We present a practical algorithm based on symplectic splitting methods intended for
the numerical integration in time of the Schrödinger equation when the Hamiltonian
operator is either time-independent or changes slowly ...
Gonzalez Iglesias, Daniel; Gomez, Alvaro; Gimeno Martinez, Benito; Fernández, o.; Vegas, A.; Casas, Fernando; Anza Hormigo, Sergio; Vicente Quiles, Carlos Pascual; Gil Raga, Jordi; Mata Sanz, Rafael; Montero, Isabel; Boria Esbert, Vicente Enrique; Raboso García-Baquero, David(Institute of Electrical and Electronics Engineers (IEEE), 2016-12)
In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical ...
Bader, Philipp Karl Heinz; Blanes Zamora, Sergio; Casas, Fernando; Ponsoda Miralles, Enrique(Elsevier, 2016-01-01)
We consider the numerical integration of high-order linear non-homogeneous differential
equations, written as first order homogeneous linear equations, and using exponential
methods. Integrators like Magnus expansions ...
Blanes Zamora, Sergio; Casas, Fernando; Murua, Ander(Society for Industrial and Applied Mathematics, 2011)
A typical procedure to integrate numerically the time dependent Schrodinger equation involves two stages. In the first stage one carries out a space discretization of the continuous problem. This results in the linear ...
Blanes Zamora, Sergio; Casas, Fernando; Sanz-Serna, J. M.(Society for Industrial and Applied Mathematics, 2014)
We construct numerical integrators for Hamiltonian problems that may advantageously replace the standard Verlet time-stepper within Hybrid Monte Carlo and related simulations. Past attempts have often aimed at boosting the ...
Bader, Philipp; Blanes Zamora, Sergio; Casas, Fernando(American Institute of Physics (AIP), 2013-09-28)
The Schrodinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional ...