A family of seventh-order schemes for solving nonlinear systems

Handle

https://riunet.upv.es/handle/10251/63182

Cita bibliográfica

Abad Rodríguez, MF.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2014). A family of seventh-order schemes for solving nonlinear systems. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. 57(105)(2):133-145. https://riunet.upv.es/handle/10251/63182

Titulación

Resumen

[EN] This paper focuses on solving nonlinear systems numerically. We propose an efficient family of three-step iterative schemes with seventh-order of convergence. The proposed methods are obtained by using the weight functions procedure and they do not require the evaluation of second or higher Frechet derivatives per iteration to proceed. Numerical comparisons are made with other existing methods to confirm the theoretical results and to show the performance of the presented schemes

Palabras clave

Nonlinear systems, Iterative methods, Order of convergence, Multipoint methods

ISSN

1220-3874

ISBN

Fuente

Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie

DOI