A note on extreme points of C^{∞}-smooth balls in polyhedral spaces

A. J. Guirao; V. Montesinos; and V. Zizler

Abstract

Morris [Mo83] proved that every separable Banach space X that contains an isomorphic copy of c_0 has an equivalent strictly convex norm such that all points of its unit sphere S_X are unpreserved extreme, i.e., they are no longer extreme points of B_X. We use a result of Hájek [Ha95] to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C^{∞}-smooth and strictly convex norm with the same property as in Morris’ result. We additionally show that no point on the sphere of a C^2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (h_n) in X with $\|h_n\| \not\to 0$ exists such that $\|x \pm h_n\| \to 1$.

1 Introduction

It is known that in non-superreflexive spaces, there exist no equivalent C^2-smooth norms that would be at the same time locally uniformly rotund (cf e.g. [FHHMZ, Exercise 9.16]). We show in this note that yet, in separable polyhedral spaces—all of which non-superreflexive—, there exist C^{∞}-smooth norms with various degrees of rotundity weaker than local uniform rotundity.

If $(X, \| \cdot \|)$ is a normed space, its closed unit ball (its unit sphere) will be denoted alternatively by $B_X, B_{\| \cdot \|}$, or even $B_{(X, \| \cdot \|)}$ (respectively $S_X, S_{\| \cdot \|}$, or $S_{(X, \| \cdot \|)}$), according to the circumstances. If $x \in X$ and $\delta > 0$, we put $B_X(x; \delta), B_{\| \cdot \|}(x; \delta)$, or even $B_{(X, \| \cdot \|)}(x; \delta)$, for $x + \delta B_X$. The norm on X, its dual norm on X^*, and its bidual norm on X^{**}, are denoted by the same notation. For standard notation, results, and undefined terms we refer, e.g., to [FHHMZ].

Extreme points of B_X that are not extreme of $B_{X^{**}}$ are called unpreserved. On the other side, points in S_X that are extreme points of $B_{X^{**}}$ are called preserved extreme points (see Figure 1). Obviously, every preserved extreme point of B_X is itself an extreme point of B_X.

The preserved extreme points coincide with the w-strongly extreme points of B_X (see [GLT92] and references therein). A point $x \in S_X$ is called (w-) strongly extreme of B_X if given two sequences $\{y_n\}$ and $\{z_n\}$ in B_X such that $(y_n + z_n) \to 2x$, then $y_n \to x$ (respectively, $y_n \overset{w}{\to} x$). A norm $\| \cdot \|$ such that all points in $S_{\| \cdot \|}$ are strongly extreme is said to be midpoint locally uniformly rotund (for this notion, see, e.g., [LPT09] and references therein).

Solving a question by Phelps, Katznelson (see the reference in [Mo83]) proved that the closed unit ball of the disk algebra contains unpreserved extreme points.

*Antonio J. Guirao, Instituto de Matemática Pura y Aplicada. Universidad Politécnica de Valencia, C/ Vera, s/n, 46020 Valencia, Spain. Email: anguiza@mat.upv.es. Supported in part by Project MTM2011-25377 and the Universidad Politécnica de Valencia.

†Vicente Montesinos, Instituto de Matemática Pura y Aplicada. Universidad Politécnica de Valencia, C/ Vera, s/n, 46020 Valencia, Spain. Email: vmontesinos@mat.upv.es. Supported in part by Project MTM2011-22417 and the Universidad Politécnica de Valencia.

‡Václav Zizler, Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada. Email: vasekzizler@gmail.com.

Keywords and phrases: Polyhedral space; extreme point; norm that locally depends on a finite number of coordinates; countable James boundary.

AMS Subject Classification: Primary 46B20, Secondary 46B03, 46B10, 46B22.
Let \(x \in S_X \). The point \(x \) is said to be strongly exposed (by a functional \(f \in S_{X^*} \)) if \(f(x) = 1 \) and \(\text{diam} S(f, \delta) \to 0 \) as \(\delta \downarrow 0 \), where \(S(f, \delta) := \{ x \in B_X : f(x) > 1 - \delta \} \) is a section of \(B_X \) determined by \(f \). The point \(x \) is said to be denting if for every \(\epsilon > 0 \) it is contained in a section of \(B_X \) having diameter less than \(\epsilon \). It is easy to show that strongly exposed \(\Rightarrow \) denting \(\Rightarrow \) strongly extreme \(\Rightarrow \) w'-strongly extreme (= preserved extreme) \(\Rightarrow \) extreme, and that if \(X \) is locally uniformly rotund, then every point in \(S_X \) is strongly exposed. For an example showing how big the gap between being strongly or w'-strongly extreme is, see Theorem 4. It is simple to show that a denting point of \(S_{X^*} \) must belong to \(X \), hence the example in Remark 5.2 hints also at the difference between being strongly extreme and denting.

