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Abstract

The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see
for instance [Li05, LG04]. At microscopic level, Devaney chaos and distributional chaos has been exhibited
for some car-following models, such as the Quick-Thinking-Driver model and the Forward and Backward
control model [CMASS15, BCMASS15]. We present here the existence of chaos for the macroscopic model
given by the Lighthill-Whitmam-Richards equation.
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1. Introduction

Chaos is usually identified with nonlinear and unpredictable phenomena. However, chaotic dynamics can
be also found in dynamical systems described by some examples linear and continuous operators. This can
only happen if the underlying space was infinite-dimensional. In addition, this can be exhibited in process
whose evolution is described in a deterministic way in terms of differential equations.5

For the common man, one of the settings where chaos can appear is in traffic. Mathematical models
for describing traffic processes can be found at microscopic and macroscopic level. On the one hand, at
microscopic level every single vehicle is simulated, describing its position and velocity. At this level we can
find car-following models, which depend continuously respect to the time, and intend to represent the traffic
in terms of ordinary differential equations. More information on these models can be found in [BM99]10

We can also find cell automaton models that are based on a discretization of the time and the space.
Then the dynamical system describes if we can find a car or not at each cell, see [MDM05]. On the other
hand, at macroscopic level we find traffic flow models that intend to integrate the single behaviour of each
vehicle and to compute some characteristics of the system as a whole.

In the linear setting, chaos has also been found at microscopic level for some car-following traffic models.15

These models intend to describe the behaviour of each car in terms of the difference of its speed respect
to the speed of the cars near of it. In addition, the reaction time of the drivers is also taking into the
description of the model. Once we represent the solutions to a given model as a C0-semigroup, then there
exists certain initial conditions of the speeds of the cars that exhibit a chaotic behaviour. More precisely,
the infinite version of the Quick-Thinking-Driver (IQTD) model has been introduced in [CMASS15]. Let20

(ui(t))i denote the speeds of an infinite number of cars on a track. Suppose that for every i ∈ N, the car i
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behaves following the (QTD) model respect to one in front of it, the car i+ 1. The following infinite system
of ordinary differential equations represents this situation:

u′i(t) = λi(ui+1(t)− ui(t)) for i ∈ N. (1)

When considering the speeds of the cars in `1(s), 0 < s < 1, the weighted space of summable sequences
defined as25

`1(s) =

{
(vi)i∈N ∈ KN : ||(vi)i∈N||s =

∑
i∈N
|vi|si <∞

}
(2)

can be considered to pose the following abstract Cauchy problem on it:{
u′(t) = Au(t)
u(0) = (ui(0))i∈N

}
, (3)

for u = (ui(t))i∈N ∈ `1(s) and t ≥ 0, being (ui(0))i∈N the vector of speeds of the cars at t = 0. Then, the
solutions to this problem can be analyzed from the point of view of C0-semigroups. Further information on
C0-semigroups will be provided in Section 2.

In the (QTD) model the velocity of a car is only controlled respect to the speed of the car in front of30

it. However, it can be also controlled taking into account the speeds of the car in front and behind of it.
Such a model is known as the Forward and Backward Control model. The infinite version of it, the (IFBC)
model, has been introduced in [BCMASS15]. This model is given by the following system of infinite ordinary
differential equations:

u′1(t) = −µ1u1(t) + µ2(u2(t)− u1(t)),

u′i(t) = µ1(ui−1(t)− ui(t)) + µ2(ui+1(t)− ui(t)), for all i ≥ 2,
(4)

with control constants µ1, µ2 > 0, µ1 < µ2. Again, taking this equations instead of the ones in (1), one35

can also posed an abstract Cauchy problem on `1(s), too, and study the chaotic behaviour of some of its
solutions.

