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Abstract 

The oscillating drop method allows material properties of liquids to be measured from damped drop oscillations. The 

literature discusses, e.g., the measurement of the liquid dynamic viscosity and the surface tension against the ambient 

medium, predominantly for Newtonian liquids. We use this method for measuring pairs of material properties of 

polymeric liquids. Pairs of properties may be measured, since the quantity measured is a complex frequency with a 

real and an imaginary part. For the measurements, individual drops are levitated in air by an ultrasonic levitator and 

imaged with a high-speed camera. Amplitude modulation of the ultrasound drives shape oscillations of the levitated 

drop. When the modulation is switched off, with the levitating force maintained, the drop performs free oscillations 

which are damped due to the liquid viscosity. The data acquired from the images recorded are the angular frequency 

and the damping rate which are used as an input into the characteristic equation of the oscillating drop. Our 

measurements intend to yield either two viscoelastic time scales with the zero-shear viscosity known, or one time 

scale and the zero-shear viscosity, with the other time scale known. The two time scales are the stress relaxation and 

the deformation retardation times. The latter is difficult to get for polymer solutions. 

The present contribution presents results from a large set of measurements of the deformation retardation time. 

Liquids studied are aqueous solutions of poly(acryl-amides) at varying concentration. The corresponding values of the 

zero-shear viscosity agree well with the values from shear rheometry. Values of the deformation retardation time differ 

substantially from the values commonly used in viscoelastic flow simulations. Furthermore, the measured values 

disagree with the predictions from the viscous-elastic stress splitting approach in linear viscoelasticity. With our study 

we will provide a consistent set of material properties for the Oldroyd-B model in linear viscoelasticity. This will be 

important for material modelling in viscoelastic spray simulations. 
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Introduction 

The deformations of a drop surface due to shape oscillations may influence transport processes across the liquid/gas 

interface, such as the evaporation of the drop or the absorption of gases from the environment. For their relevance for 

transport processes, and for scientific interest, oscillations of liquid drops have been under investigation since the time 

of Lord Rayleigh, who derived the angular frequency 𝛼𝑚,0 = √𝑚(𝑚 − 1)(𝑚 + 2)√𝜎/𝜌𝑎3 of linear oscillations of mode

m for an inviscid drop with density 𝜌, radius 𝑎, and surface tension 𝜎 against the ambient vacuum [1]. Rayleigh's work 

was extended by Lamb [2], who included the influence of viscosity of the drop liquid and obtained the oscillation 

frequency and the rate of decay of the oscillations in the limits of very high and very low drop viscosity. 

The idea to measure material properties of liquids from damped drop shape oscillations has brought about the 

oscillating drop method [3, 4]. To date, the existing literature discusses the measurement of material parameters, such 

as the dynamic viscosity of the liquid and its surface tension against the ambient medium, predominantly for 

Newtonian liquids [5-8].  

For viscoelastic systems, the oscillating drop method was used for investigating the surface rheology [9, 10]. The 

materials were surfactant solutions, and the drops were levitated due to the microgravity conditions of the experiment. 

In these studies, complementary effects of the bulk and the surface viscosities were found [9] and quantified [10]. 

Most recently, the oscillating drop method was proposed and developed for measuring polymeric time scales [11-13]. 

The basis of the method is the characteristic equation for the complex frequency of the drop. The experiments were 

carried out with aqueous solutions of the two different poly(acryl-amides) Praestol 2500 and Praestol 2540 with 

different degree of hydrolysis and hence different mechanical flexibilities of the macromolecules. The drops were 

levitated using an ultrasonic levitator. The aim of the first study [11] was to quantify the influences of the two polymeric 

time scales on the oscillation behavior of the drop, and to propose an experimental method to determine the 

deformation retardation time by measuring damped oscillations of the drop. A proof-of-concept experiment was 
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presented to show the potential and limitations of the method. In [12], the characteristic equation was further 

analyzed, and a numerical method for determining a pair of liquid properties from the characteristic equation was 

presented. The method was tested for three different aqueous polymer solutions (0.3 and 0.8 wt.% Praestol 2500 and 

0.05 wt.% Praestol 2540). The values of the deformation retardation time λ2 obtained by this method deviate strongly 

from the values typically used in viscoelastic flow simulations. The sensitivity and uncertainty analysis have shown the 

values of λ2 depend weakly on the uncertainty of the experimental data. 