Morris proved in [Mo83] the following result.

(M1) Any separable Banach space \(X \) containing an isomorphic copy of \(c_0 \) can be renormed in such a way that all points of \(S_X \) are unpreserved extreme points. (Observe that the new norm is then strictly convex.)

The space \(c_0 \) has the property that the set \(\text{Ext}(B_{X^*}) \) of extreme points of the closed dual unit ball is countable. The set \(\text{Ext}(B_{X^*}) \) is an example of a James boundary, i.e., a subset of \(B_{X^*} \) where each element \(x \in X \) attains its supremum on \(B_{X^*} \). A Banach space with a countable James boundary has a separable dual space (this follows, e.g., from the fact that a countable James boundary is strong, i.e., its closed convex hull is the closed dual unit ball ([Ro81], see also [Go87]).

A Banach space \(X \) is called polyhedral if the ball of every finite-dimensional subspace (equivalently every two-dimensional subspace, see [K59]) of \(X \) has only a finite number of extreme points. Every polyhedral separable space has a countable James boundary ([Fo80], see also [Ve00]).

An example of polyhedral space is \(c_0 \) in its canonical norm ([K60], see also [GM72] and [Go01]). The argument in [Go01] is so nice that we cannot help but to reproduce it here. It relies on the fact that the \(\| \cdot \|_\infty \)-norm on \(c_0 \) depends locally on a finite number of coordinates (see the precise definition of this term below). Let \(E \) be a finite-dimensional subspace of \(c_0 \). For each \(x \in S_E \) there exists \(\varepsilon(x) > 0 \) and a finite subset \(F(x) \) of \(X^* \) such that \(\| y \|_\infty = \sup \{ \| y \cdot x^* \| : x^* \in F(x) \} \) for all \(y \in B_E(x; \varepsilon(x)) \). Since \(S_E \) is compact, there are \(x_1, \ldots, x_n \) in \(S_E \) such that

\[
S_E \subseteq \bigcup_{i=1}^n B_E(x_i, \varepsilon(x_i)).
\]

Put \(F := \bigcup_{i=1}^n F(x_i) \). Then \(F \) is a finite subset of \(X^* \) such that

\[
\| x \|_\infty = \sup \{ \| y \cdot x^* \| : x^* \in F \}
\]

for all \(x \in E \), hence \(E \) is isometric to a subspace of \((\mathbb{R}^|F|, \| \cdot \|_\infty) \), a polyhedral space.

On the other side, the space \(c \) in its canonical norm is not polyhedral. The following argument was kindly provided by L. Veselý (personal communication): Consider the points \(P_n := \exp \{ i(1 - 1/n)\pi/4 \} \) in the plane, for all \(n \in \mathbb{N} \) (see Figure 2). Let \(a_n x + b_n y = 1 \) be the equation of the line through \(P_n \) and \(P_{n+1} \) for all \(n \in \mathbb{N} \), and \(a_0 x + b_0 y = 1 \) the equation of the line through \(P_\infty := \exp(\pi/4) \) and \(P_0 := (-1, 0) \). Then \(a := (a_n)_{n\geq0} \) and \(b := (b_n)_{n\geq0} \) are elements in \(c \), and

Figure 1: In (i), all points in \(S_X \) are preserved extreme, none in (ii)
their linear span L is isometric to a plane equipped with the norm whose closed unit ball is the set \text{conv} \{±P_1, ±P_2, \ldots, ±P_∞\}.
There is no infinite-dimensional reflexive polyhedral space ([L64]). Actually, no infinite-dimensional $C(K)$ space in its canonical norm is polyhedral—although such space has, if K is a countable compact topological space, obviously, a countable James boundary—. As seen below (see (H)), every $C(K)$ space with K a countable and compact topological space is isomorphic to a polyhedral space.

