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Abstract 
When a pressurized bubbly mixture is driven out through an orifice, the mixture pressure abruptly drops and the 
bubbles undergo a rapid expansion process, which under some circumstances results in a rapid disintegration of 
the liquid bulk into small droplets (atomization). Depending on the initial conditions, heterogeneous or 
homogeneous nucleation of vapor bubbles may occur. For homogeneous nucleation, the vapor bubbles grow 
rapidly one towards the other, and when they touch each other the bubbles “explode”. In this stage, the liquid 
around the bubbles is teared, and a spray with small and uniform droplets is formed. In the literature, it seems that 
the efficiency of the homogenous flash boiling process is very low. In this work, we analyse this process and 
analyse it for possible energy losses. 
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Introduction 
Over the years, different methods have been developed in order to obtain suitable sprays for different 
applications. The more important characteristics of a spray include the drops diameter, droplet size distribution, 
spray shape, flow velocity and mass flux. Former studies [1]–[7]  show that the flash boiling method is one of the 
most efficient methods to obtain a spray with very small drops and with a uniform distribution. These are very 
relevant for many applications such as combustion systems, for which higher combustion efficiency and low 
pollution are important. Today, flash boiling sprays are widely used to generate fine sprays in air refreshers, insect 
fighting, painting and some pharmaceutical applications. The flash boiling obtained by pressure reduction of 
compressed liquid bellow the saturation pressure.   
The flash boiling spray is generated under well determined specific thermodynamic conditions. Based on the Levy 
et al. [8] model, the process is divided into three areas. When a liquid having a high vapor pressure, in the 
container (Fig. 1 area a), is discharged to a low pressure ambient through a orifice, (i-e area). Under these 
conditions the rapid depressurization, results in a high bubbles nucleation, (point n). Vapor bubbles with radius 
𝑅𝑅𝑐𝑐𝑐𝑐 are created, and grow one towards another up to the point in which they touch each other (point t) and tear 
the liquid around them into small and relatively uniform droplets (area d). 

Figure 1. Homogenous flash boiling process sketch. 
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Bubbles nucleation 
Bubbles nucleation is one of the most important mechanisms in generation of the flash boiling spray. Depending 
on the thermodynamic conditions, two types of nucleation may occur. First, the bubbles generated on the orifice 
wall defined as a heterogeneous nucleation. Second, the bubbles nucleation occurs in the fluid bulk as known as 
homogeneous nucleation. Under homogeneous regime the bubbles nucleation rate is greater than the 
heterogeneous rate, and thus, the spray is finer [5], [7]. In addition, under this regime a simple orifice (Fig. 1) is 
required, therefore it may be applicable for fuel injection systems in engines and combustors. 
The desirable homogenous nucleation occurrence depends on two criteria based on extensive experimental work. 
The Avedisian [9] criterion is on the initial temperature, i.e. the initial temperature is higher than 90% of the critical 
temperature, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 > 0.9𝑇𝑇𝑐𝑐𝑐𝑐. In addition, Hutcherson et al. [10], [11] determined that the depressurization rate limit 
is 400 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 for homogenous nucleation.  
During the nucleation bubbles are generating in a various sizes. On each bubble two forces are acting. One, 
causing the bubble to increase, is the pressure difference across the bubble surface. Meaning, between inside 
bubble pressure, 𝑝𝑝𝑣𝑣, and liquid surrounding pressure, 𝑝𝑝𝑙𝑙. On the other hand, the bubble surface tension, 𝜎𝜎, is 
acting to shrink it, when the surface tension is calculated by Sher et al. [12] method. The critical radius is defined 
by Young–Laplace equation, Eq. 1, and determines the collapsing or bubble spontaneously growing.      

𝑅𝑅𝑐𝑐𝑐𝑐 =
2𝜎𝜎

𝑝𝑝𝑣𝑣 − 𝑝𝑝𝑙𝑙
 (1) 

The nucleation flux density is very important quantity in flash boiling sprays. The homogeneous nucleation flux 
density suggestion, in seedy state system, depends on the critical size bubbles generation quantity and the 
bubble grows rate from the critical size. Thus, the expression for number of bubbles formed during a time unit per 
unit volume is [13].  
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where 𝑇𝑇𝑙𝑙 is the liquid initial temperature, 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑙𝑙) is the saturation pressure at initial temperature,                                    
𝛾𝛾 = 𝑒𝑒𝑒𝑒𝑒𝑒{[𝑝𝑝𝑙𝑙 − 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇𝑙𝑙)]/𝜌𝜌𝑙𝑙𝑅𝑅�𝑇𝑇𝑙𝑙} and the pressure difference is obtained by Redlich – Kwong equation of state 
(EOS).   

