A family of seventh-order schemes for solving nonlinear systems
Fecha
Autores
Directores
Handle
https://riunet.upv.es/handle/10251/63182
Cita bibliográfica
Abad Rodríguez, MF.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A family of seventh-order schemes for solving nonlinear systems. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. 57(105)(2):133-145. https://riunet.upv.es/handle/10251/63182
Titulación
Resumen
[EN] This paper focuses on solving nonlinear systems numerically. We propose an efficient
family of three-step iterative schemes with seventh-order of convergence. The proposed
methods are obtained by using the weight functions procedure and they do not require
the evaluation of second or higher Frechet derivatives per iteration to proceed. Numerical
comparisons are made with other existing methods to confirm the theoretical results and
to show the performance of the presented schemes
Palabras clave
Nonlinear systems, Iterative methods, Order of convergence, Multipoint methods
ISSN
1220-3874
ISBN
Fuente
Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie
DOI
Enlaces relacionados
Agradecimientos
This research was supported by Ministerio de Ciencia y Tecnologia of Spain MTM2011-28636-0O2-02 and FONDOCYT 2011-1-B1-33 of Republica Dominicana.