We will need the following result:

(Z) Banach spaces with a countable James boundary are c_0-saturated, i.e., each closed subspace contains an isomorphic copy of c_0 ([Fo77], [PWZ81], see also [FHHMZ, Theorem 10.9]).

In this note we slightly modify Morris technique by means of a result of P. Hájek ([Ha95]), see also [FHHMZ, Theorem 10.12]) on normed spaces with a countable James boundary—a characterization quoted below as (H)— to add, under these circumstances, smoothness—in fact, $C^∞$-smoothness— to the kind of renorming shown by Morris.

The norm $\| \cdot \|$ of a Banach space is said to depend locally on a finite number of coordinates if given any $x_0 \in S_X$ there exists $\delta > 0$, continuous linear functionals $\{ψ_1, ψ_2, \ldots, ψ_n\} \subset X^*$, and a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ such that, for every $x \in B(x_0; δ)$ we have $\|x\| = f(ψ_1(x), ψ_1(x), \ldots, ψ_1(x))$. The result of Hájek [Ha95] (see also [FHHMZ, Theorem 10.12]) mentioned above, an improvement of results in [Fo77] and [PWZ81], is the equivalence (i) to (iv) in the following. For the property (v) see [FLP01, Proposition 6.19] and, e.g., [Ve00].

(H) For a Banach space X, the following are equivalent: (i) X has a countable James boundary. (ii) X has a James boundary that can be covered by a countable number of $\| \cdot \|$-compact subsets of X^*. (iii) X is separable and has an equivalent norm that depends locally on a finite number of coordinates. (iv) X is separable and has an equivalent norm that is $C^∞$-smooth away from the origin and depends locally on a finite number of coordinates. (v) X is separable and isomorphic to a polyhedral Banach space.

The following result appears in [Mo83], with a different argument, as an ingredient of the proof of (M1) above; it will also be used in the proof of our main result.

(M2) There exists an infinite-dimensional w^*-closed subspace M_0 of $ℓ_∞$ such that $M_0 \cap c_0 = \{0\}$.
To see this, first note that every separable Banach space is isometric to a subspace of $ℓ_∞$, thus in particular $ℓ_∞$ contains an isometric copy Z of a given infinite-dimensional separable reflexive space. By a result of Rosenthal (see, e.g., [FHHMZ, Lemma 4.62]), Z is w^*-closed. Observe that $Z \cap c_0$ must be finite-dimensional, as any infinite-dimensional subspace of c_0 contains a copy of c_0. Then, a finite-codimensional subspace M_0 of Z is what we need to finish the proof.

2 The results

Theorem 1 Let $(X, \| \cdot \|_0)$ be a Banach space having a countable James boundary. Then there exists an equivalent (strictly convex) norm $\| \cdot \|$ on X that is $C^∞$-smooth away from the origin and
such that every point in \(S_{\| \cdot \|} \) is an unpreserved extreme point of \(B_{\| \cdot \|} \).

Proof. By (H) above, the space \(X \) has an equivalent \(C^\infty \)-smooth norm \(\| \cdot \| \) that depends locally on a finite number of coordinates. Moreover, it contains an isomorphic copy \(Z \) of \(c_0 \) (see (Z) above).

The space \(Z^{**} \) can be canonically identified to a closed subspace of \(X^{**} \). Let \(M \) be a \(w^* \)-closed infinite-dimensional subspace of \(Z^{**} \) such that \(M \cap Z = \{0\} \); it exists thanks to (M2) above. It is clear, then, that \(M \cap X = \{0\} \).

Let \(N := M \perp X^* \) (the orthogonal is taken with respect to the duality \(\langle X^{**}, X^* \rangle \)). Find a sequence \(\{\phi_n\} \in N \) such that \(\text{span} \{\phi_n : n \in \mathbb{N}\} = N \) and \(\sum_{n=1}^{\infty} \|\phi_n\|^2 < +\infty \). Define a linear operator \(T : X \to l_2 \) by \(T x := ((x, \phi_n))_{n=1}^{\infty} \) for \(x \in X \); then \(T \) is clearly bounded and one-to-one, and the mapping \(x \to \| T x \|_2 \) from \(X \) into \(\mathbb{R} \) is certainly \(C^\infty \)-smooth away from the origin.