Bubbles growth 
When stable vapor bubble is formed, it spontaneously grow. The control growth type and the bubbles growth rate 
influence the spray droplets characteristics. This bubble growth process is very complicated. The momentum and 
mass conservation are coupled and non-linear. Furthermore, at the bubble wall, between the vapor and the liquid, 
there is hydrodynamic and thermal interaction. When, the Generalized Rayleigh–Plesset equation of motion 
describe a spherical vapor bubble growth in spherical coordinates, in infinite liquid pool. 
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Where 𝑅𝑅, 𝑅̇𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅̈𝑅 are radius, velocity and acceleration of the bubble radius growth respectively, and 𝑝𝑝∞ is the 
liquid pressure outside the boundary layer. Because it is not possible to solve this equation analytically without 
assumptions, the process of their growth can be divided into three stages: 

1. Inertia control growth. 
2. Coupled inertia and thermal-diffusion control growth. 
3. Thermal-diffusion control growth. 

When a bubble is formed, the temperature inside the bubble is assumed to be equal to the surrounding liquid 
temperature (𝑇𝑇𝑣𝑣 = 𝑇𝑇∞), and the pressure inside the bubble is the saturation pressure at this temperature (𝑝𝑝𝑣𝑣 =
𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇∞)). During the first stage of the bubble growth, the limiting factor of the bubbles growth rate is the outward 
acceleration of the liquid around it. The growth rate of the bubble has been shown by Rayleigh [14] to be at the 
form of: 

𝑅𝑅 = 𝐴𝐴𝐴𝐴 (4) 
In the final stage, the bubble becomes bigger, therefore, a larger amount of vapor is needed in order to increase 
its size. Furthermore, the pressure of the bubble decreases until it is equal to the pressure of the liquid 
surrounding (𝑝𝑝𝑣𝑣 = 𝑝𝑝∞), and the bubble temperature is according to the saturation temperature at this pressure 
�𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝∞)�. As a result of the bubble growth, this layer of the surrounding liquid cools down and create a 
temperature difference. This temperature difference drives a thermal diffusion from the liquid into the bubble. 
Thus, at the third stage, the heat that can be supplied to the bubble walls is the limiting factor of the growth rate of 
the bubble. This stage of the bubble growth is shown by Plesset and Zwick [15] to be: 

𝑅𝑅 = 𝐵𝐵√𝑡𝑡 (5) 
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In the intermediate stage, the bubble grows and both the temperature and the pressure decreases. The limiting 
factor of the bubbles growth is the combination between the growth rate by inertia and the thermal diffusion. Mikic 
et al. [16] showed that the combined effects of the inertia and thermal diffusion determine the growth rate of the 
bubble: 
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Figure 2. Mikic et al. [16], Plesset & Zwick [15]  and Rayleigh [14] models for predicting bubble growth in superheated R-22. 

 
A better agreement to experiments of the bubble growth rate can be achieved by using numerical models. 
Robinson and Judd [17] offered a numerical model that can solve the coupling between the three following 
equations:     

1. Generalized Rayleigh–Plesset equation, (Eq. 3). 
2. Energy conservation equation of the bubble walls: 
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3. Energy equation outside the bubble: 
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Eqs. (3), (7) and (8) are solved using the forth order Runga-Kutta numerical method.  

 
Figure 3. Dimensionless bubble radius and bubble vapor temperature versus dimensionless time , using Robinson and Judd 

[17] method for a few injection temperatures. 
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Energy mechanisms 
During the homogenous flash boiling generation spray process, the compressed liquid energy, in the container, is 
transformed into a several different energy mechanisms. By the energy partition model investigation, it is possible 
to examine the effect of the compressed liquid properties on the spray properties. This model is based on the 
flash boiling generation spray, the homogenous nucleation rate and Robinson and  Judd [17] numerical bubble 
growth model, With the steady state steady flow (SSSF) assumption.   
In the initial condition, when the compressed liquid is in the container (Fig. 1 area a). The liquid's energy will be its 
availability [18]: 

𝛹𝛹𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚̇𝑚𝑙𝑙𝑖𝑖��ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − ℎ0� − 𝑇𝑇0�𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑠𝑠0�� (9) 
where ℎ and 𝑠𝑠 are the enthalpy and the entropy respectively, the subscripts 𝑖𝑖𝑖𝑖𝑖𝑖 and 0 denotes to compressed 
liquid (container) and surrounding conditions. The mass flow rate in the orifice is: 

