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Abstract 

In this work, high performance Ni and Ni-Co porous electrodes are prepared using the 

Raney strategy by galvanic co-deposition for hydrogen evolution reaction (HER) in 

alkaline solution (KOH 30 wt.%). The incorporation of Co into the Raney Ni matrix 

causes a surface morphology modification, from cracked to “cauliflower-like”, which 

dominates the superficial structure of the Co-richest obtained material. The evaluation 

of these electrodes as H2-evolving cathodes is done through pseudo-steady-state 

polarization curves and electrochemical impedance spectroscopy (EIS). Ni Raney 

electrode (without Co) manifests the highest apparent catalytic activity per unit of 

geometric surface area, which is attributed to the higher surface roughness factor, 

determined by EIS. HER on the investigated electrocatalysts proceeds via the Volmer-

Heyrovsky mechanism, with Heyrovsky as the rate-determining step (rds). From the 

kinetic parameters it is derived that Co presence, in a composition range of 5-22 at.%, 

increases the intrinsic catalytic activity of the developed cathodes per unit of true 

surface area, as a consequence of the synergism between the properties of Ni and of Co. 

Nevertheless, this improvement does not compensate the lower surface roughness factor, 

originated by the surface morphology modification as the Co content increases, 

reporting lower apparent catalytic activities. 

Keywords: Raney type electrodes, NiCo alloys, Hydrogen Evolution Reaction, Surface 

roughness factor. 



2 

1. Introduction 

 As an alternative to fossil fuels, hydrogen is considered one of the most 

promising energy carriers for the future because it is clean, has a high energy density 

and could be produced from renewable energy sources, manifesting complete 

environment friendliness [1]. Water electrolysis can generate high purity hydrogen and 

oxygen, and can be coupled with other renewable energy systems [2]. However, on 

current electrodes for water electrolysis, the high electrical power expenses restrain 

hydrogen large scale application seriously [3]. In order to solve this problem, many 

novel electrode materials were synthesized to reduce both the hydrogen evolution 

reaction (HER) overpotential (i.e. energy consumption) and the electrode cost [3,4]. 

Although platinum shows the highest activity for the hydrogen evolution reaction 

(HER), Ni-based materials have attracted more and more attention due to their good 

activity for HER and sufficient corrosion resistance in the alkaline solution at 

considerable lower cost [4-7]. 

 The efficiency of the electrode materials can be improved by increasing the ratio 

between the real and geometric surface area of the electrode or by a synergistic 

combination of electrocatalytic components [4]. One of the common ways to enlarge the 

real surface area is the utilization of Raney-type alloys from which the active 

component (Al, Zn) is dissolved by an alkaline leaching, leading to pore and cavities 

formation. Various techniques have been developed for the preparation of this type of 

electrodes, consisting of powder pressing of Raney-Ni [7], electrocodeposition of 

Raney-Ni powder with Ni [8], electrodeposition of NiZn alloys [9-12] and thermal 

spraying of wires or powders [13,14]. On the other hand, the intrinsic activity of Ni has 

been enlarged by alloying with some metals or oxides such as: Ni-Co [9,10,12,15-17]; 

Ni-Mo[17-19]; Ni-W [19]; and Ni-CeO2 [20]. With respect to Ni-Co alloys, Lupi et al. 
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[15] found lower HER overpotentials in the case of Co concentrations ranging between 

41 and 64 wt.%, attributing this intrinsic catalytic activity improvement to a synergism 

among the catalytic properties of nickel (low hydrogen overpotential) and of cobalt 

(high hydrogen adsorption) in this composition range. Domínguez-Crespo et al. [17] 

observed very high catalytic activity for HER on Ni70Co30 electrodes prepared by 

mechanical alloying, higher than that reported for Ni-Mo, Ni-Co-Mo, and Co-Mo alloys, 

attributing this behaviour to the increase in effective surface area of electrode by a 

diminishing in the grain size and synergetic combination. 

