dc.contributor.author |
López Monfort, José Javier
|
es_ES |
dc.contributor.author |
Cobos Serrano, Máximo
|
es_ES |
dc.contributor.author |
Aguilera Martí, Emanuel
|
es_ES |
dc.date.accessioned |
2018-04-28T04:14:09Z |
|
dc.date.available |
2018-04-28T04:14:09Z |
|
dc.date.issued |
2011 |
es_ES |
dc.identifier.issn |
0941-0643 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/101127 |
|
dc.description.abstract |
[EN] In this paper, a system for quality control in citrus fruits is presented. In current citrus manufacturing industries, calliper and color are successfully used for the automatic classification of fruits using vision systems. However, the detection of flaws in the citrus surface is carried out by means of human inspection. In this work, a computer vision system capable of detecting defects in the citrus peel and also classifying the type of flaw is presented. First, a review of citrus illnesses has been carried out in order to build a database of digitalized oranges classified by the kind of fault, which is used as a training set. The segmentation of faulty zones is performed by applying the Sobel gradient to the image. Afterwards, color and texture features of the flaw are extracted considering different color spaces, some of them related to high order statistics. Several techniques have been employed for classification purposes: Euler distance to a prototype, to the nearest neighbor and k-nearest neighbors. Additionally, a three layer neural network has been tested and compared, obtaining promising results. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
SPRINGER |
es_ES |
dc.relation.ispartof |
Neural Computing and Applications |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Computer vision |
es_ES |
dc.subject |
Automatic inspection system |
es_ES |
dc.subject |
Texture analysis segmentation |
es_ES |
dc.subject |
Quality control |
es_ES |
dc.subject.classification |
TEORIA DE LA SEÑAL Y COMUNICACIONES |
es_ES |
dc.title |
Computer-based detection and classification of flaws in citrus fruits |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s00521-010-0396-2 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia |
es_ES |
dc.description.bibliographicCitation |
López Monfort, JJ.; Cobos Serrano, M.; Aguilera Martí, E. (2011). Computer-based detection and classification of flaws in citrus fruits. Neural Computing and Applications. 20(7):975-981. doi:10.1007/s00521-010-0396-2 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://doi.org/10.1007/s00521-010-0396-2 |
es_ES |
dc.description.upvformatpinicio |
975 |
es_ES |
dc.description.upvformatpfin |
981 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
20 |
es_ES |
dc.description.issue |
7 |
es_ES |
dc.relation.pasarela |
S\213783 |
es_ES |
dc.description.references |
Blasco J, Aleixos J, Molto E (2007) Computer vision detection of peel defects in citrus by means of a region oriented segmentation. J Food Eng 81:535–543 |
es_ES |
dc.description.references |
Blasco J, Aleixos N, Gomez J, Molto E (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Eng 83:384–391 |
es_ES |
dc.description.references |
Bryson AE, Ho YC (1969) Applied optimal control: optimization, estimation, and control. Xerox College Publishing, Lexington, MA |
es_ES |
dc.description.references |
Conners RWea (1983) Identifying and locating surface defects in wood. IEEE Trans Pattern Anal Mach Intell 5:573–583 |
es_ES |
dc.description.references |
Diaz R, Gil L, Serrano C, Blasco M, Molto E, Blasco J (2004) Comparison of three algorithms in the classification of table olives by means of computer vision. J Food Eng 61:101–107 |
es_ES |
dc.description.references |
Douglas DH, Peucker TK (1973) Algorithm for the reduction of the number of points required to represent a line or its caricature. The Can Cartogr 10(2):112–122 |
es_ES |
dc.description.references |
Du CJ, Sun DW (2005) Comparison of three methods for classification of pizza topping using different colour space transformations. J Food Eng 68:277–287 |
es_ES |
dc.description.references |
Kolesnikov A (2003) Efficient algorithms for vectorization and polygonal approximation. Ph.D. thesis, University of Joensuu, Finland |
es_ES |
dc.description.references |
Molto E (1997) A computer vision system for inspecting citrus, peaches and apples. In: Proceedings of VII national symposium on pattern recognition and image analysis. Sabadell, Spain, pp 121–126 |
es_ES |
dc.description.references |
Muir AY, Porteus RL, Wastie RL (1982) Experiments in the detection of incipient diseases in potato tubers by optical methods. J Agric Eng Res 27:131–138 |
es_ES |
dc.description.references |
Q Li (2002) Computer vision based system for apple surface defect detection. computer and electronics in agriculture. Comput Electron Agric 36:215–223 |
es_ES |
dc.description.references |
Ruiz LA, Molto E, Juste F, Pla F, Valiente R (1996) Location and characterization of the stem–calyx area on oranges by computer vision. J Agric Eng Res 64:165–172 |
es_ES |
dc.description.references |
Tan TSC, Kittler J (1994) Colour texture analysis using colour histogram. IEEE Proc Vis Image Signal Process 141:403–412 |
es_ES |
dc.description.references |
Wen Z, Tao Y (1999) Building a rule-based machine-vision system for defect inspection on apple sorting and packing lines. Expert Syst Appl 16:307–313 |
es_ES |