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Abstract 

Diesel fuel consist of several hundreds of substances on organic basis. Experimental and numerical investigations 

of this multicomponent fuel are hard to interpret in detail, since the behavior of the multicomponent mixture is 

complex. Physical and chemical data of this system is not available under engine relevant conditions. Instead, 

fundamental research substitutes diesel with pure substances, where a big database exists.  

Prior work already showed, that overall spray propagation (including vapor phase) is nearly independent on the 

injected fuel. This is due to the high air entrainment at present diesel engine conditions (very high injection pressure 

and dense ambient atmosphere). The high air entrainment shortly behind the nozzle exit (within the first 5 mm 

penetration) creates a situation where properties of the ambient gas dominate the spray propagation resulting in 

similar mass and momentum distributions even for different fuels, if the injection conditions are kept constant. On 

the other hand, the liquid length is clearly different for different fuels, so that location and time of the phase change 

differ with consequences on the time available for mixture formation in the gas phase. The paper describes the 

liquid length as a function of the enthalpy necessary for the phase transition (given by the fuel and fuel temperature 

at injection) and the injection conditions (ambient gas properties, injector design and injection pressure). We 

compare two different models describing the enthalpy balance. Siebers et al. presented “Model I”, where mass 

transfer dominates the enthalpy transfer and evaporation takes place. In our own “Model II” evaporation is 

suppressed, resulting in a heat transfer driven enthalpy transfer without mass transport. The calculations are 

validated with experimental data.  

The liquid length is optically accessible by Mie-Scattering imaging techniques, the complete spray evolution by 

Schlieren technique. The experimental study was carried out in the high-pressure combustion vessel “OptiVeP” at 

FAU. The data shown in this paper derived from measurements with dodecane injected at 1200 bar into 613 K 

ambient. The ambient pressure varies from 1 – 10 MPa. A Continental research injector with a 115 µm hole and 

L/D of 6.5 was used. Nitrogen atmosphere suppressed ignition. 

Increasing the ambient pressure leads to a change in the mechanism in phase transition. It switches from a mass 

transfer dominated regime to a heat transfer dominated regime at high ambient pressures. 
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Introduction 

Diesel injection is in focus of research for many years now, but still basic parameters like the liquid length are not 

physically described yet. One problem is that no fluid data of multicomponent systems under relevant ambient 

conditions are available. Thus, research often substitutes diesel with pure substances like dodecane. 

Dennis Siebers delivered the most comprehensive description of diesel fuel injection in the late 90s. He summarized 

his findings in his scaling law [2], which will be reviewed later on. During the injection a momentum transfer from 

fuel to entrained air occurs. The spray velocity decreases with increasing mass of entrained air. The amount of 

entrained air is very high. Yue et al. showed with x-ray absorption, that the fuel volumetric fraction on the spray axis 

decreases to 0.8 at 1mm distance to the nozzle and to 0.2 at 6 mm to the nozzle [3]. Leick et al. confirmed the 

results with a similar technique under modern diesel relevant ambient conditions (ρa = 21.7 kg/m³; pinj = 135 MPa) 

[4]. Riess et al. extended this view and showed that the extreme high air entrainment is fuel independent. They 

investigated different Diesel-Ethanol blends with Raman spectroscopy, where local substance amount ratios can 

be determined. They found similar high air entrainment ratios and additionally showed that mixture formation is 

independent from the fuel, which results in similar penetration curves for all blends and pure substances in Schlieren 

measurements. The maximum liquid penetration from the orifice, though is strongly determined by the fuel [5]. This 

maximum liquid length is called “liquid length” further on in this paper, see Figure 2. 
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Volume and momentum balance 

Naber and Siebers formulated a momentum model for a full diesel spray under non-vaporizing conditions, that 

explains the fuel independency from Riess et al. [1, 5]. His schematic view is drawn in Figure 1. The momentum 

source is the fuel injection with mass rate 𝑚̇𝑓 and exit velocity 𝑢0. The momentum is transferred to the entrained air 

𝑚̇𝑎. The spray velocity 𝑢(𝑥) is decreasing with distance to the orifice and thus with increasing entrained air mass. 

