous structures as the severity of cancer

increases. As a consequence, the automatically detected inlier keypoints in the

tumoral samples are mainly located at the tissue borders, which may be a problem

if not enough border regions are captured in the image. Apart from that, similar

results were obtained for all the pathological groups in the comparison of the feature-

based registration step with a gold standard manual registration. Most of samples

obtained a difference in positioning error ∆FRE under 10 pixels and the median of the
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distribution of all samples was under 1 pixel. These differences may be considered as

quite satisfactory taking into account that the main purpose of the first registration

step is to provide a coarse initial alignment for the second registration step.

The final intensity-based registration step is essential to refine the initial coarse

alignment provided by the detected keypoints and to compensate for the spatial

unevenness between the different sections of tissue. This step is a complement of the

first registration step because it considers the images at the lowest level of information

given by their intensities. The values of the parameters used in this step were

empirically tuned in the studied dataset as a good global trade-off between achieving

a finer alignment and avoiding excessive local deformations. The statistical significant

increase of the mutual information shared between the registered images confirmed

the alignment improvement that had been already visually observed, independently

of the pathological state.

4.4.1 Advantages and limitations

Taking into account the previous considerations, the main advantages of the proposed

method may be divided in the following points:

� Simplification of the multimodal problem: the multimodal problem of finding

the correspondence between the three-valued H&E pixels and the hyper-valued

FTIR pixels is simplified by condensing their information in grayscale images.

It allows the use of registration methods in the grayscale domain, which have

been successfully and efficiently applied in other medical areas.

� Gain of spatial information: using grayscale images augments the spatial

information, compared to other related approaches recently published. In

particular, a simple binarisation is applied in [205], meanwhile previous

independent segmentations by clustering within each image are proposed

in [206]. It must be remarked that in those studies the same tissue section

was measured by FTIR microspectroscopic imaging and then stained to get

the H&E image. Therefore, relatively simple spatial transformations had to be

calculated; specially restricted in [206], where only translations and rotations

up to ±30 degrees were considered due to its computational complexity and
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probably to the uncertainty introduced by the pre-segmentation step. In this

problem, the gain in spatial information provided by the grayscale image is

crucial to compensate for the local spatial differences caused by employing

distinct tissue sections for H&E and FTIR images. In addition, the suggested

approach avoids pre-segmentation steps, which would increase the complexity

of the problem (segmentation is maybe the most challenging task in medical

image analysis) and may accumulate errors coming from the incorrect partition

of corresponding anatomical structures.

� Estimation of local deformations: the computation of non-rigid spatial

transformations by the intensity-based registration step is another improvement

compared to [207], where distinct tissue sections treated with different stains are

aligned only with rigid transformations. The computed non-rigid displacements

are decisive to improve the alignment of more distant sections and compensate

for the deformations due to the handling and cutting of the biopsies.

� Robustness against pathological variability : the methodology is versatile and

robust against distinct sources of variability, including different morphological

configurations depending on the pathological state. This robustness is increased

in the first registration step by considering different combinations of parameters

and maximising a similarity measure (CR).

On the other hand, the main limitations of the framework are:

� Presence of distinctive anatomical structures: the feature-based registration

step tries to find relevant keypoints normally present inside the tissue in normal

or intermediate pathological states, such as glandular structures. However,

the tissue heterogeneity increases with the pathological state and the distance

between tissue sections. Therefore, in those cases the presence of tissue borders

in the recorded images may be crucial to find an optimal spatial transformation.

� Global regularisation in non-rigid registration step: the smoothness of the

displacement field is equally defined in the whole image by the parameter

α. This characteristic may be problematic in samples with uneven local

deformations, for example, due to the presence of different pathological regions.

Therefore, there may be zones where under- or over-deformations may be

computed.
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� Possible unrealistic deformations: because the intensity-based registration

method only considers the low-level information of pixels’ intensities. A possible

solution would be to create a model of tissue deformation with higher levels of

information, which may require challenging tasks such as pre-segmenting inner

tissue structures (e.g. nuclei or glands) or estimating mechanical properties of

the biological material.

� Automatic parameter optimisation in non-rigid registration step: single values

for the parameter α and the related ηmax were fixed for all the samples as a

good global trade-off, but better results may be obtained by individually tuning

these parameters. However, the main challenge is to pick the optimal values

automatically without applying over-deformations. Opposing to the feature-

based registration step, where the best combination of parameters is chosen by

the maximisation of CR, there is no auxiliary reliable metric that may indicate

the optimal configuration for each sample.

4.5 Application

This multimodal registration framework was employed for a preliminary assessment

of the capabilities of FTIR spectra to discriminate normal and cancerous regions in

colorectal tissue samples. Some images and the quantitative results presented here

were kindly provided by collaborators from UoE and GHFT.

This preliminary binary classification of spectra tried to discriminate spectra that

were extracted from glandular regions containing epithelial cells. As was explained in

Sec. 1.1.3, those regions are responsible for the onset of the development of malignant

patterns and their spectra are likely to contain more differential features from the

diagnostic point of view. Nevertheless, the identification of those glandular regions in

the FTIR images is not trivial and two different approaches were explored, as sketched

in Fig. 4.11.

Pathologists are used to interpreting the patterns in the H&E stained images and

they are able to better delineate the glandular regions in those kinds of images (green

boundaries in Fig. 4.11). This first approach uses the developed registration method

to transfer the regions annotated by the pathologist in the H&E images to the FTIR
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space. Hence, a binary mask is obtained, which isolates the pixels (black pixels in

Fig. 4.11) whose spectra must be retained in each image for the later classification.

The main problem of this approach is that several errors are introduced, mainly due

to the use of distinct tissue sections for both imaging modalities.

The second approach to identify the glandular regions is a direct segmentation

based on unsupervised classification or clustering of individual FTIR spectra. An

example of the results obtained by K-means clustering can be seen in Fig. 4.11. As

observed, clustering groups pixels into different categories symbolised by different

colours. Pixels from clusters likely associated with glandular regions are finally

retained for the later classification. Although this alternative offers an objective

delineation, it has several drawbacks as the dependence of the number of groups

(very difficult to state for each sample) and the dependence on the natural tendency

of FTIR spectra from glandular regions to form isolated groups in the spectral feature

space.

Finally, the third approach merges the previous approaches and only the pixels

retained both by registration and clustering are used in the classification.

H&E REGISTRATION

FTIR CLUSTERING

Fig. 4.11: Sketch of the fusion of spatial information obtained by registration and clustering.
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The binary classification used PCA-LDA (Sec.5.2.8) to discriminate the individual

extracted pixels into 2 groups (Normal vs Cancer). In order to better assess the

generalisation capabilities of the discrimination framework, a Leave-one-map-out

cross-validation was performed [186]. That is, alternatively, the spectra belonging

to each tissue sample were considered as the test set, and the classification algorithms

were trained with the rest of spectra. The final assessment metrics were computed

with the predicted labels for those test sets. Sensitivity (Sn) and Specificity (Sp)

were the indices used to evaluate the results from a diagnostic point of view. They

are defined as:

Sn(%) =
TP

TP + FN
· 100, Sp(%) =

TN

TN + FP
· 100 (4.10)

where TP are the True Positives (pixels from cancerous regions correctly classified),

FN are the False Negatives (pixels from cancerous regions incorrectly classified), TN

are the True Negatives (pixels from normal regions correctly classified) and FP are

the False Positives (pixels from normal regions incorrectly classified).

Tab. 4.4 presents the final quantitative results in terms of Sn and Sp together

with the total number of analysed spectra and tissue samples used for each approach

to extract the previous spatial information of the glandular regions. As can be

observed, clustering offered better Sn and Sp values than registration, but their

combination clearly outperformed the individual approaches. Further applications to

larger datasets of tissue samples are currently under development. Those classification

models will also try to discriminate intermediate states of pathology.

Tab. 4.4: Quantitative results of the preliminary discrimation of normal and cancerous
regions in colorectal tissue samples.

Spatial
Information

Sn Sp
Number of
spectra

Number of
samples

Registration 79% 83% 770K 25
Clustering 84% 86% 260K 26

Registration + Clustering 90% 93% 81K 24
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5.1 Introduction

This chapter will present the second main application of this thesis. It seeks to

contribute to the findings about the use of FTIR microspectroscopic imaging as a

tool to improve cancer diagnosis by means of cytopathological samples. The followed

methodology, which fuses techniques described in previous chapters with new methods

from the areas of machine learning and pattern recognition, will be detailed together

with the main reasoning behind each applied step. In addition, the final results will

be quantitatively assessed and thoroughly discussed.

A limiting factor for the use of FTIR spectroscopes in biomedical problems has

been the sensitivity of the systems, which is related to the relatively high acquisition

times needed to obtain measurements of sufficient quality. This problem is of greater

concern for single layers and/or individual cells, which contain less biological material

than tissues and provide lower signals. Therefore, to obtain spectra from cells with

signal-to-noise ratio comparable to tissues, the acquisition time is normally on the

order of two or even four times longer for cells than for tissue. Moreover, the

measurement of cells has normally been a very tedious task because they are frequently

spread out in the sample preparations. These facts have hampered the proper analysis

of cell spectra and prevented the systematic assessment of their discriminative power.

Recently, modern FTIR microspectroscopes have increased their acquisition speed

mainly thanks to the development of larger and more sensitive imaging sensors. The

present work constitutes a proof-of-concept to assess if a modern benchtop FTIR

microspectroscope, together with the existing protocols of sample preparation and

spectral analysis, are ready to provide a reliable diagnostic system using cytological

samples. In particular, the ability of FTIR spectra to differentiate between cells

from cultures of four different skin cell lines, including two melanoma cell lines with

malignant phenotypes, was studied.