  In this work, different Ni-Co alloys were prepared by electrodeposition 

following the Raney porous material synthesis strategy, with the aim to combine the 

synergetic effect of the electrocatalystic materials alloy with very high electrode surface 

areas. The catalytic performance of the developed materials for HER was assessed in 

30 wt.% KOH solution by means of pseudo-steady-state polarization curves and 

electrochemical impedance spectroscopy (EIS) techniques. 
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2. Experimental 

2.1. Synthesis of electrodes 

The metallic coatings were deposited onto AISI 304 stainless steel disc 

electrodes (0.5 cm2 geometric area). Prior to use, these electrodes were set up with the 

pre-treatment process described in our previous works [9,10,16,21]. 

The electrodes were galvanostatically deposited at a current density 

of -50 mA cm-2 from a modified Watts bath (MWB) kept at 50 ºC. Different CoSO4 salt 

amounts were initially added to the MWB to obtain the Ni-Co alloys. Table 1 

summarizes the bath compositions and the experimental conditions employed in the 

synthesis of electrodes. The reagents used for electrolyte preparation were of chemical 

grade and were not subjected to an additional purification. Distilled water was used to 

prepare electrolytes. The as-deposited electrodes were treated in 6 M NaOH at 50ºC 

during 48 h in order to selectively dissolve a part of the electrodeposited zinc, 

generating a porous coating with a very high surface area [7-14]. 

Electrodepositions were carried out in a thermostated one-compartment cell. The 

electrolyte inside the cell (50 mL) was agitated by means of a magnetically driven 

stirrer so as to avoid the generated gas bubbles remaining on the substrate surface. The 

counter electrode was a high purity large-area graphite electrode. The reference 

electrode was a commercially available silver-silver chloride (Ag-AgCl) electrode with 

3 M potassium chloride (KCl) solution. The experiments were accomplished by using 

an AUTOLAB PGSTAT302N potentiostat/galvanostat.  

The structures, morphologies and compositions of the developed electrocatalytic 

coatings were examined by means of a JEOL JSM-3600 scanning electron microscope 

coupled with an Energy-Dispersive X-Ray (EDX). 
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2.2. Electrochemical measurements 

HER on the synthesized electrocatalysts was accomplished by pseudo-steady-

state polarization curves and electrochemical impedance spectroscopy (EIS). All these 

tests were performed in oxygen free 30 wt.% KOH solutions, which were achieved by 

bubbling N2 before the experiments. 

Polarization curves were potentiodynamically recorded from -1.60 V vs 

Ag/AgCl (-1.40 V vs SHE) up to the equilibrium potential, at a scan rate of 1 mV s-1, 

and at six different temperatures: 30, 40, 50, 60, 70 and 80 ºC. Before the tests, the 

working electrode was held at -1.60 V vs Ag/AgCl (-1.40 V vs SHE) in the same 

solution for the time needed to establish reproducible polarization curves.  

EIS measurements were performed after obtaining the polarization curves. AC 

impedance measurements were carried out at different cathodic overpotentials, and at 30, 

50, and 80 ºC. The measurements were made in the frequency range of 10 kHz to 3 

mHz. Ten frequencies per decade were scanned using a sinusoidal signal of 10 mV 

peak-to-peak. The complex nonlinear least square (CNLS) fitting of the impedance data 

was carried out with the Zview 3.0 software package. 

The electrochemical measurements were carried out in the electrochemical cell 

P200002526. In this system, the developed electrode was used as the working electrode 

and it was positioned in such a way that the electrode/electrolyte interface was on a 

vertical plane, so as to allow, when necessary, the free release of the hydrogen bubbles 

produced. A large-area Ni foam (INCOFOAMTM) was employed as counter electrode, 

and the reference electrode was the same as that used in the electrodeposition process. 

All the electrochemical experiments were performed using an AUTOLAB 

PGSTAT302N potenciostat/galvanostat. 
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3. Results and Discussion 

 Figure 1 shows the SEM micrographs of the developed electrocatalysts used as 

cathodes for HER studies after the activation (zinc leaching) treatment. It is seen that 

the morphology of the electrodes synthesized from less Co concentrated baths (Ni/Co 

bath ratio > 1) consists of cracks and micro-cracks distributed along the surface. As the 

bath Co content increases it is observed an electrode structure/morphology 

transformation, from cracked to nodular “cauliflower-like” structure, being the latter the 

morphology that completely dominates the surface of the NiCoR6 electrode. 