In the present study, the oscillating drop method [11-13] was used to study the deformation retardation time 

dependency on the polymer concentration. We have studied aqueous solutions of Praestol 2500 with polymer mass 

fractions between 0.1 and 1.0 wt.%. Our paper is organized as follows: first the theoretical foundations of drop shape 

oscillations are presented. We then outline the experiment for measuring the complex oscillation frequency. Further, 

we present and discuss the experimental results and draw the conclusions. 

 

Theoretical Foundations 

The equations governing linear viscoelastic drop shape oscillations are the equation of continuity   𝛁 ∙ 𝒗 = 0 and the 

linearized equation of motion 

𝜌
𝜕𝒗

𝜕𝑡
= −𝜵 ∙ (𝑝𝜹 − 𝝉) (1) 

The extra stress tensor 𝝉 is related to the flow field through the appropriate linear viscoelastic material model. Material 

models in fluids relate rates of deformation to the extra stresses, which appear on top of some isotropic stress, such 

as pressure. Material models follow either from micro-rheological or from phenomenological approaches. The former 

consists in a transport equation for the dyadic of the end-to-end position vector of the macromolecules with itself, 

which yields information about the state of deformation of the molecules in the solution and, thereby, about the stress. 

The phenomenological approach models extra stresses and their changes by a transport equation. The rheological 

equations of state representing the material model must satisfy invariance criteria in coordinate transformations and 

must be independent of the motion of the material as a whole [14].  

The most general form of a phenomenological material model for a viscoelastic fluid is the Oldroyd eight-constant 

model [15]. It allows non-linear material behavior to be modelled and relies on the eight constant parameters of the 

model, which all have the dimension of time, except the dynamic viscosity involved. Simplifying this model to the linear 

case, i.e., treating a liquid as linear viscoelastic, the extra stress in the liquid at small rates of deformation may be 

described by the differential equation 

𝝉 + 𝜆1

𝑑𝝉

𝑑𝑡
= −𝜂0(�̇� + 𝜆2

𝑑�̇�

𝑑𝑡
) (2) 

where 𝜆1 and 𝜆2 are the stress relaxation and deformation retardation times, 𝜂0 is the zero shear viscosity and �̇� is the 

rate of deformation tensor. This equation is also known as the Jeffreys model. The relaxation time characterizes the 

time scale on which the stress relaxes after removal of strain, and the retardation time describes the strain relaxation 

after removal of stress. The case  λ1 = λ2 = 0 describes the purely viscous Newtonian fluid, and the case λ2 = 0, 

λ1 > 0  describes the purely elastic fluid. With the time dependency of motion given by an exponential function 

exp(−𝛼𝑚𝑡), where 𝛼𝑚 is the complex angular frequency of mode m, the stress tensor 𝜏 satisfying Eq.(2) reads 

𝝉 = 𝜂0

1 − 𝛼𝑚𝜆2

1 − 𝛼𝑚𝜆1
�̇� = 𝜂(𝛼𝑚)�̇� (3) 

This equation indicates that the linear viscoelastic extra stress may be represented formally in the same way as for a 

Newtonian fluid, with the difference that the dynamic viscosity 𝜂(𝛼𝑚) depends on the complex frequency 𝛼𝑚 (corre-

spondence principle). In our discussions on the linear stability behaviour of viscoelastic liquid systems below we will 

assume material behaviour according to this model. Shear thinning, as a non-linear phenomenon, is therefore not 

accounted for, which is strictly correct for Boger fluids, but neglects some potentially important phenomenon in shear 

thinning liquids. In the latter case, however, linear liquid behaviour on the first Newtonian plateau of the flow curve 

may still be represented correctly by the linear approach [16]. 