5.1.1 Related work

Because of the aforementioned difficulties, the application of FTIR microspectroscopic

imaging to cytopathological problems is considerably less than the large number

of studies and significant advances accomplished in histopathology. Nevertheless,

several research groups around the world have pushed, and still push, forward with

its application and development.



158 Chapter 5. Discrimination of skin cancer cells

Until the advent of FTIR microscopes, cytological studies analysed average FTIR

spectra recorded from large samples of cell pellets, which lacked enough spatial

resolution to accurately distinguish cell subpopulations [233]. The first relevant

studies of cells by combining FTIR spectroscopes and optical microscopy were

performed with synchrotron sources around the beginning of this century [128,143]. In

fact, these kinds of facilities (Sec. 2.5.2) were used in pioneering studies that revealed

one of the main problems in FTIR cytology: Mie and Resonant Mie Scattering

(RMieS) [141,146,160]. Improvements in optical components and sensor sensitivities

extended the use of FTIR microspectrometers with thermal sources to laboratories.

In addition, the introduction of FPA sensors enabled faster measurements of cell

preparations [234].

The most relevant bibliography involving FTIR cell analyses can be found in recent

reviews [114, 235]. Regarding the discrimination of cells from the diagnostic point of

view, commonly referred to as Spectral Cytopathology (SCP), the most important

works using FTIR microscopy are mainly related to Diem’s collaborations [236–243].

All these studies are focused on smear cells directly extracted from different parts

of the patients rather than in cell cultures. They have covered different types

of cancer pathologies: urine [239], cervix [240] or upper respiratory and digestive

tract [241–243]. In most of them, cells were deposited on low-e slides and measured

in transflection. Due to the preparation of the extracted samples, cells were relatively

spread and isolated. A patented method called PapMap [234], which computes a

mean spectrum per isolated cell and discards clumped cells, is used in those studies.

As stated above, most existing studies related to cancer discrimination analyse

cells directly extracted from the patient. In principle, this is the ideal methodology

to develop decision support systems to assist the clinician in the diagnosis of

cytopathological samples. Nevertheless, one of the problems of using these kinds of

samples is the need for an explicit labelling by expert pathologists, which is considered

the ground truth, or gold standard. This process is very time-consuming for the

experts and is also subject to their interpretation. In addition, most of the extracted

cell samples contain debris and undesirable heterogeneities that may diminish the

quality and reliability of the cell datasets. These problems, added to the intrinsic

difficulties when recording FTIR spectra of cells, have resulted in most existing studies

being based on reduced datasets of spectra (e.g., less than 1000 cell spectra). As
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a consequence, their results are generally founded on just qualitative assessments

(e.g., by means of PCA scores plots) or quantitative classifications where no clear

separations of the training and test sets (e.g., by cross-validation) are stated. Hence,

their findings offer limited statistical significance and generalisation capabilities of the

models are very difficult to guarantee, especially given the high-dimensional nature

of FTIR spectra.

5.1.2 Objective

The main objective of this study is to assess the capabilities of FTIR spectra to

discriminate different skin cell lines, comprising two non-tumoral and two tumoral

types. These cell lines were cultured and fixed in a controlled environment before

being measured with a modern state-of-the-art commercial FTIR microspectrometer.

The selected cellular models are rather simple, stable and have significant differences

in tumorigenicity. Cultured cells belong to catalogued cell lines with approximately

constant characteristics within the same populations, which reduces the uncertainty

linked to the establishment of a reliable ground truth. In addition, cell cultures

provide higher spatial densities of cells, which increases the efficiency for recording

larger amounts of data. Therefore, these cultured cells should potentially constitute

a suitable standard model for the evaluation of the processing and classification of

FTIR cell spectra with higher levels of statistical significance than current related

studies.

Nevertheless, some technical problems and additional difficulties arise when

dealing with cell cultures. Some of these particularities introduce confounding

artifacts that may mislead the discrimination. The aim of this work is to apply

different data analysis methodologies that diminish those critical biases and promote

a discrimination based on the genuine biochemical information of the cell lines. Special

efforts will be made to evaluate the generalisation capabilities and robustness of

those methodologies against possible fluctuations in experimental conditions. This

variability, introduced both during sample preparation and spectral acquisition, will

also be considered during the discrimination analysis. Therefore, another goal of this

work is to identify the possible limitations of the current measurement and sample

preparation protocols.
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5.2 Materials and methods

5.2.1 Discrimination pipeline

Fig.5.1 shows the flow diagram with the main steps that were followed to discriminate

skin cell lines, including melanoma and non-melanoma cells, based on their FTIR

spectra. This process starts with the preparation of cultured samples of catalogued

skin cell lines and their measurement with a modern FTIR microspectrometer in order

to obtain the hyperspectral images. From these images, the pixels associated with

cells were separated from the non-cell pixels so that only useful spectra were retained

for subsequent steps.

FTIR spectra extracted from the retained pixels were individually preprocessed by

different techniques to normalise their values and remove unwanted variations which

may mislead the posterior quantitative analysis. A mean spectrum was computed

for each cell in order to reduce the complexity of the dataset and try to mitigate

remaining undesirable effects in the preprocessed spectra of individual pixels, such as

random noise. The anomalous or extreme values in the dataset of mean cell spectra

were filtered out to promote stability and reduce bias in the dimensionality reduction

and classification algorithms.

An exploratory analysis was performed in the resulting dataset in order to study

the main trends within the data. Finally, the kept mean cell spectra went through a

process of feature extraction and supervised classification where different alternatives

were explored, too. This final process of classification was subject to a methodology

called nested Cross-Validation (CV) consisting of two loops, which separates the

training and testing subsets of spectra in order to avoid over-fitting and give a reliable

measurement of the performance of the constructed classification algorithms. All of

these steps will be described in detail in the following sections.

5.2.2 Hyperspectral images

Cell culture and sample preparation

Tab. 5.1 summarises the cell lines used in this study (A-375, HaCaT, NIH-3T3,

SK-MEL-28). With the selection of these cell lines the two major cellular skin
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Fig. 5.1: Flow diagram of the main steps applied for the discrimination of skin cells.

constituents, keratinocytes and fibroblasts, together with two skin cancer cell types

are represented (Sec.1.1.6). These cell lines were obtained from CLS Cell Lines Service

GmbH (CLS) [244] and Leibniz Institute-German Collection of Microorganisms and

Cell Cultures (DSMZ) [245]. All cell lines were individually cultured in Dulbecco’s

Modified Eagle Medium (DMEM - high glucose, Sigma-Aldrich) supplemented with

10% Fetal Bovine Serum (FBS Good, PAN-Biotech) and 2 mM L-Glutamine (Lonza)

at 37 ◦C and 5% CO2. Cells were grown to near confluence within two to three days

(A-375, NIH-3T3) or five to seven days (HaCaT, SK-MEL-28) and then transferred

to new culture plates. All cell lines were regularly tested for mycoplasma infection by

Polymerase Chain Reaction (PCR).

Tab. 5.1: Information about the cell lines used in this study.

Name A-375 HaCaT NIH-3T3 SK-MEL-28

Species Homo sapiens Homo sapiens Mus musculus Homo sapiens
Origin Skin Skin Embryo Skin
Type Melanoma Keratinocytes Fibroblasts Melanoma

Provider CLS CLS DSMZ CLS
Reference 300110 300493 ACC 59 300337
Cells/well 1.5 · 105 2 · 105 1 · 105 1 · 105

Incubation time one day two days one day one day
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CaF2 windows (grade VUV, 12.5 × 12.5 mm in size and 1.5 mm thick) were

obtained from CRYSTAL GmbH [246]. Both sides of the windows were optically

polished. The windows were decontaminated and stored in pure alcohol before use.

Before seeding cells, CaF2 windows were placed in a 12-well plate, washed twice with

Phosphate Buffered Saline (PBS) and kept in cell media. Cells were counted and the

cell suspensions were dropped onto the windows and incubated at 37 ◦C and 5% CO2.

Densities (in cells/well) and incubation times are shown in Tab. 5.1.

Once the cells had built a confluent layer on the CaF2 window, they were washed

twice with PBS, fixed with 1% glutaraldehyde/PBS for 30 minutes and washed

again. The fixed samples were dehydrated by carrying out an ascending ethanol

series. Finally, the samples were air-dried and stored in order to perform posterior

measurements. More detailed information about the cell culture and the sample

preparation can be found in [247–249].

FTIR measurements

The measurements were performed with the micro-FTIR spectroscopic imaging

system described in Sec.2.5. Six frames per sample were taken and combined, covering

a horizontal and vertical area of around 2.1 × 1.4 mm2 that included the whole cell

culture. The measurements were carried out in transmission mode and absorption

spectra were acquired between 1000-3900 cm−1 with a wavenumber interval of 4 cm−1.

The images of the reference backgrounds (taken from regions of empty substrate)

and the images of the cell samples were created by co-adding 256 and 128 scans,

respectively.

Batches definition

Cells from each cell line were independently cultured and later seeded and fixed

separately in specific regions of a CaF2 window forming a cell sample. The separation

of these regions were delimited by silicone inserts or moulds with four rectangular

holes that were attached to the CaF2 window before cell seeding and were removed

after fixation. Fig. 5.2 shows a picture of one of these inserts attached to a square

CaF2 window.