𝑚̇𝑓 ∙ 𝑢0 = (𝑚̇𝑓 + 𝑚̇𝑎) ∙ 𝑢(𝑥) = 𝑐𝑜𝑛𝑠𝑡.  (1) 

 

Since the fuel volume in the spray is negligible small, the spray cross section that is covered by fuel Af is also 

negligible [5]. Thus the complete spray cross section can be assigned to the entrained air and the resulting air mass 

flow can be estimated from the momentum balance (1) and the continuum constraints (2) and (3). 

𝑚̇𝑓 = 𝜌𝑓0 ∙ 𝐴0 ∙ 𝑢0  (2) 

𝑚̇𝑎 = 𝜌𝑎 ∙ 𝐴(𝑥) ∙ 𝑢(𝑥)  (3) 

In this model several assumptions were made: 

1) u(x) is constant in every cross section (rectangular velocity profile in the spray) 

2) air only moves in radial direction outside the spray [6] 

3) orifice exit velocity 𝑢0, spray spreading angle 𝛼 and nozzle discharge coefficient 𝐶𝑎 are constant [5] 

4) no-slip condition between air and fuel 

5) constant ambient density 𝜌𝑎 

 

Siebers et al. defined a dimensionless orifice distance 𝑥̃ for better comparability between different ambient 

conditions (4). In addition, they defined the mass flow ratio B as function of this dimensionless distance (5). 

𝑥̃ = √
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Figure 1. Schematic of the spray model according to Siebers [1] 
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With equation (4) the non-vaporizing spray penetration is described and equation (5) gives the according mass 

ratios. The equations also show, that the mass ratio in a certain distance x is independent from the injection 

pressure. Consequently an increase in injection pressure does not increase the air entrainment. Schlieren 

measurements from Riess et al. confirm the proposed model even for the full spray with vaporizing conditions [5]. 

The gaseous spray penetrates steadily independent from the fuels physical state, which again shows the dominating 

role of the entrained air. 

 

Calculation of the liquid length 

The liquid length L of a diesel spray is the maximum penetration of liquid fuel. Under vaporizing conditions, the 

liquid length is constant as long as the fuel mass flow is constant, see Figure 2. At this distance, enough ambient 

gas is mixed in and thus enthalpy is transported into the spray to vaporize all fuel. According to equation (5) this 

distance is assigned to a certain mass ratio. Two simplified models are considered: 

 

Calculation model I:  Mass transport is much faster than heat transfer  Fuel droplets evaporate and mass 

transport is only limited by the saturation of the ambient. The mixture temperature 𝑇𝑚𝑖𝑥 is a 

consequence of the evaporation cooling and heating due to the entrained hot ambient gas. 

(Siebers scaling law) 

 

Calculation model II: Heat transfer is much faster than mass transport  Fuel droplets do not evaporate at all until 

they have reached their phase change temperature (boiling or critical). Enthalpy is provided 

by entrained hot air. 

 

 

Figure 2. Definition of the liquid length 

Calculation model I 

The idea of Siebers’ scaling law is to search for the mass ratio at which the enthalpy balance and the resulting 

partial pressure ratios are satisfied. The general enthalpy balance for an evaporating spray is: 

𝑚̇𝑎(ℎ𝑎(𝑇𝑎, 𝑝𝑎) − ℎ𝑎(𝑇𝑎2, 𝑝𝑎2)) = 𝑚̇𝑓 (ℎ𝑓(𝑇𝑓2, 𝑝𝑓2) − ℎ𝑓(𝑇𝑓 , 𝑝𝑎))  (6) 

with the thermodynamic equilibrium at:   

𝑇𝑎2 = 𝑇𝑓2 = 𝑇𝑚𝑖𝑥  (7) 

The equilibrium pressures are equal to the partial pressures 𝑝𝑖 satisfying Dalton’s law (9): 

𝑝𝑎 = 𝑝𝑎2 + 𝑝𝑓2 = 𝑝𝑎 + 𝑝𝑓  (8) 

𝑝𝑖 = 𝑚̇𝑖 ∙
𝑍𝑖

𝑀𝑖
∙

𝑅𝑚∙𝑇𝑚𝑖𝑥

𝑉̇
   (9) 
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The scaling law assumes a much faster mass transport than heat transfer, which means, that the environment is 

always saturated of fuel vapor. Thus, the partial pressure of the fuel is equal to the saturation pressure 𝑝𝑠(𝑇) at a 

certain condition: 

𝑝𝑓 = 𝑝𝑠(𝑇𝑚𝑖𝑥)  (10) 