In polymer science and in computational rheology, it is customary to decompose the stress into its Newtonian and 

non-Newtonian components (referred to as the viscous-elastic stress splitting) or, more generally, to write the extra 

stress 𝝉 = 𝝉𝑠 + 𝝉𝑝 and the dynamic viscosity 𝜂0 = 𝜂𝑠 + 𝜂𝑝  as sums of contributions from the Newtonian solvent and 

the polymer (solvent-polymer stress splitting) [17, 18]. A similar approach can be applied also for the Giesekus model 

[19]. This approach yields the Jeffreys model (Oldroyd B) if the deformation retardation time is defined as  
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𝜆2 = 𝜆1

𝜂𝑠

𝜂𝑠 + 𝜂𝑝
= 𝜆1

𝜂𝑠

𝜂0
=: 𝜆2𝐺 (4) 

The damped oscillatory motion of the drop is analyzed in detail in [11, 12]. The fundamental outcome of the analysis is 

the characteristic equation for the complex frequency of the drop  

(
𝛼𝑚,0

𝛼𝑚
)

2

=
2(𝑚2 − 1)

𝑞2𝑎2 − 2𝑞𝑎𝑗𝑚+1/𝑗𝑚
− 1 +

2𝑚(𝑚 − 1)

𝑞2𝑎2
[1 +

2(𝑚 + 1)𝑗𝑚+1/𝑗𝑚

2𝑞𝑎𝑗𝑚+1/𝑗𝑚 − 𝑞𝑎
] (5) 

where 𝑞 = √𝛼𝑚/𝜈(𝛼𝑚) and 𝑗𝑚 and 𝑗𝑚+1 are spherical Bessel functions of the first kind at the value 𝑞𝑎 of their 

arguments. The equation is formally identical to the results of Lamb [2] obtained for Newtonian liquids. In the present 

case of a viscoelastic liquid, however, the kinematic viscosity involved in the equation is a function of the complex 

oscillation frequency αm. The equation is transcendental in 𝑞𝑎 and must therefore be solved numerically to determine, 

e.g., the zero-shear dynamic viscosity 0 and the deformation retardation time 2 involved in the dynamic viscosity 

𝜂(𝛼𝑚) = 𝜈(𝛼𝑚)𝜌 = 𝜂0(1 − 𝛼𝑚𝜆2)/(1 − 𝛼𝑚𝜆1). Knowing the real and imaginary parts of the complex oscillation 

frequency m from the experiment, we get two pieces of information from the characteristic equation. In the following 

section we present an experiment suitable for measuring the complex oscillation frequency 𝛼2 of the drop. 

 

Experimental method 

The experiment bases on the levitation of an individual drop in a standing ultrasound wave [20]. The acoustic 

resonator consists of a transducer and a curved reflector allowing for the stable placement of a drop with a diameter ≤ 

3 mm (Fig. 1). Liquids studied are aqueous solutions of poly(acryl-amides) at varying concentration. The drops are 

produced and placed into the acoustic field with an insulin syringe (Fig. 2 left, center). Oscillation frequencies excited 

by ultrasound modulation are O(120 Hz), close to the resonance frequency of the base-mode m=2. After switch-off of 

the modulation, the drop returns to its equilibrium shape by damped oscillations (Fig. 2 right).  

 

 

Figure 1. Experimental setup with acoustic levitator for drop shape oscillation studies. 

 

 

  
Figure 2. (Left) Shape of a levitated 1.7 mm drop, (center) equilibrium and deformed drop shapes in the spherical coordinate 

system. The deformed shape (dashed line) is represented by 𝑟𝑠(𝜃, 𝑡) = 𝑎 + 𝜖0𝑃𝑚(cos 𝜃)exp(−𝛼𝑚𝑡) [11], (right) distance between the 
north and south poles in a damped drop oscillation as a function of time. 
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The data acquired from the high-speed camera recording of the damped oscillations are the angular frequency 𝛼𝑚,𝑖 

and the damping rate 𝛼𝑚,𝑟. For determining the pair of liquid properties (𝜂0, 2), the two values 𝛼𝑚,𝑖 and 𝛼𝑚,𝑟 are used 

as an input into the characteristic equation (5) of the drop, so that the left-hand side of the equation is known. 