Fig. 5.3 shows the representative grayscale images obtained from the FTIR
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Fig. 5.2: Photography of the inserts or moulds used to separate different cell cultures in
the same CaF2 window.

hyperspectral images of all the cell samples that were prepared and measured for

this study. As can be observed, three samples per cell line were measured giving a

total of twelve cell samples. These samples have been arranged in different batches

according to preparation and measurement criteria:

� The samples within Batch 1 were cultured at the same time and later seeded

and fixed in the same CaF2 window. They were also measured during the same

day in the FTIR microspectrometer.

� The samples within Batch 2 and Batch 3, with the exception of the samples of

HaCaT cell line, were cultured at the same time (around one year and a half later

than cells from Batch 1 ) and were also seeded and fixed in two separate CaF2

windows. HaCaT samples of Batch 2 and Batch 3 were later cultured (3 months

later) and seeded and fixed in a separate CaF2 window due to problems during

the preparation of that cell line in the original CaF2 windows of those batches.

Finally, all the samples from Batch 2 and Batch 3 (including HaCaT cells)

were measured during the same day in the FTIR microspectrometer, around

nine months after acquiring the images of Batch 1.

Both preparation and measurement factors introduce variations in the FTIR

spectra. Those variations will determine the strategies of the quantitative analysis

and will also have influence in the obtained results.
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A-375 HaCaT NIH-3T3 SK-MEL-28

Batch 1

Batch 2

Batch 3

Fig. 5.3: FTIR grayscale images of the measured samples of skin cultured cell lines. Images
from different cell lines are arranged by columns and from different batches by rows. The
red dotted line reminds that images of HaCaT cells from Batch 2 and Batch 3 were cultured
in a separate CaF2 window. Green scale bars represent 1 mm.

5.2.3 Spectra extraction

The first step in the analysis of the FTIR hyperspectral images is to separate pixels

containing cell structures from those containing only substrate. Those different

regions can be distinguished when a representative grayscale image is computed from

the FTIR data cube in a similar way that was described in Sec. 4.2.3. In this case,

the spectral window was cropped to the region 1610-1690 cm−1, which contains the

strongest peak of the spectrum (Amide I) and, therefore, the influence of noise in

the final image is reduced. The standard deviation (Eq. 4.2) of the cropped spectral

region was computed for each pixel and the range of values obtained in the whole

image was linearly transferred to the intensity grayscale range of 0-255, allowing 0.5%

of saturated pixels in both intensity endpoints to consider the impulsive noise and

dead pixels. Finally, the intensity range was inverted in order to mimic the intensity

pattern of the white light images (light in the substrate and dark in cells). This

methodology was used to create the images presented in Figs. 5.3 and 5.4a.

In these grayscale images, substrate pixels have the highest (lightest) grayscale

levels, nuclear regions have the lowest (darkest) ones and pixels mainly associated
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Fig. 5.4: Illustration of automatic binarisation by Otsu’s method. (a) FTIR grayscale
image. (b) Binary mask. (c) Histogram of the grayscale levels of image (a) and the automatic
thresholds computed by Otsu’s method. The threshold 2 (green vertical line) was used to
create the binary mask (b). Green scale bars of images (a) and (b) represent 500 µm.

with cytoplasm have intermediate grayscale levels. This behaviour is reflected in the

histogram of the grayscale images (Fig. 5.4c). Attending to the characteristics of

the histogram, the Otsu’s method [250] can be used to automatically compute two

thresholds that separate the three classes of pixels (nucleus, cytoplasm and substrate).

The highest threshold (threshold 2 in Fig.5.4c) can be used to compute a binary mask

that separates the regions mainly containing substrate from cell structures (Fig.5.4b).

These binary masks were computed individually for each cultured sample and the

spectra of cell structures (black pixels in Fig. 5.4b) were retained for next steps of the

discrimination pipeline.

5.2.4 Spectral preprocessing

As was explained in Sec. 3.2, spectral preprocessing is recognised as a key step in

quantitative analysis of FTIR spectra, especially for cytological studies. In order

to better understand the need of spectral preprocessing, Fig. 5.5 shows several

examples of raw spectra corresponding to pixels from different regions of the four

studied cell lines. Those pixels, whose effective size is 5.5 × 5.5 µm2, have been

overlaid on independent white light images of higher resolution aligned with the FTIR

hyperspectral images.

As can be observed, even spectra from nearby pixels in the same image can be

highly variable. Most of the gross variations are mainly determined by differences in

concentrations and optical path lengths (thickness), which commonly result in offsets
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and multiplicative factors. Nevertheless, more complex distortions can be observed

in some cases, showing the pattern distinctive of Mie and Resonant Mie Scattering

(RMieS) (e.g., complex baselines, lower ratio Amide I-Amide II peaks, derivative-like

depressions beyond the Amide I peak), which were thoroughly described in Secs. 2.6

and 3.2. By looking at the white light images, those complex spectra can be associated

with regions where the cells are more compact and rounded. Hence, they have

characteristics that produce Mie scattering phenomena.

This morphological heterogeneity, which gives rise to critical variations in the

FTIR spectra, can be related to different stages of the cell cycle, as was demonstrated

in previous studies [143, 251–253]. Those studies showed that cells in stages G2 and

close to mitotic phase M (Sec. 1.1.2) have more compact structures that increase the

presence of RMieS artifacts. They also demonstrated that FTIR spectra from cells of

the same cell type could be discriminated attending to their stage in the cell cycle. In

addition, some other cells may have entered into apoptosis, due to the high levels of

cell stress that can appear locally in the cell culture, acquiring compact and rounded

configurations too.

The main aim of spectral preprocessing is to normalise and standardise the spectra

so that they can be categorised based on biochemical properties, rather than unwanted

physical properties (thickness, concentrations, morphology, etc) that increase the

spectral variability and presumably can confound the discrimination. The raw spectra

together with four different preprocessing methods that were described in Sec.3.2 have

been considered in order to study their possible influence in the discrimination of cell

lines:

� Raw : the spectra were not further preprocessed.

� Min-Max : Min-Max normalisation.

� SNV : Standard Normal Variate [180].

� DiffSG1 : 1st order differentiation by Savitzky-Golay (SG) filter (2nd order

polynomial and 19 fitting points) and vector normalisation.

� RMieS-EMSC : Resonant Mie Scattering-Extended Multiplicative Signal Cor-

rection algorithm after 20 iterations. As was shown in Sec. 3.2.1, 20 iterations
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is a conservative number that generally gives a stable correction. Neverthe-

less, it took 4 weeks to individually preprocess all the initial extracted spectra

(∼480000) in the computer platform that was described in Sec. 4.2.8, which si-

multaneously ran the current version of the RMieS-EMSC algorithm in 4 parallel

MATLAB sessions.

Traditionally, the first three preprocessing methods (Min-Max, SNV and DiffSG1)

have been mainly applied in FTIR spectroscopic measurements of tissues, although

they have been also employed for cell spectra [177]. Nevertheless, since the

characterisation of RMieS artifacts and the publication of RMieS-EMSC algorithm,

it has generally become the default preprocessing method in cytological studies.

In all cases, the spectral range was cropped to the fingerprint region (1000-

1800 cm−1). This restriction was applied to the raw spectra and before preprocessing

except for the case of RMieS-EMSC, whose spectra were cropped after preprocessing

so that the RMieS baselines could be modelled and corrected more accurately with

the information of higher wavenumbers (Sec. 3.2.1).

5.2.5 Mean cell spectra

The vast majority of cytological studies based on FTIR hyperspectral images compute

a mean or average spectrum per cell in order to reduce complexity and increase the

robustness of later analyses. These mean spectra are computed after (instead of

before) preprocessing the raw spectra of individual pixels independently in order to

compensate for uneven spectral distortions due to the heterogeneous spatial properties

of cells [252].

This approach is in line with object-based or object-oriented classification

approaches, which are very popular in the analysis of hyperspectral images in

remote sensing [254]. Object-based approaches incorporate a certain level of spatial

information that generally improves the performance of pixel-wise or pixel-by-pixel

classification.

In order to compute mean cell spectra, it is essential to delimit the regions of pixels

belonging to each individual cell. The binarisation method described in Sec. 5.2.3

follows a similar philosophy to the so-called PapMap method [234], which was
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designed to identify isolated cells from smears preparations and discard clumped

cells. Nevertheless, unlike smears of cells, which are normally scattered and isolated,

cultured cells tend to grow into clusters due to spatial constrictions. Therefore,

segmentation methods [255,256] more advanced than a simple binarisation are needed

to separate the regions which belong to single cells. The segmentation of cells was

performed with a methodology similar to the one proposed by Filik et al. [257], which

applies the marker-controlled watershed transformation.

Watershed transformation

The watershed transformation is one of the most used techniques of mathematical

morphology [255, 258, 259] and also one of the most used methods to segment cells

and nuclei in different microscopy modalities [260,261]. It was firstly defined in [262]

and the most efficient algorithmic implementation based on hierarchical queues was

found in [263].

The watershed transformation considers a grayscale image as a topographical

surface whose height is determined by the grayscale intensity level of each pixel and

which is composed of different local maxima and minima. Fig. 5.6a shows the main

elements of this analogy. The local minima of the image are surrounded by lighter

pixels that form catchment basins. The watershed transformation supposes that a hole

exists at each local minimum and that the surface is flooded from these holes Fig.5.6b.

As the water level increases, the catchment basins get filled and the water tries to be

transferred between them. In order to prevent that merging, a kind of dams are built

at each contact point. When the water level reaches the global maximum height, the

union of all constructed dams constitute the watershed lines, which indicate the limits

of the catchment basins.