 Table 2 shows the chemical composition analysis of the developed electrodes 

obtained by means of EDX. As it was expected, the deposit Co content directly 

increases with the bath Co content. Attempts to obtain Co contents higher than 

21.5 at.% (adding higher Co salt amounts to the electrodeposition bath) lead to weak 

and easily removable layers. This phenomenon may be attributed to the very high bath 

concentration, which increases the electrolyte viscosity affecting the correct ionic 

species distribution along the substrate surface. After the alkaline leaching, there is still 

a high Zn percentage in the coatings. Nevertheless, according to the preferential 

deposition of Zn in these systems [22], the remaining Zn must be occluded within a Ni 

or Ni-Co layer. 

 The cathodic polarization curves of the HER obtained for different selected 

electrocatalysts at 50 ºC in 30 wt.% KOH solution are displayed in Fig. 2.a. In order to 

clarify the result presentation, it has been only taken into account the results obtained on 

NiR, NiCoR2, NiCoR4, and NiCoR6 electrodes, since an intermediate behaviour has 

been observed for the other electrodeposits. A single value for the Tafel slope is 

observed for all the materials between -0.05 and -0.18 V, indicating that the HER on 

these electrodes is a purely kinetically controlled reaction described by the Tafel 
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equation [23]. Polarization curves were fitted by a linear regression, which provided the 

values of the Tafel slop, b, the exchange current densities, j0, and the charge transfer 

coefficient, a, summarized in Table 3. According to the literature of HER on transition 

metals and the kinetic parameters shown in Table 3, b ranging from 75 to 120 mV dec-1 

at 30 and 80 ºC, respectively, and a close to 0.5 for all the coatings, HER proceeds via 

the same Volmer (1) – Heyrovsky (2) mechanism [4,5,19]: 

-- +®++ OHMHeMOH ads2  (1) 

-- ++®++ OHMHeMHOH ads 22  (2) 

Nevertheless, it is necessary to know about the surface coverage by adsorbed hydrogen, 

q, in order to establish the rate determining step (rds) when the Tafel slope is 

ca. 120 mV dec-1 due to the fact that if q → 0, Volmer is rds; and if q → 1, Heyrovsky 

is rds [5,23]. 

 Not considerable differences in the electrocatalytic behaviour of the developed 

electrodes were observed from the polarization curves of Fig.2.a. Thus, the 

overpotential values at a fixed current density of -100 mA cm2, h100, were reported and 

plotted as a function of temperature in Fig.2.b in order to facilitate the comparative 

study. The h100 values obtained for the investigated electrocatalysts reveal an 

electrochemical activity higher and/or in the same magnitude order than those 

previously reported by other authors for Raney-Ni, NiMo, NiLa, Ni/MoS2, NiP, etc. [4]. 

The catalytic activity of the electrodes increases with temperature, which is the expected 

kinetic behaviour. According to Fig. 2.b, the highest apparent catalytic activity is 

reported for the NiR electrode, decreasing with the Co content and, hence, with the 

progressive growth of the globular or “cauliflower-like” morphology. The same 

conclusion can be derived from the study of the exchange current densities, j0, reported 
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in Table 2, increasing j0 with the temperature. Fig. 3.a demonstrates that this increase is 

linear in a semi-logarithmic plot, which is in accordance with the Arrhenius law [24]: 

0 ×
×

a
0

E 1log j =A -
2.303 R T

 
(3) 

where Ea (J mol-1) represents the apparent activation energy for the HER, and 

A0 (A cm-2) is the pre-exponential factor. The catalytic activity of an electrode in a given 

electrolyte is usually evaluated by means of the Ea value. The lower the Ea, the lower 

the energy requirements for hydrogen production. Fig. 3.b shows the Ea, calculated 

from the slopes of the regression lines plotted in Fig. 3.a, as a function of the electrode 

Co content. The obtained Ea values are very close to that postulated in literature for 

similar electrode materials when HER takes place via the Volmer-Heyrovsky 

mechanism, being the electrochemical desorption the rds [24-26]. Activation energy 

values decreases from an atomic Co percentage of ca. 5 %, where a maximum is 

reached. This fact indicates a higher intrinsic catalytic activity of Co-richest electrodes 

(NiCoR4 and NiCoR6), which may be attributed to the synergism between the 

properties of Ni and of Co, previously reported by other authors [15,17], in the 

composition range of these alloys.  