𝑝𝑎 = 𝑝𝑎 − 𝑝𝑠(𝑇𝑚𝑖𝑥)  (11) 

To allow a complete phase change, the enthalpy and the partial pressure balances have to result in the same value 

for the mass ratio at a certain mixture temperature Tmix and have to be solved iteratively: 

 

1

𝐵𝐿
=
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𝑚̇𝑓
=  
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𝑝𝑠(𝑇𝑚𝑖𝑥)∙𝑀𝑓 ∙ 𝑍𝑎
  (12) 

 

With the known mass ratio BL, equation (5) can be solved for the corresponding dimensionless distance 𝑥̃(𝐵𝐿), 

which is defined as the dimensionless liquid length 𝐿̃. 

 

Calculation model II 

The second model assumes heat transfer to be much faster than mass transport. Thus no mass transfer to in the 

vapor phase is taken into account during heating up of the fuel. Enthalpy is transferred from the ambient gas to the 

liquid fuel until its phase change temperature is reached. The same general enthalpy balance like before is valid, 

see equation (6), but the equilibrium conditions have changed: 

𝑇𝑎2 = 𝑇𝑓2 = 𝑇𝑚𝑖𝑥 = 𝑇𝑃ℎ𝑎𝑠𝑒 𝐶ℎ𝑎𝑛𝑔𝑒  (13) 

The phase change temperature can be the boiling temperature or the critical temperature. Table 1 shows some 

phase change conditions for dodecane. 

Table 1. Phase change conditions for dodecane [7] 

pphase change 1 MPa 1,5 MPa pcrit = 1,82 MPa 

Tphase change 614,5 K 643 K 658,1 K 

 

The necessary mass ration can directly be calculated from equation (6). The according liquid length 𝐿̃ is again the 

solution of equatzion (5) for 𝑥̃(𝐵 = 𝐵𝐿). 

 

1

𝐵𝐿
=

𝑚̇𝑎

𝑚̇𝑓
=  

ℎ𝑓(𝑇𝑃ℎ𝑎𝑠𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 , 𝑝𝑎)− ℎ𝑓(𝑇𝑓 , 𝑝𝑎)

ℎ𝑎(𝑇𝑎 , 𝑝𝑎) − ℎ𝑎(𝑇𝑃ℎ𝑎𝑠𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 ,𝑝𝑎)
  (14) 

 

Experimental methods 

The liquid length is optically accessible by Mie-Scattering imaging techniques, the complete spray evolution by 

Schlieren technique. The experimental study was carried out in the high-pressure combustion vessel “OptiVeP” at 

FAU. For more details see Riess et al. [5]. The operation point was constant at 873 K ambient temperature, 120 MPa 

injection pressure and 363 K fuel temperature in nitrogen atmosphere, whereas the ambient pressure was varied 

from 1 MPa to 9 MPa. A Continental 3 hole research injector was used. The spray spreading angles are derived 

from Schlieren images. The acquired Mie and Schlieren images where processed with a self-developed MATLAB® 

code SprayAnalysis. 

 

Results and discussion 

This section starts with basic predictions by the two models, further the predicted liquid length are compared to the 

dodecane measurements 

 

Model Prediction – Enthalpy Balance 

The fuel enthalpy developing for different ambient pressures for both calculation models is drawn in Figure 3. With 

dominating mass transport (calculation model I) drawn in Figure 3a the initial enthalpy of the fuel ℎ𝑓0 is almost 

constant with rising pressure, whereas the enthalpy needed for evaporation Δℎ𝑓 is increasing steadily. A dominating 

heat transfer (calculation model II) leads to a complete different behavior, see Figure 3b. Here the enthalpy for the 

phase change Δℎ𝑙𝑖𝑞 increases to a maximum, the decrease flats out forming a peak before a plateau. This 
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developing is a direct consequence from the shape of the phase boundary line in the H-S diagram, see Figure 4. 

Since the critical point is placed in the turning point of the phase boundary line, the phase change enthalpy has a 

maximum below the critical pressure. Simultaneously, the evaporation enthalpy Δℎ𝑉 drops to zero as the critical 

point is reached. Thus the peak is even emphasized in the overall enthalpy Δℎ𝑔𝑒𝑠. A suppressed mass transport 

demands a higher phase change enthalpy, which is mainly due to the much higher resulting mixing temperatures. 