In order to illustrate this segmentation method, Fig. 5.7 shows an example where

the input grayscale image (Fig. 5.7a) can be considered as a topographical surface

(Fig. 5.7b). The watershed transformation segments the input image in different

connected objects limited by the watershed lines (Fig. 5.7c). The number of final

segmented objects (four in the considered example) is defined by the number of

catchment basins existing in the input image, which in turn is determined by the

number of connected local minima.
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Minima

Topographical Surface 
(Grayscale Level)

Watershed 
Lines

Catchment
Basins

(a)
Minima

Dams in
ConstructionWater

Level

(b)

Fig. 5.6: Analogy of the watershed transformation. (a) Topographical patterns of a
grayscale image. (b) Construction of the watersheds by flooding. Adapted from [264].

(a) (b) (c)

Fig. 5.7: Example of segmentation with the watershed transformation. (a) Input
grayscale image. (b) Representation of the grayscale image as a topographical surface.
(c) Final segmented image with the watershed lines in red, delimiting four independent
regions. Reproduced from [265] with permission by courtesy of Serge Beucher (Center of
Mathematical Morphology).

Marker-controlled watershed

One of the major problems of the watershed transformation is over-segmentation.

As described before, each local minimum of the input image will give rise to a

segmented region. Apart from being sensitive to local irregularities and minima

due to noise, the final segmentation may produce excessive undesired divisions. The

marker-controlled watershed, firstly defined in [258], is the major enhancement of
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the watershed transformation and tries to prevent the over-segmentation problem by

introducing the notion of markers of the objects to be segmented. Each marker is a

set of connected pixels that defines a specific region in the image. The modification

consists of imposing the marker regions as global minima in the input image. During

the flooding of this modified image, the water springs up only from these new global

minima and the constructed dams enclose the modified catchment basins. Thus, a

segmented region arises from each selected marker.

As an example, Fig. 5.8a shows the same image that was segmented in Fig. 5.7

with three regions of connected pixels selected as markers in red. When comparing

the final segmented image (Fig. 5.8b) with the result of the regular watershed

transformation (Fig. 5.7c), it can be observed that the vertical watershed line that

divided the two central objects has disappeared. It can also be checked that the

number of final segmented objects in the marker-controlled watershed is determined

by the number of defined markers (three in this example).

(a) (b)

Fig. 5.8: Example of the marker-controlled watershed. (a) Input grayscale image with three
regions of connected pixels selected as markers in red. (b) Final segmented image with the
watershed lines in red. Reproduced from [265] with permission by courtesy of Serge Beucher
(Center of Mathematical Morphology).

In many situations, the aim of the segmentation task is to isolate specific objects in

the images. In those cases, the concept of foreground and background markers arises,

which are regions defined inside and outside the objects of interest, respectively. The

methodology to find or define these two types of markers may be different, but all of

them finally act as global minima in the modified input image to segment.
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Often, the objects of interest have relatively uniform intensities and their borders,

identified as regions of high local contrast, become local maxima in the gradient

image. In those cases, the gradient image is used as the input image of the watershed

transformation and the final watershed lines tend to match the borders of the uniform

objects. However, the use of the gradient image is not mandatory and the selection

of the input image will depend on the specific problem. The same reasoning applies

to the markers, whose definition is also problem-dependent.

Cell segmentation

As described above, three elements must be defined to segment cells with the marker-

controlled watershed, which in this case are:

� Input image: the FTIR grayscale image that was described in Sec. 5.2.3.

� Outer markers: the binary mask of substrate, also described in Sec. 5.2.3, after

being processed by morphological erosion with a disk of radius 1 as structuring

element [255,259].

� Inner markers: the regional minima of the FTIR grayscale image outside the

binary mask of substrate, which are mainly associated with the nuclear regions

that have higher absorbance than their neighbourhood.

A cropped image per cell line has been selected to illustrate the elements and

results of the cell segmentation in Fig. 5.9. The described segmentation method

gave good overall results for the four studied cell lines, which have different growth

behaviour. HaCaT cells presented the major difficulties because they tend to form a

layer with very close cells, which are not well resolved in some regions at the measured

spatial resolution (effective pixel size of 5.5 × 5.5 µm2). Finally, regions with less

than 5 and more than 100 pixels were rejected in order to correct over- and under-

segmentation respectively.

5.2.6 Outliers removal

Outliers can seriously bias and deteriorate the performance of the learning framework.

The correct way of proceeding with outliers is attempting to determine and address

their causes in order to detect possible failures in the followed methodologies [174].
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(a) A-375

(b) HaCaT

(c) NIH-3T3

(d) SK-MEL-28

Fig. 5.9: Illustration of cell segmentation. An example for each cell line is shown
by rows: (a) A-375, (b) HaCaT, (c) NIH-3T3 and (d) SK-MEL-28. Column 1: FTIR
representative grayscale image. Column 2: White light image aligned with the FTIR
image. Column 3: Markers of the marker-controlled watershed segmentation overlaid on
the white light image: inner markers coloured in green and outer markers coloured in red.
Column 4: Final segmentation mask overlaid on the white light images: isolated cellular
regions are defined by different pseudo-colours. Green scale bars represent 200 µm.
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In this problem, there are many sources that may cause anomalous samples, starting

from the cell culture preparation, the acquisition of spectra and finally in the previous

steps of the classification pipeline (e.g., spectral artifacts introduced or not corrected

during preprocessing). Due to the complexity of the problem, the limited technological

maturity of FTIR microspectroscopic imaging and the lack of standardised and

universally-recognised analysing protocols, it is reasonable to remove all possible

perturbations that may be caused by outliers and leave the (difficult) task of analysing

outliers for future studies.

The whole dataset of mean spectra per segmented cell region was studied to detect

outliers. For this task, the preprocessing option RMieS-EMSC was taken as a reference

to define those cell regions whose mean spectra are anomalous. This process was

performed by using PCA decomposition (retaining the first PCs that accounted for

99% of total variance) and Mahalanobis distance in the same way that was described

in Sec. 3.3.1. The cell regions with mean spectra preprocessed by RMieS-EMSC and

detected as outliers were discarded in all the preprocessing alternatives described

in Sec. 5.2.4 in order to keep the same set of cells for the final analysis.

5.2.7 Feature extraction

Feature extraction techniques aim to reduce the number of variables included in the

classification model. It is essential to reduce the complexity and increase the stability

of discrimination models. The problem of high dimensionality in hyperspectral images

is well-known in the field of remote sensing [266,267], commonly receiving the name of

Hughes phenomenon [268]. In summary, this phenomenon states that as the number

of dimensions increases, the effectiveness of the classifier decreases. The main reason is

that the number of parameters involved in the classification model increases with the

number of dimensions and, for a fixed sample size, the uncertainty in the estimation

of those parameters become wider [266]. PCA and PLS (Sec. 3.3) were the methods

used to reduce the dimensionality of FTIR spectra and try to prevent this problem.

5.2.8 Supervised classification

Supervised classification is the task of pattern recognition [184, 185] or machine

learning [186] whose goal is to create models capable of predicting or inferring the
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labels, classes or groups of the samples from a dataset, taking as inputs a set of

measured features. These models must be constructed or trained with a set of samples

whose labels or classes are known. In this problem, the features are the scores of the

components retained in the feature extraction step. These scores are used to predict

the label, i.e., the cell line, of each sample or cell. As there are four different cell lines,

this study can be categorised as a multiclass classification problem. Two main aspects

must be defined in the supervised classification step, namely the specific classification

algorithm and the measurement used to assess its performance.

Classification algorithms

Three classification algorithms or techniques, very popular in the chemometrics

field [182, 183], have been explored: Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA) and Partial Least Squares Discriminant Analysis (PLS-

DA). The main difference is in the definition of the class boundary; hence, these three

alternatives have been considered in order to diminish their possible influence in the

final discrimination.

Linear discriminant analysis

LDA assumes an underlying multivariate Gaussian distribution for each class or

group, which is mainly defined by a mean vector and a covariance matrix. Those

two parameters, estimated with the training samples, are used to create discriminant

rules based on posterior probabilities [186]. Hence, a new object or sample will be

assigned to that class with the largest posterior probability based on the values of its

features [182]. The feature space is divided into different regions separated by decision

boundaries, which correspond to those feature values where the posterior probabilities

of distinct classes are equal.

In the special case of LDA, all the classes are considered to have the same

covariance matrix. As a consequence of this assumption or simplification, the

boundaries between classes created in the feature space are linear. That is, the specific

regions of the feature space assigned to each cell line are separated by hyperplanes.

PCA will be used as the method for dimensionality reduction in the feature

extraction step and the scores of the retained PCs will be the features used by LDA.

This combination will be denoted by PCA-LDA.
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Quadratic discriminant analysis

QDA follows the same methodology of LDA, but allows each class to have its own

covariance matrix. Therefore, QDA can potentially represent classes with different

variance or spread better than LDA. The main consequence is that decision boundaries

are no longer linear but quadratic. This increment in complexity increases the risk of

over-fitting but in some problems, as in biological applications, this additional level

of sophistication may provide better results [183]. This classifier will also be used in

conjunction with PCA and their combination will be referred to as PCA-QDA.