 The “a priori” disagreement between the results derived from j0 and h100 values 

(apparent activity) and from Ea values (intrinsic activity) may be solved by knowing the 

real electrochemically active surface area, which can be estimated by electrochemical 

impedance spectroscopy (EIS) [14]. This technique also permits us to extract 

information on the kinetics of the HER. EIS response obtained on all the developed 

electrocatalysts is characterized by two deformed semicircles (i.e. two times constants) 

in the complex plane plot, the first one at high frequencies (HF), and the second one at 

low frequencies (LF). Fig. 4 shows the effect of both the cathodic overpotential (Fig. 
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4.a) and the temperature (Fig. 4.b) on the Nyquist plots of the impedance of the NiCoR6 

electrocatalyst. From Fig. 4 it is clear that the diameter of both semicircles considerably 

decreases with both the cathodic overpotential and temperature, indicating that both 

semicircles are related to the electrode kinetics [13]. The same behaviour was also 

reported for the other electrodes. As it was discussed in previous papers [9,10], the two-

time constants parallel (2TP) electric equivalent circuit (EEC), initially proposed by 

Armstrong and Henderson [27] and presented in Fig. 5.a, properly models and describe 

the AC response of Raney Ni and Ni-Co electrodeposits. The 2TP model reflects the 

response of a HER system characterized by two-time constants, the HF time constant, 

tHF, related to the charge-transfer kinetics, and the LF time constant, tLF, associated to 

the hydrogen adsorption [13,16,28]. Fig. 4.a manifests that at the more negative 

overpotential (-72 mV) the semicircle related to the adsorption relaxation apparently 

completely disappears and only the semicircle related to the charge transfer remains 

observable. This is due to the fact that the adsorption process is facilitated and the 

charge-transfer process dominates the impedance response as the cathodic potential 

increases. Hence, HER is controlled by Heyrovsky step [29-31]. In such a case, the one-

time constant model (1T), see Fig. 5.b, is used to describe the impedance response. For 

both EEC, the double layer capacitance (Cdl) was replaced by a constant phase angle 

element (CPE) [5,13]. CPE is defined in impedance representation as: 

1])([ -×= n
CPE iQZ w  (4) 

where Q is the CPE constant, ω is the angular frequency (in rad s-1), i2 = -1 is the 

imaginary number, and n is the CPE exponent. 

 Table 4 shows the best-fit estimates of the different 2TP/1T EEC parameters 

obtained from the impedance measurements recorded on the NiCoR6 at different 

temperatures and overpotentials. The average double layer capacitances related to the 
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charge-transfer kinetics, Cdl, for the catalytic coatings were determined using the 

relation suggested by Brug et al. [32]: 

HF HF(1-α ) 1/α-1 -1
dl HF S ctC =[Q /(R +R ) ]  (5) 

where QHF and aHF are the components of the CPEHF; and Rs and Rct are the solution 

and the charge transfer resistances, respectively. As it can be concluded from Table 4, 

the trend of EEC parameters with respect to the overpotential is in agreement with the 

phenomenon which represent: on the one hand, both Cdl and Rct decrease with the 

cathodic potential, indicating an improvement of HER; on the other hand, the hydrogen 

adsorption pseudocapacitance, Cp, increases whereas the associated resistance, Rp, 

diminishes with an increase in the cathodic potential, which is the typical behaviour 

related to the response of hydrogen adsorbed on the electrode surface [13,19,31,33].  

