Weak group inverses and partial isometries in proper *-rings
Fecha
Autores
Directores
Handle
https://riunet.upv.es/handle/10251/192618
Cita bibliográfica
Zhou, M.; Chen, J.; Zhou, Y.; Thome, N. (2022). Weak group inverses and partial isometries in proper *-rings. Linear and Multilinear Algebra. 70(19):4528-4543. https://doi.org/10.1080/03081087.2021.1884639
Titulación
Resumen
[EN] A weak group element is introduced in a proper ¿-ring. Several equivalent conditions of weak group elements are investigated. We prove
that an element is pseudo core invertible if it is both partial isometry
and weak group invertible. Reverse order law and additive property of the weak group inverse are presented. Finally, under certain
assumption on a, equivalent conditions of aW a¿ = a¿aW are presented by using the normality of the group invertible part of an
element in its group-EP decomposition
Palabras clave
Weak group inverse, Weak group element, Pseudo core inverse, Partial isometry
ISSN
0308-1087
ISBN
Fuente
Linear and Multilinear Algebra
DOI
10.1080/03081087.2021.1884639
Enlaces relacionados
Código de Proyecto
info:eu-repo/grantAgreement/Universidad Nacional de Río Cuarto//Res. 083%2F2020//Aproximación de Funciones e Inversas Generalizadas/
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT//RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
info:eu-repo/grantAgreement/NSFC//11771076/
info:eu-repo/grantAgreement/NSFC//11871145/
info:eu-repo/grantAgreement/CSC//201906090122/
info:eu-repo/grantAgreement/Postgraduate Research and Practice Innovation Program of Jiangsu Province//KYCX18-0053/
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT//RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
info:eu-repo/grantAgreement/NSFC//11771076/
info:eu-repo/grantAgreement/NSFC//11871145/
info:eu-repo/grantAgreement/CSC//201906090122/
info:eu-repo/grantAgreement/Postgraduate Research and Practice Innovation Program of Jiangsu Province//KYCX18-0053/
Patrocinadores
Agradecimientos
This research was supported by the National Natural Science Foundation of China (No. 11771076,
11871145), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No.
KYCX18¿0053), the China Scholarship Council (File No. 201906090122), the Qing Lan Project of
Jiangsu Province. The fourth author was partially supported by Ministerio de Economía y Competitividad of Spain (grant Red de Excelencia MTM2017-90682-REDT) and by Universidad Nacional
de Río Cuarto, Argentina, Res. Rectoral N 083/2020.