Partial least squares discriminant analysis

PLS-DA [197,269] is a technique extensively used in chemometrics, which directly

employs the latent variables computed by PLS (Sec. 3.3.2) to discriminate different

classes. Following the reasoning and notation that was described in Sec. 3.3.2, once

the PLS model is built, it can be used to predict the values of the response variable

y of new samples, which in principle is a continuous variable. In particular, the

independent variables X and the response variables y can be related by the following

expression [183]:

y = X · b + f = T · qT + f (5.1)

where b is a regression coefficient vector of dimensions J×1. This vector can be used

to predict the response vector ŷ of new samples from their measurements matrix or

independent variables X̂ by:

ŷ = X̂ · b (5.2)

The estimation of b can be obtained through the pseudo-inverse of X (denoted

X+) as follows:

b = X+ · y = W · qT (5.3)

where W is the matrix whose columns contains the weight vectors of the PLS

components (Sec. 3.3.2).

In PLS-DA, the response or dependent variable y of the training samples only

contains discrete values that codify different classes or labels. In particular, the

implementation based on PLS1 only allows to discriminate two classes, which are

normally coded as +1 and -1 in y. Therefore, PLS-DA based on PLS1 is a pure two-
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class or binary classifier and its extension to multiclass problems is less straightforward

than in LDA and QDA. Here, the one-versus-all strategy was adopted, which consists

of creating as many binary classifiers as the existing classes (4 in this case). During the

training of each classifier, alternatively, the samples belonging to one of the classes are

considered as the positive class (coded by +1) and the samples of the rest of classes are

grouped together to form the negative class (coded by -1). When a new test sample

arrives, a specific continuous value of the response variable ŷ will be computed for

each classifier by using Eq. 5.2. The predicted label is finally assigned to that class

which was considered as positive in the classifier that provided the highest predicted

value ŷ. The continuous nature of the ŷ variable allows to perform this judgement of

superiority between binary classifiers.

Classification boundaries

The described classification algorithms produce different decision or classification

boundaries by using the features of the training dataset. In order to illustrate these

differences, Fig.5.10 shows the areas assigned to each cell line and their limits created

with the dataset of 300 skin cell spectra that was presented in Fig. 3.6 and Fig. 3.15,

both for raw spectra and spectra corrected by RMieS-EMSC. In these examples, the

inputs or independent variables have been simplified to only two features (the two

first PCs) so that the boundaries can be easily visualised.

As can be checked in the figures, both LDA and PLS-DA create linear boundaries

(straight lines in the input space) meanwhile QDA generates more complex limits

with quadratic nature (e.g., elliptic, parabolic or hyperbolic curves). The boundaries

created by LDA and PLS-DA are very similar in these simplified cases, but their

differences increase when a higher number of PC is retained. In those input spaces

of higher dimensions (e.g., more than 3), the linear boundaries created by LDA and

PLS-DA become hyperplanes and the quadratic boundaries of QDA generalise to

quadric hypersurfaces.

Assessment metric

Another important component in classification is the metric for its evaluation. As the

problem in hand is a multiclass problem, a suitable assessment metric is the overall
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Fig. 5.10: Example of boundaries computed by different classification algorithms when
retaining the two first PCs in the dataset of 300 skin cell spectra that was presented in
Fig. 3.6 and Fig. 3.15, both for raw spectra (upper row) and spectra corrected by RMieS-
EMSC (bottom row). (a),(d) LDA. (b),(e) QDA. (c),(f) PLS-DA.

accuracy [266,270], which condenses the global classification performance of all classes.

As will be presented later (Tab.5.2), a small imbalance exists between the four classes

of the dataset, reaching almost a 3:1 ratio in some cases (e.g., NIH-3T3/HaCaT in

Batch 2, see Tab. 5.2). To avoid favouring the larger classes [271, 272], the Balanced

Accuracy (BA) was used instead of the overall accuracy to select the optimal models

and to assess the final multiclass classifications. BA is the mean of the accuracies for

each class and is defined as:

BA =
1

Nc

Nc∑
i=1

cii∑Nc

j=1 cij
(5.4)

where Nc is the number of classes (4 in this case) and cij is the number of spectra of

class i classified as class j. Hence, cii is the number of cell spectra correctly classified

for the class i.
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5.2.9 Nested cross-validation

One of the main concerns in classification is to obtain a reliable measure of the

performance of the developed models. In order to avoid, or at least diminish, over-

fitting and assess generalization ability of the classifier, the test and training sets

of spectra must be very well defined and separated during the whole process of

training, optimisation and assessment of the learning framework [183,186]. This task

was accomplished by applying a hierarchical Cross-Validation (CV) approach, called

nested CV, which consists of two loops: an outer loop for assessing the constructed

classification models and an inner loop for training and optimising those learning

models. Following this structure, two cross-validation alternatives were applied with

the aim of checking the dependency of the discrimination capabilities of FTIR spectra

on sample preparation and measurement conditions.

Outer loop: model assessment

In classification problems it is relatively easy to obtain high classification success

rates even starting with random data [183]. This phenomenon, normally referred to

as over-fitting, makes possible to get very good or even perfect discrimination on the

dataset used to train the classification models, but generally offers poor prediction

capabilities for new unseen samples [273]. In order to prevent this, in the outer loop a

group of mean cell spectra called test set is separated from the rest of the dataset and

does not take part during the construction of the learning models performed in the

inner loop. Once the models are finished, the spectra from the test set act as unseen

samples and they are used to assess the models constructed in the inner loop. This

technique tries to give an estimate of the generalisation capabilities of those models.

Inner loop: model selection

The remaining samples not considered as test set in the outer loop are normally

referred to as training set. The classification models have a series of parameters

which must be tuned with that training set. These parameters can be divided into

those tuned with the statistics of the samples, e.g., the specific weight given to a

variable, and those whose values must be explicitly imposed by the expert, which

are sometimes called hyperparameters. As the hyperparameters also influence the

performance of the learning model, the selection of their values must be optimised.
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In this case, the only hyperparameter is the number of components K retained

during the feature extraction step, which determines the complexity of the model.

In order to optimise its value and, again, reduce the risk of over-fitting, the original

training set is alternatively subdivided into two subsets inside the inner loop of CV.

The first subset of samples, normally called validation set [183,186], plays the role of

independent set, which assesses the performance of the classification models trained

with the samples of the second subset. In this process, all the samples are considered

once inside a validation set and a global measure of performance in terms of BA can

be computed for each value of K. As an illustration, the left plot of Fig.5.11 presents

two curves with the evolution of BA with K for different validation sets.
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Fig. 5.11: Sketch of the optimisation of the number of retained components K. The left
plot presents two curves (yellow and blue) with the evolution of the Balanced Accuracy (BA)
with K for different validation sets. The right plot presents the same curves after applying
the transformation to the normalised space where the distances to the ideal performance
point are computed. In both plots, the ideal performance point and the selected optimal
points for each curve have been symbolised as shown in the legends.

One straightforward way to optimise K would be to take the value corresponding

to the maximum of those computed curves. However, in cases like the curves presented

in Fig. 5.11, taking the maximum value would näıvely increase the complexity of the

model. The Hughes phenomenon (Sec.5.2.7), together with the fact that the presence

of noise increases with the number of retained components (Sec. 3.3), recommend

to keep the value of K as low as possible. Therefore, an optimisation procedure

was developed to try to find automatically a compromise solution between the
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maximisation of BA and the minimisation of K. The key concept of this procedure

is that the ideal point, for a given maximum performance, would be the point

(Kmin,BAmax). Therefore, the optimal point inside the computed curve would be

the closest one to that ideal point. As the variables of the two original axes (K,BA)

have different nature, they must be normalised in order to give them a fair weight.

Mathematically, the coordinates (ξ, η) of this referenced and normalised space are

computed by using the maximum and minimum along each original axis:

ξ =
K −Kmin

Kmax −Kmin
(5.5a)

η =
BA− BAmin

BAmax − BAmin
(5.5b)

As can be seen in the right plot of Fig. 5.11, the performance curves are

distorted in the normalised space and the ideal performance point becomes the point

(ξideal, ηideal) = (0, 1). In this new normalised space, the optimal number of retained

components Kopt is finally computed as the value of the curve that minimises the

distance to the ideal point dopt. That is:

Kopt = arg min
K

{dopt} (5.6)

where

dopt =

√
(ξ − ξideal)2

+ (η − ηideal)2
(5.7)

The optimal points for each curve of Fig. 5.11 are symbolised by asterisks. In the

final applications, the values of minimum (Kmin) and maximum (Kmax) number of

retained components were respectively fixed to 1 and 25. The final step in the inner

loop consists of constructing the classification models by using the computed Kopt

values and the whole original training set. Those optimised models are taken to the

outer loop to assess their generalisation performance with the isolated test set.

Cross-validation alternatives

Once the CV method has been chosen, it is important to decide how the test, training

and validation sets will be created from the whole dataset of mean cell spectra

that were retained after the removal of outliers. The prediction capabilities of the

classification models are determined by the similarities between the spectra from the
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test sets and the training sets. In order to assess those similarities, two approaches

were followed to separate the mean cell spectra of each kind of set:

� One-Batch-Out CV: consecutively, the spectra extracted from the images of

one batch (Fig. 5.3) are considered as the test set in the outer loop and the

classification algorithms are trained with the spectra of the other batches in

the inner loop. The process is repeated so that each batch is considered once

as the test set. The results for each test batch are combined to provide the

final performance measurement (a single value of BA). The idea behind this

approach is to assess the uniformity of cell lines between batches and to check

if there may be some critical factors for correct discrimination (e.g., the sample

preparation procedure or the measurement conditions).

� In-Batch CV: as shown in Fig. 5.12 for Batch 1, each image is split in 5 vertical

stripes with an equal number of segmented cells. Each vertical stripe of the same

colour is considered as the test set and the remaining stripes form the training

set. This is repeated until all stripes have been in the test set once. The main

reason to group cells in vertical stripes, instead of randomly choosing them

for the test sets, is to try to construct synthetic subimages where the spatial

variability within the same cell culture is also assessed. When this process is

finished for one batch, it is repeated for the remaining batches independently.