The study of chaos for linear kinetic models,as the one we have presented, was firstly introduced by
Protopopescu and Azmy in [PA92]. There they only considered the case of constant coefficients. Later, Ba-
nasiak and Lachowicz started the study of Devaney chaos for the formulation of these models with variable40

coefficients. They also formulated these models as death and birth-and-death models of cell proliferation,
see [BL01] for the death model and [BL02] for the birth-and-death one. Their results were later extended
in [AP12, GEPM11, BM11], considering also the topologically mixing property. Finally, the study of distri-
butional chaos is also developed in [CMASS15] and [BCMASS15].

In this note we will show that linear chaos can also appear for traffic models stated at macroscopic45

level. The most elementary of these models was developed by Lighthill and Whitham [LW55], and Richards
[Ric56]. This model is described by the following continuity equation:

∂ρ

∂t
+
∂q

∂x
= 0, (5)

where q is the flow rate of traffic and ρ is the traffic density. Taking into account the average speed v, the
variables q and ρ verify that

ρ(t, x) = v(t, x)q(t, x) for every t ≥ 0, x ∈ R. (6)

The model in (5) is based on the assumption that the the number of cars is preserved along the track50

between any pair of points and times. They used this model for showing the existence of shock waves in
traffic. More information can be found in [Lus10].
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This model has some limitations: No inertial effects are considered (therefore the speeds of the vehicles
are adapted instantaneously) and no diffusive term is included that would model how drivers look ahead to
adjust their speed. Then Lighthill and Whitham proposed a second order lineal model [LW55]:55

∂u

∂t
+ c

∂u

∂x
+ T

∂2u

∂t2
−D∂

2u

∂x2
= 0. (7)

Here, T is the inertial time constant for speed variation, c is the wave speed, and D is the diffusion
coefficient that shows how drivers respond to changes far away from their position. This equation can be
compared with the Hyperbolic Heat Transfer equation (HHTE) on a rod:

τ
∂2u

∂t2
+
∂u

∂t
= α

∂2u

∂x2
, (8)

where u is the temperature at every moment at each point of the rod, α is the thermal diffusivity, and
τ is the thermal relaxation time. The study of the chaotic behaviour of the solutions to this model has60

been developed in [CPT10, GEPM11], even in the presence of internal sources [CRT15], which is called the
Bioheat equation (BE). In all of these cases, the chaotic dynamical behaviour is found in spaces of real
analytic functions whose coefficients has some control at the ∞.

Previously, Herzog study the dynamics of the solutions to the Fourier Heat Transfer equation (FHTE)
on an infinite rod in the absence of internal heat sources. The underlying spaces considered to study the65

chaos of these three examples, (FHTE), (HHTE), and (BE), is the space of real analytic functions on R
with exponential decay, endowed with the compact open topology [Her97]. This space has recently been
considered to study the dynamics of the solution to the Moore-Gibson-Thompson equation [CLR15].

The paper is organized as follows: In Section 2 we introduce the basic notions on C0-semigroups and
linear dynamics. The spaces of analytic functions of Herzog type will also be presented. The study of chaos70

and the existence of invariant strongly mixing measurs will be exposed in Section 3.

2. Preliminaries

We present some definitions and preliminary results that will be needed for proving the main results of
the paper.

2.1. C0-semigroups75

Let X be an infinite-dimensional Banach space. A family {Tt}t≥0 of linear and continuous operators on
X is said to be a C0-semigroup if T0 = Id, TtTs = Tt+s for all t, s ≥ 0, and limt→s Ttx = Tsx for all x ∈ X
and s ≥ 0. Given a C0-semigroup {Tt}t≥0 on X, it can be shown that an operator defined by

Ax := lim
t→0+

Ttx− x
t

, (9)

exists on a dense subspace of X; denoted by D(A). Then (A,D(A)) is called the (infinitesimal) generator
of the C0-semigroup {Tt}t≥0. If D(A) = X, then the C0-semigroup can be rewritten as {etA}t≥0. Such a80

semigroup is the corresponding solution C0-semigroup of the abstract Cauchy problem{
u′(t, x) = Au(t, x)
u(0, x) = ϕ(x),