The real active surface area, in terms of surface roughness factor (fr), may be 

estimated by comparing the Cdl related to the HER charge-tranfer kinetics of 

porous/rough and smooth electrodes [34]. Cdl value depends on the metal composition 

by means of the equation (6) [35]: 

å ×=
i

dlMiMidl CC q  (6) 

where θMi is the surface percentage occupied by metal Mi, whose double layer 

capacitance is CdlMi. In this case, due to the fact that the atomic radiuses of Ni and Co 

have similar values, the surface percentage occupied by each metal can be approximated 

to the atomic percentage obtained by EDX. According to literature and our experimental 

confirmation, they were selected values of 20 µF cm-2 [6,11] and 135 µF cm-2 [36] for 

the double layer capacitance of smooth polycrystalline pure Ni and Co electrodes, 

respectively. Figure 6 presents the 3D diagram of the surface roughness factors, fr, 

determined for the investigated cathodes at the different operating conditions. Both the 
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increase in temperature and overpotential lead to a decrease in the fr, due to the surface 

blockage effect of the increase in the hydrogen bubbles generation. The highest fr 

obtained values correspond to the NiR electrode, diminishing this parameter with the 

increase in the Co content. Accordingly with the SEM study (see Fig. 1), this effect is 

attributed to the surface morphology transition, from cracked to globular/”cauliflower-

like”, as the Co content increases. Exchange current densities corrected with the 

obtained surface roughness factor, j0·fr
-1, for all the investigated catalysts are reported in 

Table 5. As it is clear, the corrected exchange current densities increase with the 

presence of Co, from a Co content higher than 5 at.% (NiCoR2 electrode). This 

indicates that the presence of Co, in the composition range of NiCoR4 and NiCoR6 

electrodes, increases the intrinsic catalytic activity for HER. Nevertheless, this 

improvement does not compensate the decrease in the roughness factor associated to the 

surface morphologic change, and lower apparent catalytic activities are reported for 

these materials. 

 From the study of both polarization curves and EIS, it can be estimated that HER 

on the developed electrodes is carried out by the Volmer-Heyrovsky mechanism, with 

the electrochemical desorption as rds. Accordingly, the current density of the reaction 

can be written as: 

H-β  F η
R T

H Hj = j  = 2F k   eq! !  (7) 

and q can be determined assuming the pseudo-equilibrium hypothesis of the Volmer 

reaction and the Langmuir electrochemical adsorption isotherm: 

-F η
R T

V
-F η
R T

V

Κ  eθ =
1+Κ  e

 (8) 
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where F (= 96,485 C mol-1) is the Faraday constant; R (= 8.314 J mol-1 K-1) is the gas 

constant; bH is the Heyrovsky symmetry factor equals the charge-transfer coefficient, a, 

[23]; Hk !  is the Heyrovsky rate constant; and KV represents the quotient between the 

direct, kV! , and reverse, kV! , Volmer rate constants. Note that rate constants include 

concentrations of -OH  and H2O. 

 Substituting the expression for the coverage (8) into the expression for the 

current (7), one obtains 

H

-F η
-β  F ηR T

V R T
-F ηH H
R T

V

Κ  ej = j  = 2F k   e
1+Κ  e

! !  (9) 

which can be rearranged to give: 

( )H- 1+β  F η
-F ηR T
R T

VH H

e 1 1 = e +
j 2F k  2F k Κ  ! !

 (10) 

Therefore, a plot of ( )H- 1+β  F η
exp j

R T
é ù
ê ú
ë û

 against F ηexp
R T

é ù-ê úë û
should give a straight 

line of slope H1 2F k !  and intercept H V
1 2F k Κ!  [37,38]. As show in Fig. 7 for the 

NiCoR2 electrode, good linearity is obtained over almost the whole range of h. The 

linear regression has been restricted to high cathodic overpotentials, taking into account 

that the model expression is based on the high-field approximation. The same behaviour 

was reported for all the developed electrodes indicating applicability of the 

electrochemical-desorption-controlled mechanism. From the slope and the intercept of 

this kind of plots, both Hk !  and KV have been easily evaluated for each electrode at the 

different operating temperatures. Fig. 8 compares the Heyrovsky direct rate constants, 
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Hk ! , obtained for the chosen electrodes as a function of temperature. The obtained 

values are in the same magnitude order than that reported by other authors on porous Ni 

based electrodes in alkaline media, where HER is electrochemical-desorption controlled 