The results for each test stripe and batch are finally combined to provide the final

performance measurement (a single value of BA). The aim of this approach is

to assess the discrimination between cell lines inside each batch and to compare

the performance with the One-Batch-Out CV approach.

A-375 HaCaT NIH-3T3 SK-MEL-28

Batch 1

Fig. 5.12: Sketch of the In-Batch CV approach. Each image is split in 5 vertical stripes
with an equal number of segmented cells; CV is performed independently within each batch
by alternately considering one of the stripes from each cell line as the test set and the rest
of stripes as the training set. Green scale bars represent 1 mm.
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5.3 Results

5.3.1 Exploratory data analysis

Before presenting the final classification results, it is useful and even advisable to

perform an exploratory analysis of the data in search for trends or patterns that may

justify the outputs of the classification. This analysis is centred on the inputs of the

final classification module, i.e., the mean cell spectra after outliers removal (Fig. 5.1).

This task consists of visualising the main outputs of descriptive statistics and PCA.

Descriptive statistics

Morphological information

The information about the final number of segmented cell regions and their

corresponding number of pixels retained after outliers removal for each cell line and

batch are presented in Tab. 5.2. A total of 22700 cells were retained for the final

analysis. As can be observed, the number of cells varies between cell cultures.

Tab. 5.2: Information about the retained cells after outliers removal. Number of segmented
cellular regions (first number) and number of pixels inside them (second number) for each
cell line (columns) and batch (rows). The last row and column present the corresponding
total marginal values.

A-375 HaCaT NIH-3T3 SK-MEL-28 Total

Batch 1 2247 / 35473 1638 / 41525 1750 / 31524 2495 / 34610 8130 / 143132
Batch 2 2438 / 31314 966 / 23367 2656 / 45348 1931 / 35875 7991 / 135904
Batch 3 1867 / 27906 875 / 20609 2318 / 45377 1519 / 32022 6579 / 125914

Total 6552 / 94693 3479 / 85501 6724 / 122249 5945 / 102507 22700 / 404950

The information of the total number of retained cells and pixels can be

complemented by the histograms of pixels per cell shown in Fig. 5.13. The majority

of cells cover less than 20 pixels but there are slight differences between samples and

cell lines. As already pointed out (e.g., see Figs. 1.13 and 5.9), HaCaT cells tend to

form more homogeneous monolayers and adopt flatter configurations than the other

cell lines, which is reflected in more uniform histograms. On the contrary, malignant

cell lines (A-375 and SK-MEL-28) and in a less extent NIH-3T3 cells normally grow

in a more proliferative and disordered way. As a result, those cell lines present higher

proportions of smaller cells, which also tend to be more rounded and compact and,

hence, more liable to produce scattering artifacts.
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Fig. 5.13: Histograms of pixels per cell in the final retained cells of each sample.

Spectral information

The mean and the standard deviation (std) of the retained mean cell spectra were

computed for each hyperspectral image as measurements of central tendency and

dispersion. Fig. 5.14 displays these values for the raw spectra without preprocessing

in the form of shaded error bars for each cell culture or hyperspectral image. In

addition, the mean spectrum of each cell line has been represented in order to disclose

the differences between batches for each cell line. In these plots, the gross variations

(offsets, maximum absorbance, etc.) of raw spectra that have been extensively

described in Secs. 3.2 and 5.2.4 become evident. This variability between mean cell

spectra within the same hyperspectral image and also between batches can seriously

hamper the prediction capabilities of the learning models.

Spectral preprocessing techniques aim to reduce the unwanted variability of raw

measurements by standardising or normalising the spectra. As an illustration of the

effects of spectral preprocessing, Fig. 5.15 shows the equivalent shaded error bars

of the mean cell spectra preprocessed by the RMieS-EMSC alternative. The most

distinguishing effect of this preprocessing alternative is the drastic reduction of the

standard deviation of spectra, i.e., differences between spectra become much more
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subtle. Depending on the preprocessing alternative this variability will be mainly

caused by different sources and, in the case of RMieS-EMSC (the most complex

alternative), the main source is supposed to be the biochemistry of the cells. If

the drawn preprocessed spectra are closer studied, those subtle differences can be

identified. As an example, in A-375 and SK-MEL-28 cell lines of Batch 2 high

frequency variations in the range 1300-1800 cm−1 are more relevant than in the other

batches, which may suggest a higher content of water vapour artifacts.

For brevity, the shaded error bars of the rest of alternatives are not shown but

in exchange the mean spectra for each cell line and preprocessing alternative are

presented in Fig. 5.16. As can be observed, the differences between cell lines change

depending on the preprocessing. In fact, the order of presentation of the preprocessing

alternatives corresponds with the level of differences observed. This order also

agrees with the level of transformation that individual spectra experiment during

the corresponding preprocessing. In this sense, Min-Max alternative broadly removes

the offsets and applies a basic normalisation. Therefore, with this preprocessing the

differences observed between cell lines are likely due to Mie scattering artifacts and, by

extension, to cell morphology as evidenced by the uneven ratios of Amide I-Amide II

peaks and remaining baselines. Either way, it must be demonstrated if the reduction

of undesirable artifacts with the most complex preprocessing alternatives is necessary

and effective enough to discriminate, or improve the discrimination of, cell lines.

Principal component analysis

As was described in Sec. 3.3.1, the capabilities of PCA for dimensionality reduction

can be used to visualise the intrinsic structures of hyperspectral datasets. Because

PCA is an unsupervised method (no information of the cell class is used), their

plots provide useful details about the proximity or similarity between spectra and

the possible natural groups that they may form. Following this line, PCA can be

used to extract preliminary information from the different datasets which each cross-

validation alternative (Sec. 5.2.9) will have to deal with.

In the case of One-Batch-Out CV, it is interesting to explore the whole dataset

of mean cell spectra in order to study if there are relevant differences between the

batches. The most important plots after applying PCA to the whole dataset of

retained mean cell spectra are shown in Fig. 5.17. Again, RMieS-EMSC has been
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Fig. 5.16: Mean spectra of the mean cell spectra retained after outliers removal for each
cell line and preprocessing alternative.

chosen as the reference preprocessing because it is the most advanced alternative.

In Fig.5.17a, 100 mean cell spectra from each cell line and batch have been randomly

selected to construct the score plots of the 2 first PCs. In that plot, points from the

same cell line have been drawn with the same colour and same symbols have been

used to identify points from each batch. As can be observed, some subgroups of

the same cell lines seem to appear mainly from non-tumoral HaCaT and NIH-3T3,

which spread less than melanoma cell lines A-375 and SK-MEL-28. Despite those

local subgroups, a global separation between cell lines is not so evident.

In Fig. 5.17b the points belonging to each cell line have been isolated in distinct

subplots in order to better distinguish differences between batches within each cell

line. In those subplots, batches have been denoted by the same symbols used in

Fig.5.17b but assigned different colours. As can be seen, spectra from Batch 1 clearly

tend to cluster separately from the rest of batches in all cell lines. However, points

from Batch 2 and 3, with the exception of NIH-3T3, are much more overlapping. If

these subplots are compared with Fig. 5.17a, now spectra from Batch 1 can be better

identified in the lower part of the graphs. In that batch, NIH-3T3 spectra seem more

isolated than the other cell lines. In addition, HaCaT cells from Batches 2 and 3 can
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Fig. 5.17: Principal component analysis of the whole dataset of retained mean cell spectra
preprocessed by RMieS-EMSC. (a) Score plots of the two first PCs with the corresponding
percentage of explained variance in parentheses where 100 mean cell spectra for each cell
line (depicted with different colours) and batch (depicted with different symbols) have been
randomly chosen from the whole dataset. (b) Same score plots than in (a) showing only the
randomly selected spectra of each cell line; symbols used to denote the batch are the same
as in figure (a) but colours have been changed to better identify differences between batches.
(c) Loadings of the 2 first PCs with the corresponding percentage of explained variance in
parentheses. (d) Evolution of the cumulative explained variance for the first 25 PCs.

be better distinguished in the right central region more or less mixed with NIH-3T3

spectra. Finally, spectra from melanoma cell lines A-375 and SK-MEL-28 of Batches 2

and 3 are much more tangled in the upper-central region of the chart.

Fig. 5.17c displays the corresponding loading vectors of the 2 first PCs. As

observed, the highest weights of the first PC (PC1), which explains 40.9% of the total
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variance, are located around the Amide I peak (∼1600-1700 cm−1, with maximum at

1653 cm−1) and Amide II peak (∼1500-1600 cm−1, with maximum at 1543 cm−1).

Other stronger weights occur around 1070 cm−1 and 1240 cm−1. The second PC

(PC2) explains 15.4% of the total variance and it gives important clues about the

presence of two spectral artifacts (Sec. 2.6). The first artifact is Resonant Mie

Scattering, which causes shifts in the maxima’s position of the strongest absorption

peaks and may be responsible for the difference in the position of the maximum

weight (1660 cm−1) with respect to PC1. The second artifact is likely water vapour,

which may be responsible for the high-frequency fluctuations throughout the range

1300-1800 cm−1.

Finally, Fig. 5.17d shows the evolution of cumulative explained variance with the

number of retained PCs. As can be observed, the first 5 PCs account for 80% of the

total variance and 15 PCs must be retained to explain a 95% percentage.