Define a norm \(\| \cdot \| \) on \(X \) by

\[
\|x\| := \|x\| + \|Tx\|_2 \quad \text{for all} \quad x \in X.
\]

Clearly \(\| \cdot \| \) is strictly convex (see e.g. [DGZ, Chapter II]) and \(C^\infty \)-smooth away from the origin.

Let us show that every point \(x_0 \) in \(S_{\| \cdot \|} \) is unpreserved extreme. Find \(\delta > 0 \) such that \(\| \cdot \| \) depends on \(B_{\| \cdot \|}(x_0; \delta) \) on finitely many coordinates \(\{\psi_1, \psi_2, \ldots, \psi_n\} \), i.e., \(\|x\| = f(\psi_1(x), \psi_2(x), \ldots, \psi_n(x)) \) for \(x \in B_{\| \cdot \|}(x_0; \delta) \), where \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuous function. Due to the fact that \(M \) is infinite-dimensional, we can find \(h^{**} \in M \cap \bigcap_{k=1}^{\infty} \ker \psi_k \) with \(0 < \|h^{**}\| \leq \delta \).

Find a net \(\{h_i : i \in I, \leq \} \) in \(B_{\| \cdot \|}(0; \delta) \) that \(w^* \)-converges to \(h^{**} \). Observe that \(x_0 + h_i \in B_{\| \cdot \|}(x_0; \delta) \), hence

\[
\|x_0 + h_i\| = f(\psi_1(x_0 + h_i), \psi_2(x_0 + h_i), \ldots, \psi_n(x_0 + h_i)), \quad \text{for all} \quad i \in I.
\]

Note that \(\psi_k(x_0 + h_i) \to \psi_k(x_0 + h^{**}) \) for all \(k = 1, 2, \ldots, n \), and so, by (2),

\[
\|x_0 + h_i\| = f(\psi_1(x_0 + h_i), \psi_2(x_0 + h_i), \ldots, \psi_n(x_0 + h_i))
\]

\[
\to f(\psi_1(x_0 + h^{**}), \psi_2(x_0 + h^{**}), \ldots, \psi_n(x_0 + h^{**}))
\]

\[
= f(\psi_1(x_0), \psi_2(x_0), \ldots, \psi_n(x_0)) = \|x_0\|.
\]

Since

\[
x_0 + h_i \stackrel{w^*}{\to} x_0 + h^{**},
\]

we get from (3) and (4) that \(\|x_0 + h^{**}\| \leq \|x_0\| \). In the same way we get \(\|x_0 - h^{**}\| \leq \|x_0\| \), so finally by a standard convexity argument, \(\|x_0\| = \|x_0 + h^{**}\| = \|x_0 - h^{**}\| \). Regarding the norm \(\| \cdot \| \), we have then

\[
\|x_0 + h^{**}\| = \|x_0 + h^{**}\| + \|T(x_0 + h^{**})\|,
\]

as it is easy to show, hence, since \(T(h^{**}) = 0 \),

\[
\|x_0 + h^{**}\| = \|x_0\| + \|T(x_0)\| = \|x_0\| = 1.
\]

Analogously,

\[
\|x_0 - h^{**}\| = \|x_0\| = 1.
\]

Equations (5) and (6) together show that \(x_0 \) is an unpreserved extreme point of \(B_{\| \cdot \|} \).

The following result extends what formerly was known for \(C^2 \)-smooth LUR norms (see, e.g., [FFHMZ, Exercise 9.16]) and later for \(C^2 \)-smooth norms with a strongly exposed point on its unit sphere [FWZ83, Theorem 3.3].

Theorem 2 Let \((X, \| \cdot \|) \) be an infinite-dimensional \(C^2 \)-smooth Banach space. If there exists a strongly extreme point of \(B_{\| \cdot \|} \), then \(X \) is superreflexive.

Proof. Assume that \(x \) is a strongly extreme point of \(B_X \). The \(C^2 \)-differentiability of \(\| \cdot \| \) implies that there exists \(\delta > 0 \) such that the first derivative of \(\| \cdot \| \) is uniformly continuous on a \(2\delta \)-ball around \(x \).