In terms of the model assumptions these two models define upper and lower limits for the needed phase change 

enthalpy. 

  

Figure 3. Enthalpy developing over pressure for calculation model I (a) and calculation model II (b) 

Figure 4. H-S-diagram for dodecane at 873 K with data from NIST [7] 
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The peak in the enthalpy difference from calculation model II consequently results in a peak liquid length, see Figure 

5. In contrast, model I predicts a steady decrease of the liquid length over pressure. It can also be seen, that model I 

underestimates and model II overestimates the liquid length, according to the upper and lower limits, depending on 

the mechanism of phase change. Siebers already noticed that and multiplied the calculated values with a suitable 

scaling factor. The best fits to the measured data points are shown in Figure 5. At a pressure of 3 MPa a transition 

from model I to model II takes places. It even gets clearer in Figure 6, where the dimensionless liquid length is 

plotted. The peak in the dimensionless liquid length of model II cannot be reproduced experimentally. Instead, 

model I fits very well here. Above 3 MPa ambient pressure model II predicts a constant dimensionless liquid length, 

which is confirmed by the experiment. Recalling the assumptions of the calculation models, at low ambient 

pressures mass transport dominates the liquid length. With increasing ambient pressure, this changes to a heat 

transfer dominated mechanism. The transition point seems to be fuel dependent, which calculations with different 

substances suggest. With these two models an experiment can be designed to confirm this conclusion. 

Measurements with other fuels and additional isothermal rows have to be carried out to clarify the transition between 

both mechanisms.  

 

 

Figure 5. Comparison of the calculated liquid length according to model I and II with measured data of dodecane. 

 

Figure 6. Fitted dimensionless liquid length to measured data of dodecane. 
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One example of an additional isothermal row is presented in Figure 7. Dodecane was injected at 613 K ambient 

temperature. Model II fails to calculate any liquid length, because the temperature is below any phase change 

temperature at these pressures. Model I, which is expected to be predictive at low conditions, still promised a 

constant liquid length. This expectation could be confirmed in the experiment. A liquid length also occurs 

significantly below the boiling temperature, compare Table 1. 

 

Figure 7. Liquid length of dodecane - pressure variation at 613 K. 

Conclusions and outlook 

The full spray penetration under non-vaporizing and vaporizing conditions is described very well with Siebers’ 

momentum balance and is confirmed by several authors. In contrast, the resulting liquid length is still not fully 

described, although a high effort is made in this research field. Siebers’ scaling law, here called calculation model 

I, is a very good approach for low ambient pressures. The formation of a constant liquid length below boiling 

temperatures can be predicted qualitatively. The introduced calculation model II, in which the heat transfer is much 

faster than the mass transport, fits qualitatively very well at high ambient pressures. This concludes, that a change 

in the phase transition mechanism takes place from a mass transport dominated to a heat transfer dominated 

regime with increasing ambient pressure. The transition point seems to be fuel dependent. Similar experiments 

where already done with decane, hepatane, hexane, ethanol and rapeseedmethylester. Unfortunately only 

operation points at high ambient conditions with respect to the fluids phase transition temperatures and pressures 

where performed, thus a validation of the model results is not possible at that time. 

 

Nomenclature 

θ spray angle [°] 

𝜌𝑎  gas density [kg/m³] 

𝜌𝑓0 fuel density (initial) [kg/m³]] 

pinj injection pressure [MPa] 

𝑚̇𝑓 fuel mass flow [g/s] 

𝑚̇𝑎 air mass flow [g/s] 
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𝐴0 orifice cross section [mm²] 

𝐴(𝑥) axial spray cross section [mm²] 

𝑢0 orifice exit velocity [m/s] 

𝑢(𝑥) spray velocity [m/s] 

B mass flow ratio 

𝑥 distance from orifice [mm] 

𝑥̃ dimensionless distance from orifce 

𝐿 liquid length 

𝐿̃ dimensionless liquid length 

𝐶𝑎 nozzle coefficient 

d orifice diameter [µm] 

a model constant 

Tmix mixture temperature [K] 

Tf fuel temperature [K] 

Ta ambient temperature [K] 

𝑝𝑠  saturation pressure 

𝑝  partial pressure [Pa] 

M molar mass [g/mol] 

Z compressibility factor 

Rm gas constant 
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