In the case of In-Batch CV, the similarities between cell lines within each batch

may be inferred from the described study of the whole dataset. However, it may

be more convenient to analyse each batch independently in order to reduce the

interferences of other batches during the computation of the main directions of

variation. Fig. 5.18 shows the most relevant plots when applying PCA to the subsets

of retained mean cell spectra preprocessed by RMieS-EMSC from each batch.

The score plots of the 2 first PCs of each batch (first column of Fig. 5.18)

reveal congruent information with the study of the whole dataset about the relative

dispersion of each cell line: HaCaT and NIH-3T3 tend to form more compact

subgroups, meanwhile A-375 and SK-MEL-28 are relatively more spread. Concerning

the separation between cell lines, slight differences can be observed within each batch:

in Batch 1, NIH-3T3 seems to be the most isolated cell line followed by HaCaT, which

has partial overlaps with the other cell lines; in Batch 2, HaCaT and SK-MEL-28

spectra seem well separated but there is a significant overlap between A-375 and

NIH-3T3; in Batch 3, HaCaT and NIH-3T3 seem to overlap only partially with the

rest of cell lines, meanwhile A-375 and SK-MEL-28 spectra appear more mixed, as in

Batch 1.

The loading vectors of the 2 first PCs (second column of Fig. 5.18) again highlight

the problems of RMieS, which may be responsible for the shifts in the maximum

weights around the Amide I peak, and water vapour. In particular, fluctuations due



192 Chapter 5. Discrimination of skin cancer cells

Vppp Vipp V4pp V6pp V8pp

wavenumbersXNcmEVI

EpLV

p

pLV

pLi

pL3

ab
so

rb
an

ce

BatchX3

PCVXN5iLiAI
PCiXNViL6AI

X:XV649
Y:XpLi494

X:XV66p
Y:XpLV78

Vppp Vipp V4pp V6pp V8pp

wavenumbersXNcmEVI

EpLV

p

pLV

pLi

pL3

ab
so

rb
an

ce

BatchXi

PCVXN6VL4AI
PCiXNVpL8AI

X:XV637
Y:XpLp863

X:XV653
Y:XpLi4VV

Vppp Vipp V4pp V6pp V8pp

wavenumbersXNcmEVI

EpLV

p

pLV

pLi

pL3

ab
so

rb
an

ce

BatchXV

PCVXNi9LiAI
PCiXNi6L6AI

X:XV649
Y:XpLiV39

X:XV657
Y:XpLi554

EpL4 EpLi p pLi

PCVXNi9LiAI

EpL5

p

pL5

P
C

iX
Ni

6L
6A

I

BatchXV

AE375
HaCaT
NIHE3T3
SKEMELEi8

EV EpL5 p

PCVXN6VL4AI

EpLi

p

pLi

P
C

iX
NV

pL
8A

I

BatchXi

AE375
HaCaT
NIHE3T3
SKEMELEi8

EpL8 EpL4 p pL4

PCVXN5iLiAI

EpL4

EpLi

p

pLi

P
C

iX
NV

iL
6A

I

BatchX3

AE375
HaCaT
NIHE3T3
SKEMELEi8

p Vp ip

PCs

5p

6p

7p

8p

9p

Vpp

C
um

LXE
xp

LXV
a

ria
nc

e
XN

A
I BatchXV

p Vp ip

PCs

5p

6p

7p

8p

9p

Vpp

C
um

LXE
xp

LXV
a

ria
nc

e
XN

A
I BatchXi

p Vp ip

PCs

5p

6p

7p

8p

9p

Vpp

C
um

LXE
xp

LXV
a

ria
nc

e
XN

A
I BatchX3

Fig. 5.18: Principal component analysis of the subsets of retained mean cell spectra from
each batch (rows) preprocessed by RMieS-EMSC. First column: Score plots of the two first
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mean cell spectra for each cell line (depicted with different colours) have been randomly
chosen from the corresponding batch’s subset. Second column: Loadings of the 2 first PCs
with the corresponding percentage of explained variance in parentheses. Third column:
Evolution of the cumulative explained variance for the first 25 PCs.
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to water vapour seem stronger in Batch 2, clearly distorting the maximum weights.

Finally, the plots of the cumulative explained variance with the number of retained

PCs (third column of Fig. 5.18) inform that, although in Batch 1 the first PC is less

relevant than in the rest of batches, more than 80% and 95% of the total variance

can be explained by respectively retaining 5 and 15 PCs in all batches.

5.3.2 Classification results

The preliminary descriptive information of the most relevant trends are based on two

principal components and must be contrasted with objectively-assessed classification

models that consider the whole dataset of cells and a larger number of components.

Fig. 5.19 shows graphically the final classification results in terms of Balanced

Accuracy (BA) for the combinations of explored preprocessing options (Sec. 5.2.4),

classification algorithms (Sec.5.2.8) and cross-validation alternatives (Sec.5.2.9). Each

final BA was computed by combining the predicted labels of the corresponding test

sets of mean cell spectra.

At first glance, there is an evident difference between the ranges of BA values

obtained by the two CV approaches. Meanwhile in One-Batch-Out CV BA values

range from around 0.35 to approximately 0.6 (combination RMieS-EMSC and PCA-

QDA), in In-Batch CV all the combinations provide a final BA between 0.85 and

0.95 (combination RMieS-EMSC and PLS-DA). Regarding preprocessing, there is no

clearly prevailing option and the final performance also depends on the employed

classification algorithm. Although the maximum BA values in both CV alternatives

have been reached by a combination including RMieS-EMSC.

If now we focus on the best combinations of each CV alternative, further details

may be obtained about the underlying reasons to get those final BA values. The aim

is to gain deeper information about why the misclassification may occur even in the

best scenario.

Firstly, it is worth studying the optimisation curves of the number of retained

components, computed with the corresponding validation sets as was described in

Sec.5.2.9. Figs. 5.20 and 5.21 show the optimisation curves for the best combinations

of One-Batch-Out CV and In-Batch CV, respectively. In One-Batch-Out CV, a

remarkably higher performance (around double BA) is reached when the Batch 1

is left out as test set and algorithms are trained and validated only with the spectra



194 Chapter 5. Discrimination of skin cancer cells

0.436

0.556

0.410

0.515

0.437

0.361

0.362

0.476

0.475

0.381

0.605

0.477

0.400

0.455

0.409

0.0 0.2 0.4 0.6 0.8 1.0

RMieS-EMSC

DiffSG1

SNV

Min-Max

Raw

Balanced Accuracy

One-Batch-Out CV

PCA-LDA PCA-QDA PLS-DA

RMieS-EMSC

(a)

1.0

0.944

0.940

0.930

0.921

0.896

0.880

0.895

0.859

0.863

0.856

0.888

0.901

0.857

0.861

0.873

0.0 0.2 0.4 0.6 0.8 1.0

RMieS-EMSC

DiffSG1

SNV

Min-Max

Raw

Balanced Accuracy

In-Batch CV

PCA-LDA PCA-QDA PLS-DA

(b)

Fig. 5.19: Classification results in terms of Balanced Accuracy for the different
preprocessing options (grouped by rows), classification algorithms (colours) and cross-
validation alternatives: (a) One-Batch-Out CV and (b) In-Batch CV.
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from Batch 2 and 3 than when one of those batches is left out and the other one forms

the initial training set with Batch 1. This fact confirms that there are more similarities

between spectra from Batch 2 and 3 than with those from Batch 1, which is in line

with the preliminary studies by PCA (Fig.5.17). On the other hand, the optimisation

curves of In-Batch CV, individually constructed for each batch by leaving out vertical

stripes of cells in the hyperspectral images, present much more similar characteristics

between them. Even so, Batch 2 provides a slightly lower performance than the other

batches but in all cases BA is above 0.9. This suggests a high degree of similarity

between the spectra from the same hyperspectral image and, hence, from the same

cell line, as well as relevant differences with other cell lines within the same batch.
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Fig. 5.20: Optimisation curves for the best combination (RMieS-EMSC and PCA-QDA)
of One-Batch-Out CV.

Finally, again for the best combinations (highest BA) of each CV alternative, the

predicted cell labels in the test sets were joined to create pseudo-colour images by

using the colour code shown in Fig. 5.22. Figs. 5.23 and 5.24 respectively present

those images for One-Batch-Out CV and In-Batch CV with the same distribution

of batches (rows) and cell lines (columns) as in Fig. 5.3. Note that cells within each

image should be coloured with the colour specified outside each column for a correct

classification. These images provide more detailed information about the position of

the misclassified spectra.

When analysing Fig.5.23, some observations can be stated about the classification

performed by the best combination of One-Batch-Out CV :
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Fig. 5.21: Optimisation curves for the best combination (RMieS-EMSC and PLS-DA) of
In-Batch CV.
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Fig. 5.22: Colour code for the predicted labels of cells in the images of qualitative results.

� Batch 1 : it presents the highest rate of misclassification. A significant amount

of malignant A-375 cells are incorrectly labelled as the benign NIH-3T3. The

worst case is the non-tumoral HaCaT cell line, whose cells are mostly identified

as the tumoral SK-MEL-28. A small number of NIH-3T3 cells are confounded

with cancerous A-375 cells. Lastly, almost half of SK-MEL-28 cells are wrongly

classified as A-375.

� Batch 2 : the malignant A-375 cell line of this batch is another case with extreme

misclassification, again with the benign NIH-3T3. However, the rest of cell lines

are very well categorised.

� Batch 3 : A-375 cells are also mistaken with NIH-3T3 but in a lower degree

than in Batch 2. The rest of cell lines present high rates of correct classification,

although some cells from NIH-3T3 and SK-MEL-28 are mainly confused with

the same cell types as in Batch 1.

