Epimorphisms and maximal covers in categories of compact spaces

Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)

Autores

Banaschewski, B.
Hager, A.W.

Directores

Unidades organizativas

Handle

https://riunet.upv.es/handle/10251/87463

Cita bibliográfica

Banaschewski, B.; Hager, A. (2013). Epimorphisms and maximal covers in categories of compact spaces. Applied General Topology. 14(1):41-52. https://doi.org/10.4995/agt.2013.1616

Titulación

Resumen

[EN] The category C is "projective complete"if each object has a projective cover (which is then a maximal cover). This property inherits from C to an epireflective full subcategory R provided the epimorphisms in R are also epi in C. When this condition fails, there still may be some maximal covers in R. The main point of this paper is illustration of this in compact Hausdorff spaces with a class of examples, each providing quite strange epimorphisms and maximal covers. These examples are then dualized to a category of algebras providing likewise strange monics and maximal essential extensions.

Palabras clave

Epimorphism, Cover, Projective, Essential extension, Compact, Strongly rigid

ISSN

1576-9402

ISBN

Fuente

Applied General Topology

DOI

10.4995/agt.2013.1616