[12,31,39]. As it is clear from Fig. 8, Hk ! values increase exponentially with temperature, 

following the Arrhenius law. In fact, from the slope of the semilogarithmic plot of the 

rate constants it can be obtained activation energy values very close to that determined 

from the exchange current densities, corroborating the selected HER mechanism. The 

increase in Hk ! values with temperature is attributed to the improvement of the intrinsic 

catalytic property of these materials. The highest Hk ! values, i. e. the highest apparent 

catalytic activity, are obtained for the NiR electrode, whereas these kinetic constants 

decrease with the electrode Co content, as it was also concluded from j0 and h100 values 

(note that the parameter Hk ! is also influenced by the electrode surface area). On the 

other hand, the effect of temperature on the pseudo-equilibrium constant KV, obtained 

for the investigated electrodes, is displayed in Figure 9. This parameter manifests a 

maximum value at 50 ºC in all the cases, indicating that higher temperatures do not 

favor the hydrogen adsorption on the electrode surface [12]. Figure 9 shows that KV 

values increase with the Co content, from Co concentrations higher than 5 at.%. KV 

parameter is not influenced by the roughness factor (because it is defined as the quotient 

of the Volmer rate constants) so the above mentioned result indicates that the presence 

of Co, at certain composition range, favors the electrochemical desorption step due to 

the synergism between the properties of Ni and Co, shifting the Volmer pseudo-

equilibrium to the formation of the adsorbed specie (MHads) and, therefore, improving 

the electrode intrinsic catalytic activity. This effect confirms the lower Ea and the higher 

j0·fr
-1 values obtained as the Co electrode charge increases. 
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4. Conclusions 

 On the basis of the presented results it can be concluded that type Raney Ni and 

Ni-Co electrodes manifest a very high activity at relatively high overpotentials which is 

important for commercial application. Co-modification of type Raney Ni-based 

electrodes does not improve the apparent catalytic activity of these materials as 

cathodes for HER in alkaline media, the NiR electrode (without Co) being the best 

overall electrocatalyst. The incorporation of Co into the electrodeposition bath results 

in an electrode surface morphology change, from a cracked to a nodular/“cauliflower-

like” morphology, characterized by a lower surface roughness factor (determined by 

EIS). HER on the developed electrodes takes place via the Volmer-Heyrovsky 

mechanism, being the electrochemical desorption the rds. As it was evidenced from Ea 

and KV values, the presence of Co, at a composition range higher than 5 at.%, increases 

the intrinsic catalytic activity of cathodes, as a consequence of the synergetic 

combination. Nevertheless, the increase in the intrinsic activity does not compensate 

the lower cathode surface area and, therefore, Co-richest materials reported the highest 

|h100| and the lowest j0 and Hk ! values.  
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Table 1. Operating conditions employed in the development of Ni 
and NiCo Raney electrodes. 
 

Basic Bath Composition g L-1 

NiSO4 6(H2O) 330 
NiCl2 6(H2O) 45 
H3BO3 37 
ZnCl2 20 

Co Content in Basic  Bath 

Electrode g L-1 CoSO4 7(H2O) Ni/Co ratio 
NiR - - 
NiCoR1 2.0 42.4 
NiCoR2 23.9 3.6 
NiCoR3 47.7 1.8 
NiCoR4 71.6 1.2 
NiCoR5 95.4 0.9 
NiCoR6 190.8 0.4 

 Operating Conditions 
 Temperature / °C 50 
 jd / mA cm-2 50  
 Time / min 60 
 pH 4.5 
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Table 2. Superficial composition of the developed electrocatalytic layers 
determined by EDX. 
 

 at. %  

Electrode Ni/Co 
bath ratio Ni Co Zn Ni/Co 

deposit ratio  
NiR - 59.6 - 40.4 - 
NiCoR1 42.4 56.1 1.9 42.0 29.5 
NiCoR2 3.6 56.5 2.7 40.8 20.9 
NiCoR3 1.8 54.4 3.3 42.3 16.5 
NiCoR4 1.2 55.8 6.0 38.2 9.3 
NiCoR5 0.9 54.5 10.5 35.0 5.2 
NiCoR6 0.4 50.7 21.5 27.8 2.4 
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Table 3. HER kinetic parameters obtained from the polarization curves recorded on the developed 
electrocatalytic layers in 30 wt.% KOH solution at different temperatures. 