}
. (10)

The solutions to this problem can be expressed as u(t, x) = etAϕ(x), where ϕ(x) ∈ X. Further information
on C0-semigroups can be found in [EN00, Paz83].
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2.2. Linear dynamics of C0-semigroups

Given a family of operators {Tt}t≥0 we say that it is transitive if for every pair of non-void open sets85

U, V ⊂ X there exists some t > 0 such that Tt(U) ∩ V 6= ∅. Furthermore, if there is some t0 > 0 such that
the condition Tt(U) ∩ V 6= ∅ holds for every t ≥ t0 we say that it is topologically mixing. A C0-semigroup
is hypercyclic if there exists some x ∈ X such that the set {Ttx : t ≥ 0} is dense in X. In this setting,
transitivity coincides with hypercyclicity, but it is strictly weaker than topologically mixing [BBCP05].

We recall that an element ∈ X is said to be a periodic point of {Tt}t≥0 if there exists some t0 > 0 such90

that Tt0x = x. A C0-semigroup {Tt}t≥0 is said to be chaotic in the sense of Devaney if it is hypercyclic and
there exists a dense set of periodic points in X. The following criterion let us prove the Devaney chaos for a
C0-semigroup. This result can be compared with the Desch-Schappacher-Webb Criterion [DSW97, Th 3.1],
or any of its extensions [BM05, CM10].

Let X∗ denote the dual space of X of linear and continuous functionals on X. We recall that by a weakly95

analytic function f : U → X on an open subset U ⊂ C we understand an X-valued function such that, for
every x∗ ∈ X∗, the complex valued function z 7→ 〈f(z), x∗〉 is analytic on U . In the sequel, J is a nonempty
index set.

Theorem 2.1. ([GEPM11, Theorem 7.30]) Let X be a complex separable Banach space and {Tt}t≥0 a C0-
semigroup on X with generator (A,D(A)). Assume that there exists an open connected subset U and weakly100

analytic functions fj : U → X, j ∈ J, such that

(i) U ∩ iR 6= ∅,

(ii) fj(λ) ∈ ker(λI −A) for every λ ∈ U, j ∈ J,

(iii) for any x∗ ∈ X∗, if 〈fj(λ), x∗〉 = 0 for all λ ∈ U and j ∈ J then x∗ = 0.

Then {Tt}t≥0 is Devaney chaotic and topologically mixing.105

On the other hand, a C0-semigroup is distributionally chaotic if there are an uncountable set S ⊂ X and
δ > 0, so that for each ε > 0 and each pair x, y ∈ S of distinct points we have

Dens{s ≥ 0 : ||Tsx− Tsy|| ≥ δ} = 1 and
Dens{s ≥ 0 : ||Tsx− Tsy|| < ε} = 1,

(11)

where Dens(B) is the upper density of a Lebesgue measurable subset B ⊂ R+
0 defined as lim supt→∞

µ(B∩[0,t])
t

with µ standing for the Lebesgue measure on R+
0 . Distributional chaos is equivalent to the existence of

distributional irregular vectors [ABMP13, BBMP13]. Furthermore, whenever the Desch-Schappacher-Webb110

criterion can be applied we have that the C0-semigroup is not only Devaney chaotic but also distributionally
chaotic, see [BBMGP11, Cor. 31] and [BC12, Rem. 3.8].

We refer to the monographs [BM09, GEPM11] for the basic theory on chaotic linear dynamics. In
particular, [GEPM11, Ch. 7] for the dynamics of C0-semigroups of operators.