Our experiments were carried out with aqueous solutions of the poly(acryl-amide) Praestol 2500 from Solenis 

Technologies (Germany). This is a non-ionic polymer with a degree of hydrolysis of 3 – 4% and molecular weight 

about 15-20 ·10
6
 kg/kmol. The aqueous solutions were prepared in demineralized water, producing a master solution 

with a solute mass fraction of 10000 ppm by mass, which was then diluted to achieve the various mass fractions. The 

shear viscosity of the liquids was measured as a function of shear rate with a rotational rheometer Anton Paar MCR 

300. The values of the zero-shear viscosity 𝜂0
∗  (first Newtonian plateau) were determined from measured flow curves 

approximated by the empirical Carreau-Yasuda model. The temperature was kept constant at the value of 22°C ± 1°C 

in the laboratory where the drop oscillation experiments were carried out. The densities of the liquids were measured 

with an oscillating U-tube device with an accuracy of ±0.1 kg/m
3
. They are all in the order of 10

3
 kg/m

3
. The surface 

tension of the liquids against the ambient air was measured with a drop volume tensiometer. The stress relaxation 

time 𝜆1 of the liquids was measured with a filament stretching elongational rheometer yielding mean values with 

standard deviations between 6 and 15% [20]. The properties of the aqueous solutions of the poly(acryl-amide) 

Praestol 2500 investigated in the present study are listed in Table 1 and presented in Fig. 3.  

 

Table 1. Properties of the aqueous Praestol 2500 polymer solutions at 22°C. 

Solute mass 

fraction w 

[wt.%] 

Density 

ρ 

[kg m
-3

] 

Surface 

tension σ 

[N m
-1

] 

Zero-shear 

viscosity η0* 

[Pa s] 

Stress relaxation 

time 𝜆1 

[s] 

0.1 1000 0.0722 0.013 ± 10% 0.025 ± 10% 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

1000 

0.0727 

0.0732 

0.0737 

0.0743 

0.0748 

0.0753 

0.0758 

0.0763 

0.0769 

0.033 ± 10% 

0.08 ± 10% 

0.12 ± 10% 

0.39 ± 10% 

0.56 ± 10% 

0.9 ± 10% 

1.6 ± 10% 

2.3 ± 10% 

3.9 ± 10% 

0.066 ± 10% 

0.11 ± 10% 

0.12 ± 10% 

0.16 ± 10% 

0.18 ± 10% 

0.21 ± 10% 

0.23 ± 10% 

0.25 ± 10% 

0.285 ± 10% 

     

  
Figure 3. Praestol 2500 aqueous solutions. (Left) Zero-shear viscosity and (right) relaxation time against polymer mass fraction. 

 

Figure 3 (left) shows the zero-shear viscosity against polymer mass fraction. The measured data are approximated by 

the scaling law 

𝜂0 ∝ 𝑤𝑆 (6) 

where S ≈ 1.3 at low polymer mass fractions w, and  S ≈ 3.3 for high polymer mass fraction. The transition between 

these two regimes lies between w=0.2 and 0.3 wt.% (Fig. 3 left).  Figure 3 (right) shows the dependence of the 



ILASS – Europe 2017, 6-8 Sep. 2017, Valencia, Spain 

relaxation time on the polymer mass fraction w. The measured values are approximated using the similar scaling law 

λ1 ∝ w𝑇, where T ≈ 1.4 for low concentrations and T ≈ 0.85 for higher concentrations. The transition between these 

two regimes lies again between w=0.2 and 0.3 wt.%. The region between 0.3 and 1.0 wt.% can be seen as a semi-

dilute regime, and the region between 0.1 and 0.2 wt.% as the transition from the dilute to the semi-dilute regime. 

Images of the levitated drop are recorded by a high-speed camera at a framing rate of 2 kHz under backlight 

illumination. An uncertainty in the length measurement of ±2 Pxls with the resolution of 300 Pxls/mm results in a sizing 

uncertainty of ±6.7 µm, which is equivalent to ±0.3% for a 2 mm drop. Within at most 10 s after the drop has been 

placed in the acoustic levitator, several pictures of the drop are taken in order to have its initial shape and volume. 