𝑚̇𝑚𝑙𝑙 = 𝜌𝜌𝑙𝑙𝑖𝑖𝑈𝑈�𝑖𝑖𝐴𝐴𝑁𝑁 = 𝜙̇𝜙𝑙𝑙𝑖𝑖𝐴𝐴𝑁𝑁  (10) 
Where 𝐴𝐴𝑁𝑁 is the orifice cross section area, 𝜙̇𝜙𝑙𝑙 is the mass flux and 𝑈𝑈�𝑙𝑙𝑖𝑖 is the mean flow velocity, under the 
assumption that the flow isn’t chocked.  
When the liquid flow throw the orifice, rapid depressurization occurs and linearly pressure decrease is assumed. 
In consequence of the depressurization, a massive bubble nucleation occurs. To simplify, we assume that the 
formed bubbles are spherical and with uniform arrangement, Face- Centered Cubic (FCC) (Fig. 4) and stay that 
way for all of the growth process until they touch each other at point (t) (Fig. 1). Furthermore, we assume that 
those kernels are formed in a uniform flow cross section, with width unit sell of (a) (Fig. 4). Also, we assume that 
the flow is adiabatic, meaning that there is no heat transfer from the liquid to the orifice walls and there is no 
relative flow between the bubbles and the liquid.   

 
Figure 4. Face-Centred Cubic (FCC) unit cell. 

According to those assumptions, the distance between the bubbles, 𝑙𝑙, is constant and can be evaluated the 
following way.  
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During the process, from the moment the bubbles are formed (n) until the moment they touch each other (t) 
(areas n and t), the energy can be expressed by using the following mechanisms: 

• The flow kinetic energy flux of the orifice entrance: 

𝐸𝐸𝑘𝑘′′(𝑡𝑡) = 𝜙̇𝜙𝑙𝑙𝑖𝑖
𝑈𝑈�(𝑡𝑡)2
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• The evaporation energy flux of the liquid into the bubbles:  
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• The mechanical work invested when the bubbles push the liquid while growing: 

𝐸𝐸𝑝𝑝′′(𝑡𝑡) = 4𝜋𝜋
𝑁̇𝑁
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• The bubbles surface tension energy in the liquid a moment before the explosion: 
𝐸𝐸𝜎𝜎′′(𝑡𝑡) = 𝑁̇𝑁4𝜋𝜋𝜋𝜋𝜋𝜋(𝑡𝑡) (15) 
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Spray characteristic 
After the bubbles touch each other, they explode and spread the liquid between them into a little droplets, so the 
spray is created (area d). Assuming that the number of bubbles is equal to the number of droplets, by mass 
conservation at the liquid phase, it is possible to evaluate the average radius of the formed droplets. 
 The efficiency of the process is defined by the following [1]:  

𝜂𝜂 =
𝐸𝐸𝜎𝜎𝑑𝑑

𝛹𝛹𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛹𝛹0
 (16) 

 When the droplets surface tension energy defined by: 

𝐸𝐸𝜎𝜎𝑑𝑑
′′ = 4𝜋𝜋𝜎𝜎𝑑𝑑��

𝐷𝐷𝑗𝑗
2 �

2𝑁̇𝑁

𝑗𝑗=1

 (17) 

Results and discussion 
At the following, we can see the dimensionless energy distribution of various mechanisms from the bubbles 
formation, point (n) until they touch each other, point (t). It is obtained based on the bubbles formation rate and 
the bubble growth rate model. 
At the following figure, we can see the dimensionless energy distribution as function of the dimensionless time, for 
injection temperature 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 340 𝐾𝐾, meaning 93% of the critical temperature. A large part of the energy is 
converted into kinetic energy, to move the liquid throw the orifice as a result of the pressure differences.  

 
Figure 5. Dimensionless energy distribution as function of dimensionless time, from the bubbles formation, point (n) until they 

touch each other, point (t), for injection temperature 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 340 𝐾𝐾. 

The following figures present the dimensionless energy distribution as function of the dimensionless temperature. 
In the left side (Fig 6.a) at the bubbles formation moment, point (n), and in the right side (Fig 6.b) the moment the 
bubbles touch each other, point (t). 
Most of the energy is converted into evaporation of the bubbles during their growth. Also, a significant amount of 
energy is wasted when the bubbles push the liquid around them. Furthermore, a small amount of energy is 
accumulated in the surface tension of the bubbles. Another interesting thing that can be concluded is that the 
energy of the different mechanisms increases with the liquid injection temperature.         
                                                     (a)                                             (b) 

  
Figure 6. Dimensionless energy distribution as function of the dimensionless temperature. In (a), at the bubbles formation 

moment and in (b), at the moment the bubbles touch each other. 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

t*

E 
/Ψ

in
j

 