2.3. Strong mixing measures115

Some analogous properties to the aforementioned ones can be introduced when the C0-semigroup is
defined on a probability space (X,B, µ), where X is a Banach space and B denotes the σ-algebra of Borel
subsets ofX. We say that a Borel probability measure µ has full support if for any non-empty open set U ⊂ X
we have µ(U) > 0. A measure µ is said to be Tt-invariant if for all A ∈ B we have that µ(A) = µ(T−1

t (A))
for all t ≥ 0. A C0-semigroup is strongly mixing if120

lim
t→∞

µ(A ∩ T−1
t (B)) = µ(A)µ(B) for all A,B ∈ B. (12)

We recall that strongly mixing implies ergodicity, i.e. for each A ∈ B such that T−1(A) = A, either µ(A) = 0,
or µ(A) = 1.
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Very recently it has been stated that the sufficient criterion for frequent hypercyclicity of C0-semigroups
given by Mangino and Peris in [MP11] also yields the existence of invariant Borel probability measures on
X that are strongly mixing and have full support [MAP15]. In [MP11, Cor. 2.3] some conditions, expressed125

in terms of eigenvector fields for the infinitesimal generator of the C0-semigroup, were given which ensure
the existence of invariant strongly mixing measures. A different argument for the existence of invariant
strongly mixing measures for C0-semigroups has been obtained in [BM15] under weaker assumptions on the
eigenvector fields for the generator.

Theorem 2.2. Let X be a separable complex Banach space and let {T}t≥0 be a C0-semigroup on X with130

generator A. Assume that there exists a family (fj)j∈Γ of locally bounded measurable maps fj : Ij → X such
that Ij is an interval in R, fj(Ij) ⊂ D(A), where D(A) denotes the domain of the generator, Afj(t) = itfj(t)
for every t ∈ Ij, j ∈ Γ and span{fj(t) : j ∈ Γ, t ∈ Ij} is dense in X. If either

a) fj ∈ C2(Ij , X), j ∈ Γ,
or135

b) X does not contain c0 and 〈ϕ, fj〉 ∈ C1(Ij), ϕ ∈ X ′, j ∈ Γ,

then there is a (Tt)t≥0-invariant strongly mixing Borel probability measure µ on X with full support.

We will apply this result to the solution C0-semigroup of the Lighthill-Whitham-Richards equation.

2.4. Spaces of analytic functions of Herzog type140

Let us consider ρ > 0 and define the space

Xρ =
{
f : R→ C ; f(x) =

∞∑
n=0

anρ
n

n!
xn, (an)n≥0 ∈ c0

}
, (13)

endowed with the norm ||f || = supn≥0 |an|, where c0 is the Banach space of complex sequences tending to
0. Then Xρ is a Banach space of analytic functions with a certain growth control. By its definition it is
isometrically isomorphic to c0.

3. Main results145

We first express equation 7 as a first order equation on the product of a certain function space with
itself. To do this we set u1 = u and u2 = ∂u

∂t . Then the associated first order equation is

∂

∂t

(
u1

u2

)
=

 0 I
α

τ

∂2

∂x2
−1

τ
I

(u1

u2

)
,

(
u1(0, x)

u2(0, x)

)
=

(
ϕ1(x)

ϕ2(x)

)
, x ∈ R.

(14)

We set

A :=

 0 I
α

τ

∂2

∂x2
−1

τ
I


which is easily seen to be an operator on X := Xρ ⊕ Xρ, we have that (etA)t≥0 is a C0-semigroup on X,
which is the solution semigroup of (14) on X.150

Theorem 3.1. There exists ρ0 > 0 be such that the solution semigroup (etA)t≥0 of (14) is mixing, Devaney
and distributionally chaotic on Xρ ⊕Xρ for every ρ ≥ ρ0.
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Proof. Given λ ∈ C, we define

ϕλ,a0,b0(x) =

∞∑
n=0

anρ
2nx2n

(2n)!
+

∞∑
n=0

bnρ
2n+1x2n+1

(2n+ 1)!
, x ∈ R.