This initial state, where the evaporation of the solvent has had no influence on the solution concentration yet, allows 

the concentration of the drop liquid at all later times to be deduced from the volume. The equilibrium radius 𝑎 is 

calculated from the recorded instantaneous images. The zero-shear viscosity obtained from the experiment is the 

value corresponding to the concentration of the solution present during the related experiment. 

The experiment for determining the polymeric deformation retardation time from damped drop oscillations is subject to 

influences from the experimental method of acoustic levitation and the non-Newtonian behavior of the polymeric 

liquid, which is shear-thinning in many cases. In order to fulfill the limitations set by the linear theory underlying the 

characteristic equation of the drop, and in order to avoid influences from the shear thinning of the liquid, we measure 

the drop oscillation frequency and damping rate in the late stages of the damped oscillation.  

The oscillation shown in Figure 2 (right) was recorded for a 0.3 wt.% Praestol 2500 solution drop with the equilibrium 

diameter of 1.83 mm. The drop was driven at 130 Hz before the modulation was switched off. From these data, the 

frequency and damping rate in the last part of the motion were extracted, so that both the linear oscillation behavior 

was ensured and the shear-thinning of the polymer solution did not have any influence on the oscillation. The 

frequency and damping rate are determined using the least-squares method to achieve the best fit of a prescribed 

function to the damped oscillations measurement data. The fitting procedure was done of both oscillating directions, 

as shown in Figure 4 (left) and the average value for the frequency and the damping rate were calculated. The 

volume-equivalent spherical radius was also calculated (Figure 4 right) and compared to initial radius in order to 

determine the correct polymer concentration.  

The angular frequency and the damping rate of the drop depicted in Fig. 2, determined by this procedure, are 

𝛼2,𝑖 = (2𝜋) ∙ 134.2 Hz and 𝛼2,𝑟 = 36.2 s
-1

. The real and imaginary parts of the complex angular frequency 𝛼2 = 𝛼2,𝑟 +

𝑖𝛼2,𝑖 are therefore known. 

 

  
Figure 4. Damped oscillations of a levitated 1.72 mm 0.3 wt% aqueous Praestol 2500 solution drop as a function of time. (Left) 

Normalized oscillation amplitude and the fitting curve (solid line) in the last part of the motion. (Right) Volume-equivalent spherical 

radius of the drop as a function of time, varying by no more than 0.3%. 

 

Solutions of the characteristic equation 

The characteristic equation (5) is transcendental in the argument of the spherical Bessel functions involved and must 

therefore be solved numerically. The method for determining 𝜂0 and 2 by solving this equation and the detailed 

analysis of the characteristic equation are presented in [12]. For the numerical analysis we use the computer algebra 

software MATHEMATICA. As a prerequisite, the complex frequency m must be accurately measured in the 

experiment, and the radius of the drop as well as the density, surface tension and stress relaxation time of the liquid in 

contact with the ambient air must be known. Due to the influence from the spherical Bessel functions, the equation 
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exhibits a complicated set of solutions. Identification of the right solution among the calculated pairs of 𝜂0 and 2 

follows from comparison of the value of 𝜂0 with the result 𝜂0
∗  from the measurements with a rotational viscosimeter. 

The solutions 𝑞𝑎 of the characteristic equation and corresponding calculated values of zero shear viscosity 𝜂0 and 

deformation retardation time 𝜆2 for a 0.3 wt% aqueous Praestol 2500 solution drop are listed in Table 2.  

 

Table 2. Positive roots qa of the characteristic equation and corresponding calculated values of zero shear viscosity 𝜂0 and 

deformation retardation time 𝜆2 for the 0.3 wt% Praestol 2500 solution drop in Fig. 3. The correct solution is highlighted. 