 

Electrode Temperature / °C 
NiR 30 40 50 60 70 80 

b / mV dec-1 83.8 85.0 97.3 101.9 124.2 131.3 
a 0.72 0.73 0.66 0.65 0.55 0.53 

j0 / mA cm-2 2.9 3.5 6.9 11.2 20.6 24.3 
       

NiCo2 30 40 50 60 70 80 
b / mV dec-1 75.1 76.8 95.1 92 112.1 112.1 

a 0.80 0.81 0.67 0.72 0.61 0.62 
j0 / mA cm-2 2.9 3.5 6.9 11.2 20.6 24.3 

NiCo4 30 40 50 60 70 80 
b / mV dec-1 72.1 75.9 90.8 99.4 99.4 112.7 

a 0.83 0.82 0.71 0.66 0.68 0.62 
j0 / mA cm-2 2.5 3.1 6.0 9.68 12.4 20.2 

NiCo6 30 40 50 60 70 80 
b / mV dec-1 76.7 87.6 92.5 95.2 95.8 101.1 

a 0.78 0.71 0.69 0.69 0.71 0.69 
j0 / mA cm-2 2.3 4.0 4.9 6.8 9.2 13.8 

       

  



24 

 
Table 4. EEC parameters obtained by fitting EIS experimental spectra recorded at 
various overpotentials and temperatures in 30 wt.% KOH solution on the NiCoR6 
electrocatalyst. 
 

Parameter 30°C 
h / V 0 -0.022 -0.041 -0.072 
 c2 3.86·10-4 2.23·10-4 1.56·10-4 1.18·10-3 

Rs / W cm2 0.77 0.75 0.76 0.77 
Rct / W cm2 4.95 4.34 3.25 1.35 

QHF / W-1 cm-2 sf 0.555 0.378 0.288 0.206 
nHF 0.91 0.93 0.95 0.95 

Cdl / F cm-2
 0.506 0.340 0.264 0.183 

RP / W cm2 40.6 14.6 3.4 - 
Cp / F cm-2 2.31 2.36 2.77 - 
tHF / s 0.39 0.26 0.20 0.14 
tLF / s 93.8 34.4 9.5 - 

 50°C 
h / V 0 -0.020 -0.040 -0.072 
 c2 2.55·10-4 1.60·10-4 1.43·10-4 1.65·10-3 

Rs / W cm2 0.53 0.53 0.55 0.54 
Rct / W cm2 6.35 2.86 1.61 0.94 

QHF / W-1 cm-2 sf 0.371 0.321 0.260 0.202 
nHF 0.95 0.95 0.95 0.89 

Cdl / F cm-2
 0.339 0.292 0.230 0.146 

RP / W cm2 55.1 16.3 3.2 - 
Cp / F cm-2 2.11 2.14 2.27 - 
tHF / s 0.18 0.15 0.13 0.08 
tLF / s 116.3 35.0 7.3 - 

 80°C 
h / V 0 -0.017 -0.033 -0.062 
 c2 8.83·10-4 2.69·10-4 4.39·10-4 6.56·10-4 

Rs / W cm2 0.36 0.36 0.37 0.37 
Rct / W cm2 1.64 0.77 0.41 0.36 

QHF / W-1 cm-2 sf 0.341 0.313 0.233 0.227 
nHF 0.93 0.90 0.93 0.84 

Cdl / F cm-2
 0.289 0.235 0.185 0.126 

Cp / F cm-2 1.62 1.63 1.85 19.31 
RP / W cm2 30.6 7.1 1.5 0.05 
tHF / s 0.10 0.08 0.07 0.05 
tLF / s 49.6 11.6 2.8 0.97 
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Table 5. Exchange current densities, j0, corrected with the surface 
roughness factor, fr, obtained for the investigated electrocatalytic 
layers in 30 wt.% KOH solution. 
 

Electrode 
Corrected Exchange Current Density 

 (j0·fr
-1/ µA cm-2) 

30°C 50°C 80°C 
NiR 0.16 0.40 2.43 
NiCoR2 0.15 0.55 2.42 
NiCoR4 0.17 0.60 2.46 
NiCoR6 0.24 0.77 2.54 

    

 

 