 
Kinetic
Work against liquid pressure
Surface tention
Evaporation

0.9 0.905 0.91 0.915 0.92 0.925 0.93
0

0.2

0.4

0.6

0.8

1

T/Tcr

E 
/Ψ

in
j

 

 
Kinetic
Work against liquid pressure
Surface tention
Evaporation

0.9 0.905 0.91 0.915 0.92 0.925 0.93
0

0.2

0.4

0.6

0.8

1

T/Tcr

E 
/Ψ

in
j

 

 
Kinetic
Work against liquid pressure
Surface tention
Evaporation



ILASS – Europe 2017, 6-8 Sep. 2017, Valencia, Spain 

 

 

Fig. 7.a shoes the average droplets diameter and Fig. 7.b presents the process efficiency as function of the 
dimensionless temperature for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹2, Chlorodifluoromethane (R-22). It is possible to distinguish that the 
droplets radius reduces linearly when the temperature increases.    
                                                     (a)                                          (b) 

  
Figure 7. Average droplets diameter (in a) and process efficiency (in b) as function of the dimensionless temperature. 

Conclusions 
The current model present the energy distribution along the jet breaking process into a spray using homogenous 
flesh boiling. The model can evaluate changes of energy as a result of condition changes or the compressed 
liquid characteristics. Furthermore, the model can evaluate the sprays droplet radius. Using an experiment 
comparison allows to add a correction factor for the models assumptions. Homogeneous nucleation can be used 
in injection systems, such as combustors and engines because it can be achieved using a simple atomizer 
construction 

 

Nomenclature 
𝐴𝐴𝑁𝑁 Orifice cross section [𝑚𝑚2] 
𝐷𝐷 Diameter [𝑚𝑚] 
ℎ Enthalpy [𝐽𝐽 𝑘𝑘𝑔𝑔−1]  
𝐽𝐽 nucleation rate [𝑛𝑛 𝑚𝑚−3𝑠𝑠−1] 
𝐽𝐽𝐽𝐽 Jacobs number [– ] 
𝑘𝑘 Thermal conduction [𝑊𝑊 𝑚𝑚−1𝐾𝐾−1]  
𝑘𝑘𝑏𝑏 Boltzmann constant [𝐽𝐽 𝐾𝐾−1] 
𝑙𝑙 Length between bubbles [𝑚𝑚] 
𝑚̇𝑚 Mass flow rate [𝑘𝑘𝑘𝑘 𝑠𝑠−1] 
𝑀𝑀�  Molar mass [𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1] 
𝑁𝑁𝐴𝐴 Avogadro number [– ] 
𝑝𝑝 Pressure [𝑃𝑃𝑃𝑃]  
𝑅𝑅 Bubble radius [𝑚𝑚] 
𝑅𝑅� Gas constant [𝐽𝐽 𝐾𝐾−1 𝑘𝑘𝑘𝑘−1] 
𝑠𝑠 Entropy [𝐽𝐽 𝑘𝑘𝑔𝑔−1𝐾𝐾−1] 
𝑇𝑇 Temperature [𝐾𝐾]  
𝑡𝑡 Time [𝑠𝑠] 
𝑈𝑈� Average velocity [𝑚𝑚 𝑠𝑠−1] 
 
𝜃𝜃 Dimensionless temperature [−] 
𝜇𝜇 Dynamic viscosity [𝑃𝑃𝑃𝑃 𝑠𝑠] 
𝜌𝜌 Density [𝑘𝑘𝑘𝑘 𝑚𝑚−3] 
𝜎𝜎 Surface tension [𝑁𝑁 𝑚𝑚−1] 
𝜙̇𝜙 mass flux [𝑘𝑘𝑘𝑘 𝑠𝑠−1 𝑚𝑚−2] 
Ψ Availability [𝑊𝑊] 

Indices 
𝑐𝑐𝑐𝑐 Critic 
𝑑𝑑 Droplets 
ℎ𝑛𝑛 Evaporation energy 
𝑖𝑖𝑖𝑖𝑖𝑖 Injection 
𝑘𝑘 Kinetic energy 
𝑙𝑙 Liquid 
𝑛𝑛 Nucleation 
𝑝𝑝 Mechanical work 
𝑠𝑠𝑠𝑠𝑠𝑠 Saturation  
𝑡𝑡 Bubble exploding 
𝑣𝑣 Vapor 
 
0 Surrounding conditions 
∞ Outside of the boundary layer  
∗ Dimensionless 
𝜎𝜎 Surface tension energy 
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