Finally, the images of the best combination of In-Batch CV (Fig. 5.24) confirm

the good general classification of most cells. The only remarkable inaccuracies are

mainly located in the malignant A-375 and the benign NIH-3T3 cell lines of Batch 2,

whose cells are mutually confused with the other cell line.
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5.4 Discussion

In principle, the excellent classification results obtained in the In-Batch CV suggest

a high potential of FTIR spectra to discriminate the skin cell lines, at least inside

each batch. Nevertheless, those high rates of success are obtained independently

of the preprocessing technique and even for the raw spectra. This fact warns that

the results of the In-Batch CV may be too optimistic and some level of over-fitting

may be playing a critical role. Those suspicions are supported by the less favourable

results obtained in the One-Batch-Out CV alternative, which better assesses the

generalisation capabilities of the discrimination framework.

Indeed, a deeper study of the most optimistic discriminative option reveals that

critical differences exist, especially between cells from Batch 1 and the other batches.

These findings are also supported by the unsupervised PCA score plots of the

exploratory analyses. Taking into account that cells from Batch 1 were prepared

and measured at time points different from Batch 2 and 3 (Sec. 5.2.2) and, although

similar sample preparation and measurement protocols were followed for all batches,

they are likely to introduce confounding factors in FTIR spectra which are critical for

the correct discrimination of cell lines. Fortunately, when the experimental conditions

are more comparable, as in Batch 2 and 3, the extrapolation of the discrimination

capabilities is more satisfactory.

These findings put into doubt the actual potential of FTIR spectra to detect

subtle biochemical changes between pathological phenotypes and raises the question

of whether the discrimination of cells is critically biased by the experimental factors.

These factors are mixed with the rest of physicochemical information in the final

hyperspectral images and discovering the exact sources of these perturbations is not

easy. Despite this, the exploratory analysis of preprocessed spectra has revealed the

undesirable presence of water vapour effects even in the loadings of first PCs. These

water vapour fluctuations, which highly depend on the environmental conditions

during the spectral acquisition, could not be avoided even when purging the sample

area with dry air. Moreover, those interferences, whose relative importance is higher

in spectra with lower absorbance, increase their impact in the global dataset due to

the spectral normalisation.

The exploratory analyses also offered interesting information about the efficiency
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and consequences of the RMieS-EMSC algorithm, which is currently the most

advanced preprocessing method available practical with a implementation. In this

study, 20 iterations of the algorithm were used, which took around 4 weeks to

process the whole dataset of extracted individual spectra (around 400 thousand in

total). However, shifts in the most relevant weights of the PCA loadings around the

Amide I peak suggest a suboptimal correction of Resonant Mie Scattering artifacts.

These artifacts, associated with morphological differences, are accentuated by cell

culture conditions, where cells have sustained nutrients, support and enough space

to proliferate, favouring the presence of mitotic stages. Differences in growing and

proliferation properties between cell lines are responsible for uneven sizes and shapes,

with tumoral cell lines more prone to being smaller and more compact. Therefore, Mie

and Resonant Mie Scattering artifacts may have also played determinant confounding

roles in the discrimination of cell lines. For example, this factor may be responsible

for the misidentification of A-375 cells as NIH-3T3.

Clinically, the confusion of cancerous cells as normal (e.g., A-375 cells classified

as NIH-3T3) is critical from a diagnostic point of view and a hypothetical decision

support system would fail in the detection of the correct pathology for samples in a

different batch, which is the likely clinical scenario. On the other hand, the designation

of normal cells as cancerous (e.g., HaCaT in Batch 2 classified as SK-MEL-28) would

give rise to over-diagnosis, over-treatment and waste of resources. Hence, the transfer

of the current technologies and methodologies to clinical practice is not recommended

at this point in time.



Chapter 6

Conclusions

An extensive review of the current literature concerning the application of FTIR

spectroscopy for cancer diagnosis has been accomplished throughout the development

of this thesis. The most relevant references have been properly cited along this

final manuscript. The most important biomedical notions have been synthesised and

considered during the whole technical process.

Thorough reviews and understanding of the current knowledge of FTIR

technology, ranging from the instrumentation to the involved physicochemical factors,

have been also carried out. Special attention has been given to the possible spectral

artifacts introduced in the different experimental steps. These artifacts are mixed with

the biochemical information of the biological samples and can potentially mislead their

later analysis. Huge efforts have been made to reduce the presence of those artifacts

both during the acquisition of spectra and during their computational processing.

The most advanced existing methodologies for the correct handling, processing and

analysis of hyperspectral images and signals have been also identified and adapted to

the specific problems and real applications tackled in this thesis. The most relevant

contributions of this thesis to the global knowledge in the spectroscopic and clinical

fields have been condensed into two different applications.

In the first main application, a multimodal registration framework for the

automatic alignment of FTIR spectroscopic and H&E stained images from different

201
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histological sections has been presented. This methodology was used to register 47

colon samples from three different pathological groups (16 normal, 16 intermediate

and 15 tumoral) with good overall qualitative and quantitative results. The proposed

method exploits the information of concentration and thickness contained in the

absorbance FTIR spectra to generate a grayscale image with a contrast similar to the

one obtained from the H&E image. Thus, the morphological structures are highlighted

and can be used as a reference for the alignment of the two multimodal images. This

approach does not need a prior segmentation step that may introduce errors and

reduce the spatial information content.

This automatic method can be easily extrapolated to other kinds of pathologies,

such as prostate or breast cancer, where the inner part of the tissue contains relevant

morphological structures. Moreover, it can also be applied to more heterogeneous

tissues if their borders are also captured in the image. The values of the parameters

used in the two steps of the registration framework may be tuned depending on

the intrinsic morphological variability of the tissue. In particular, the required

deformations computed in the second registration step should be higher as the distance

of the sections of tissue to register increases.

The proposed method can improve the accuracy to combine the spatial information

extracted from both the traditional H&E stained images and the emerging FTIR

spectroscopy, even if different sections of tissue are used. These combinations can

result in richer diagnostic algorithms which may consider complementary aspects of

the pathological tissue, following the same philosophy as other approaches that fuse

different medical imaging modalities.

In the second main application of this thesis, the potential application of the

current state-of-the-art FTIR technology to cytopathological diagnosis has been

assessed. A dataset of approximately 22700 cultured cells, derived from two tumoral

and two non-tumoral skin cell lines, has been analysed to evaluate the discrimination

capabilities of current FTIR technology in cytopathological problems. This number

of analysed cells is relatively high when compared with existing studies. The

analysed cells were distributed across three different batches, which were prepared

and measured at different time points by following similar protocols to maximise

uniformity between batches. However, these controlled protocols are limited by

current technological and procedural restrictions, e.g., the lack of an isolation chamber
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for the measured samples, or the need of a particular growing and preparation protocol

for each cell line. Therefore, external perturbations were inevitably introduced both

during sample preparation and spectral acquisition.

Different methodologies and approaches have been explored to process FTIR

hyperspectral images and correctly analyse cell spectra throughout the whole

discrimination pipeline. Excellent discrimination results are obtained when the

algorithms are trained and tested with cell spectra from the same batch. However,

those results are not confirmed when cells from different batches are mixed to

construct the algorithms and they are finally applied to a different batch. This

disappointing fact questions the real generalisation capabilities of the discriminative

properties of FTIR spectra, which seems to be critically influenced by the differential

factors between batches, such as the sample preparation protocol or the measurement

conditions (e.g., different water vapour content).

Experimental design of future studies should assess if the optimistic results ob-

served between cell lines of the same batches are really driven by genuine biochemical

differences rather than artificial perturbations introduced by sample preparation and

measurement protocols. In any case, the high rates or misclassification for some

cell lines in different batches warn about the need of a better standardisation of the

aforementioned protocols, together with the specific analysis methodologies. This is

fundamental to develop and establish a reliable diagnostic technology of cancerous

cells based on FTIR microspectroscopy in the near future.

Further development of standardisation protocols is needed, which will also have

to incorporate and adapt to the existing routine procedures of anatomical pathology

laboratories. Additional improvements can be introduced in the different steps of

the proposed discrimination pipeline apart from the experimental improvements.

Regarding spectral analysis, it is expected that the most relevant factors may

be the preprocessing and the supervised classification framework. In the case of

preprocessing, more complex techniques for the removal of interferences such as water

vapour should be explored in case that measurements could not be performed in

isolated environments. In addition, new advances in algorithms for the correction

of RMieS, with higher computing speed, more stability and robustness against

perturbations (e.g., again water vapour), should be incorporated.
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Finally, the biomedical relevance and the extrapolation of the results obtained with

cultured cells are limited because they are grown in artificial conditions. Therefore,

the development of a reliable decision support system will necessarily have to use FTIR

spectra of cells extracted from the patient, with a reference ground truth provided by

pathologists, such as in histopathological studies. This is a question that may not

be answered in the short term, at least until more urgent technical problems are

addressed and more standardised protocols for sample preparation, measurement and

analysis are developed and widely used.
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[220] J. Larrey-Ruiz, R. Verdú-Monedero, and J. Morales-Sánchez, “A Fourier domain

framework for variational image registration,” Journal of Mathematical Imaging

and Vision, vol. 32, no. 1, pp. 57–72, 2008.

[221] R. Verdu-Monedero, J. Larrey-Ruiz, and J. Morales-Sanchez, “Frequency imple-

mentation of the Euler-Lagrange equations for variational image registration,”

IEEE Signal Processing Letters, vol. 15, pp. 321–324, 2008.
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