Radius  

[mm] 

Frequency 

[Hz] 

Damping 

rate [s
-1

] 
𝑞𝑎 

𝜂0  

[Pa·s] 

2 

 [s] 

   0.917 134.2 36.2 4.385  + 7.8312i 0.0002 2130·10
-4 

± 0.006 ± 0.4 ± 2.5 4.974  + 0.0791i 2.656 1.267 ·10
-4

 

8.767 + 0.0426i 0.856 1.005·10
-4

 

12.116 + 0.0263i 0.448 0.941·10
-4

 

15.363 + 0.0164i 

18.569 + 0.0106i 

0.279 

0.191 

0.915·10
-4

 

0.903·10
-4

 

21.755 + 0.0071i 0.139 0.897·10
-4

 

24.928 + 0.0049i 0.106 0.894·10
-4

 

28.093 + 0.0036i 0.083 0.893·10
-4

 

31.254 + 0.0027i 0.067 0.892·10
-4

 

34.411 + 0.0020i 0.056 0.891·10
-4

 

37.564 + 0.0016i 0.047 0.891·10
-4

 

 

From the error analysis [12] follows that 𝜆2 can be accurately determined even if the right solution 𝑞𝑎 cannot 

unambiguously be identified. This is due to the weak dependency of 𝜆2 on the solution 𝑞𝑎 of the characteristic 

equation. This weak dependency is demonstrated in Table 2. On the other hand, in order to accurately determine 𝜂0, 

very accurate measurements of all the input parameters are required. 

 

Results and discussion 

With each of the ten polymer solutions we performed a set of about 35 measurements in order to get statistically 

reliable results. From each polymer solution, five drops with different radius were levitated and with each of these 

drops, we performed 6 to 8 oscillation measurements. The results are presented in Table 3 and in Fig. 5. Table 3 

shows the set of viscosities and deformation retardation times of the aqueous polymer solutions (Table 1), where 

values obtained as solutions of the characteristic equation are compared to values of the deformation retardation time 
from the viscous-elastic stress splitting approach 𝜆2𝐺 = 𝜆1𝜂𝑠/𝜂0

∗ . The value of the solvent viscosity 𝜂𝑠 used was 1 mPa 

s for water. The uncertainty of the values listed in Table 3 is of the order of 10%. 

Table 3. The viscosities 𝜂0 and deformation retardation times λ2 obtained from oscillating drop measurements. For comparison the 

zero shear viscosity 𝜂0
∗

 and the deformation retardation λ2G from the viscous-elastic stress splitting approach are also listed. 

Solute mass 

fraction w 

[wt%] 

Viscosity 𝜂0
 

[Pa s] 

Zero-shear 

viscosity 𝜂0
∗ 

[Pa s] 

Retardation 

 time λ2 

[10
-4 

s] 

Retardation 

 time λ2Gwith 𝜂0
∗  

[10
-4 

s] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.013 

0.037 

0.08 

0.127 

0.43 

0.51 

0.82 

1.65 

2 

6 

0.013  

0.033  

0.08  

0.12  

0.39  

0.56  

0.9  

1.6  

2.3  

3.9  

0.35 

0.47 

0.9 

2 

2.1 

2.5 

2.7 

2.9 

3.1 

3.5 

19.23 

20.00 

13.75 

10.00 

4.10 

3.21 

2.33 

1.38 

1.09 

0.73 
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Figure 5. (Left) Calculated 𝜂0 and measured 𝜂0
∗ and (right) λ2 and λ2G against Praestol 2500 polymer mass fraction w. 

 

Zero shear viscosity 

The values of the zero-shear dynamic viscosity agree with the values from the shear viscosimetry to within ±10%, 

except for the 1.0 wt.% polymer solution. This disagreement could be due to experimental error, i.e. the measurement 

error of the input parameters is too large. A second reason for the disagreement could be that this case may be close 

to the limit of applicability of our method regarding the polymer concentration, since we must keep in mind that our 

experimental method relies on the ability of the drop to perform damped periodic oscillations. Once the drop 

Ohnesorge number threshold to aperiodic behavior is exceeded, the deformed drop returns to its equilibrium state in 

an aperiodic manner, so that our method cannot be applied any more. This will be the subject of further studies.  