The coefficients an and bn, n ≥ 1,depending on λ, ρ, a0 and b0 will be determined later. Let U be the open
disk of radius 1 centred at zero. If λ ∈ U we consider the functions fa0,b0 : U → X, given by155

fa0,b0(λ) =

(
ϕλ,a0,b0
λϕλ,a0,b0

)
.

We will show that, for suitable (an) and (bn),

fa0,b0(λ) ∈ ker(λI −A), λ ∈ U, a0, b0 ∈ R.

For convenience, we write ϕ = ϕλ,a0,b0 . We need to prove that

λ2ϕ = − c
T

∂ϕ

∂x
+
D

T

∂2ϕ

∂x2
− λ

T
ϕ,

thus (
λ2 +

λ

T

)
ϕ = − c

T

( ∞∑
n=1

anρ
2nx2n−1

(2n− 1)!
+

∞∑
n=0

bnρ
2n+1x2n

(2n)!

)

+
D

T

( ∞∑
n=1

anρ
2nx2n−2

(2n− 2)!
+

∞∑
n=1

bnρ
2n+1x2n−1

(2n− 1)!

)
160

=

∞∑
n=0

1

T

(
Dρ2an+1 − cρbn

) ρ2nx2n

(2n)!
+

∞∑
n=0

1

T

(
Dρ2bn+1 − cρan+1

) ρ2n+1x2n+1

(2n+ 1)!
.

A comparison of coefficients yields the following difference equation(
λ2 +

λ

T

)
an =

1

T

(
Dρ2an+1 − cρbn

)
(
λ2 +

λ

T

)
bn =

1

T

(
Dρ2bn+1 − cρan+1

)
which can be written in a matrix form as(

an+1

bn+1

)
= B(λ, ρ)

(
an
bn

)
, n ≥ 0,

where

B(λ, ρ) =

(
λ2T+λ
Dρ2

c
Dρ

c(λ2T+λ)
D2ρ3

Dλ2T+Dλ+c2

D2ρ2

)
It is clear that there exists ρ0 > 0 such that, for ρ ≥ ρ0, the eigenvalues of B(λ, ρ) are of modulus strictly165

less than 1, so that the sequences (an) and (bn) tend to 0. This means that ϕ ∈ Xρ.
According to Theorem 2.1 it remains to prove that, for any x∗ ∈ X∗ρ ⊕ X∗ρ , the functions λ →

〈fz0,z1(λ), x∗〉, z0, z1 ∈ R, are holomorphic on U , and that it if they all vanish on U then x∗ = 0.
Thus, let x∗ ∈ X∗ρ ⊕X∗ρ . By the isomorphism of Xρ with c0, x∗ can be represented in a canonical way

by a pair ((cn)n≥0, (dn)n≥0) ∈ `1 ⊕ `1. We then have that, for λ ∈ U ,

〈fa0,b0(λ), x∗〉 =
∞∑
n=0

an(λ)c2n +

∞∑
n=0

bn(λ)c2n+1 + λ

∞∑
n=0

an(λ)d2n + λ

∞∑
n=0

bn(λ)d2n+1.
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Since these series converge uniformly on U , and each an(λ) and bn(λ) is a polynomial on λ, this implies that
each function fa0,b0 is weakly holomorphic on U .170

Finally, suppose that all the functions λ→ 〈fa0,b0(λ), x∗〉, a0, b0 ∈ R, vanish on U . Proceeding inductively
we deduce that cn = dn = 0 for all n ≥ 0, and hence that x∗ = 0. 2

Since holomorphic functions on an open set that intersects the imaginary axis are certainly C∞ when
restricted to this intersection, the argument of the previous result yields the hypothesis of Theorem 2.2,
which turns out on the existence of strongly mixing measures.175

Corollary 1. There exists ρ0 > 0 be such that the solution semigroup (etA)t≥0 of (14) admits an invariant
strongly mixing probability measure with full support on Xρ ⊕Xρ for every ρ ≥ ρ0.
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