Let \(g \) be the supporting functional to the ball at \(x \). For \(h \in g^{-1}(0) \), let \(f(h) = \|x + h\| + \|x - h\| - 2 \).
Then $f(h) \geq 0$, $f(0) = 0$ and $\inf_{\|h\|=\delta} f > 0$. Indeed, otherwise there exists a sequence $\{h_n\}_{n=1}^\infty$ in $g^{-1}(0)$ such that $\|h_n\| = \delta$ for all $n \in \mathbb{N}$, and $f(h_n) \to 0$, meaning that $\|x + h_n\| \to 1$ and $\|x - h_n\| \to 1$, as $\|x \pm h_n\| \geq g(x \pm h_n) = g(x) = 1$. Thus, by the definition of the strong extremality of x, $\|h_n\| \to 0$, a contradiction. Hence, by standard methods we can construct a bump function (i.e. a function with bounded nonempty support) on $g^{-1}(0)$ with uniformly continuous derivative, meaning that X is superreflexive (see, e.g., [FHHMZ, Theorem 9.19]).

Corollary 3 Let $(X, \| \cdot \|)$ be an infinite-dimensional C^2-smooth Banach space. Assume that X does contain an isomorphic copy of c_0 (in particular, assume that X is isomorphic to a polyhedral space). Then no point of $S_{\| \cdot \|}$ is a strongly extreme point of $B_{\| \cdot \|}$.

Proof. Otherwise, according to Theorem 2, the space X would be superreflexive. This is impossible since X contains an isomorphic copy of c_0. In case that X is isomorphic to a polyhedral space, so it is every separable subspace of X, thus the containment of c_0 follows from (Z) and (H) above. □

Theorem 4 Let X be a separable infinite-dimensional polyhedral Banach space. Then there exists an equivalent norm $\| \cdot \|$ on X such that every point in $S_{\| \cdot \|}$ is preserved extreme non-strongly extreme of $B_{\| \cdot \|}$.

Proof. Let $\| \cdot \|$ be an equivalent C^2-smooth norm on X (such a norm always exists, see (H) above). Let $\{f_i : i \in \mathbb{N}\}$ be a countable norm-dense subset of $B_{\| \cdot \|}$ (recall that X is Asplund). Then the equivalent norm $\| \cdot \|$ on X defined by $\|x\| := (\|x\|^2 + \sum \frac{1}{2} f_i^2(x))^2$ for all $x \in X$, is weakly uniformly rotund, i.e., whenever x_n, y_n are in $S_{\| \cdot \|}$ and $\|x_n + y_n\| \to 2$, then $x_n - y_n \to 0$ in the weak topology of X. This means that, in particular, the bidual norm of $\| \cdot \|$ is rotund (indeed, assume that $2x^{* *} = y^{* *} + z^{* *}$ for some $x^{* *} \in S_{\| \cdot \|}$, where $y^{* *}$ and $z^{* *}$ are both in $B_{\| \cdot \|}$) and $y^{* *} \neq z^{* *}$. Since X^{*} is separable, there exist sequences $\{y_n\}$ and $\{z_n\}$ in $B_{\| \cdot \|}$ such that $y_n \to y^{* *}$ and $z_n \to z^{* *}$ in the w^{*}-topology. This leads immediately to a contradiction. Moreover, the norm $\| \cdot \|$ on X is clearly C^2-smooth. Thus all points in $S_{\| \cdot \|}$ are preserved extreme points and yet, no point there is strongly extreme point of $B_{\| \cdot \|}$ by Corollary 3 (indeed, X is not superreflexive, as it contains an isomorphic copy of c_0). □

Remark 5

1. Note that, in the setting of Theorem 4, no point in $S_{\| \cdot \|}$ is a point where the norm and weak topologies coincide, as otherwise, by a result in [LLT88], such a point would be a strongly extreme point of $B_{\| \cdot \|}$.

2. The James space J can be renormed by a norm the second bidual norm of which has the property that all its points on its sphere are strongly extreme points ([MOTV01]), see also [LPT09]). None of the points in $S_{\cdot \cdot \cdot X}$ can be denting. Recall that a space is reflexive if its dual space admits an equivalent Fréchet differentiable dual norm ([FHHMZ, Corollary 7.26]).

3. The space ℓ_∞ cannot be renormed so that all points on the sphere would be preserved extreme points ([HMS]).

4. Hájek ([Ha98]) showed that, if Γ is uncountable, then there exists no C^2-smooth and strictly convex norm on $c_0(\Gamma)$.

5. We refer to, e.g., [HMZ12], for a survey on related topics.

References