Deformation retardation time 

The results show that the measured deformation retardation time 𝜆2 increases monotonically with the polymer mass 

fraction w. For the concentrations studied, values of 𝜆2 between 35 and 350 𝜇s are obtained. On the other hand, 𝜆2𝐺 

as defined by the viscous-elastic stress splitting approach decreases with increasing polymer mass fraction in the 

range of polymer mass fractions above w=0.2 wt.%. The two trends are equal only in the range of polymer mass 

fractions below 0.2 wt.%. The trend of 𝜆2𝐺 to vary with the polymer concentration is quantified as (𝜆2𝐺/c)/ 𝜆2𝐺= 

(𝜆1/c)/𝜆1-(𝜂0/c)/𝜂0. With the dependencies of 1 and 0 on the polymer concentration given above, we arrive at the 

condition that (𝜆2𝐺/c)/ 𝜆2𝐺 is positive only when T>S, which is the case in the sufficiently dilute regime below w=0.2 

wt.% only. We conclude from this that the calculation of 𝜆2 with the viscous-elastic stress splitting approach 

reproduces the trend from the experiment correctly only in this sufficiently dilute regime, which corresponds to 

different polymer mass fraction regimes for different polymers and solvents. The absolute values of 𝜆2𝐺 obtained, 

however, still differ substantially from the result of the measurement. In the case of the present polymer solution, the 

measured values of 𝜆2 agree well with the calculated 𝜆2𝐺 for polymer mass fractions between 0.5 and 0.8 wt.% only, 

and this rather by coincidence. For the most dilute solutions studied, the measured and calculated values strongly 

deviate from each other, which finding remains to be explained once more polymer solutions were investigated. As 

one reason for these differences due to the different concentrations of the solutions we may see the fact that the more 

dilute solutions may be better described by the viscous-elastic stress splitting approach than the more concentrated 

solutions. This could indicate a limitation of the validity of the equation for 𝜆2𝐺 for concentrated systems. The absolute 

values of this time scale, however, still remain quite different even in the dilute solutions. 

 

Conclusions 

In this study we use linear damped shape oscillations of drops for measuring the zero-shear viscosity and the 

deformation retardation time of viscoelastic polymeric drop liquids. The solution of the linearized equations of change 

governing the drop shape oscillations yields the characteristic equation for the complex oscillation frequency which is 

used for determining the material properties. For a given drop, the oscillation frequency and the damping rate are 

measured in an experiment using acoustic levitation. Liquid material properties relevant for the oscillations, such as 

liquid density, surface tension and stress relaxation time, are measured by appropriate standard methods. The zero-

shear viscosity and the deformation retardation time of the liquid are obtained as solutions of the characteristic 

equation of the oscillating drop. Values of the liquid dynamic viscosity are close to those from shear rheometry. They 
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allow the correct solution of the characteristic equation to be identified from a manifold and support the correctness of 

the deformation retardation times determined.  

The values of λ2 are found to deviate strongly from values often used in simulations of viscoelastic liquid flow. The 

values of  λ2 agree with λ2G only for small region of polymer mass fractions (between 0.5 and 0.8 wt.%). Further work 

will be devoted to investigating the deformation retardation behaviour of various polymers at different concentrations 

in solvents of different quality. 

 

Nomenclature             

a     equilibrium drop radius [m]     

jm, jm+1     spherical Bessel functions [1]   

m     mode number [1] 

p     pressure [Pa]  

Pm     Legendre polynomials 

q=qr + iqi    complex inverse oscillatory length scale [m
-1

]              

r     radial coordinate        

S, T           scaling exponents [1] 

t     time [s] 

v                velocity [m s
-1

]      

w               polymer mass fraction [wt.%]        

m=m,r + im,i      complex angular frequency [s
-1

] 

m,0  inviscid angular frequency [s
-1

]   

𝜀0                          oscillation amplitude [m] 

�̇�     rate of deformation tensor [s
-1

] 

  dynamic viscosity [Pa s]   

0  zero-shear dynamic viscosity [Pa s]  

1, 2, 2G polymeric time scales [s]  

  kinematic viscosity [m
2
 s

-1
] 

ρ                 density [kg m
-3

]  

σ  surface tension [N m
-1

] 

𝝉      extra stress tensor [Pa] 
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