Mostrar el registro sencillo del ítem
dc.contributor.author | Bernal-Garcia, Alvaro | es_ES |
dc.contributor.author | Hébert, Alain | es_ES |
dc.contributor.author | Roman, Jose E. | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2018-05-13T04:23:48Z | |
dc.date.available | 2018-05-13T04:23:48Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0022-3131 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/101845 | |
dc.description.abstract | [EN] Mixed-dual formulations of the finite element method were successfully applied to the neutron diffusion equation, such as the Raviart¿Thomas method in Cartesian geometry and the Raviart¿Thomas¿Schneider in hexagonal geometry. Both methods obtain system matrices which are suitable for solving the eigenvalue problem with the preconditioned power method. This method is very fast and optimized, but only for the calculation of the fundamental mode. However, the determination of non-fundamental modes is important for modal analysis, instabilities, and fluctuations of nuclear reactors. So, effective and fast methods are required for solving eigenvalue problems. The most effective methods are those based on Krylov subspaces projection combined with restart, such as Krylov¿Schur. In this work, a Krylov¿Schur method has been applied to the neutron diffusion equation, discretized with the Raviart¿Thomas and Raviart¿Thomas¿Schneider methods. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P]; Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) [project number ENE2015-68353-P (MINECO/FEDER)]; Generalitat Valenciana [project number PROMETEOII/2014/008]; Universitat Politecnica de Valencia [project number UPPTE/2012/118]; Spanish Ministerio de Economia y Competitividad [project number TIN2016-75985-P]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Nuclear Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Neutron diffusion equation | es_ES |
dc.subject | Finite element method | es_ES |
dc.subject | Krylov-Schur | es_ES |
dc.subject | Raviart-Thomas | es_ES |
dc.subject | Reactor physics | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00223131.2017.1344577 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//UPPTE%2F2012%2F118/ES/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-07-05 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Bernal-Garcia, A.; Hébert, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2017). A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method. Journal of Nuclear Science and Technology. 54(10):1085-1094. https://doi.org/10.1080/00223131.2017.1344577 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00223131.2017.1344577 | es_ES |
dc.description.upvformatpinicio | 1085 | es_ES |
dc.description.upvformatpfin | 1094 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\356202 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Hébert, A. (1993). Application of a dual variational formulation to finite element reactor calculations. Annals of Nuclear Energy, 20(12), 823-845. doi:10.1016/0306-4549(93)90076-2 | es_ES |
dc.description.references | Hébert, A. (2008). A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry. Annals of Nuclear Energy, 35(3), 363-376. doi:10.1016/j.anucene.2007.07.016 | es_ES |
dc.description.references | Hébert, A. (1986). Preconditioning the Power Method for Reactor Calculations. Nuclear Science and Engineering, 94(1), 1-11. doi:10.13182/nse86-a17111 | es_ES |
dc.description.references | Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 | es_ES |
dc.description.references | Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7 | es_ES |
dc.description.references | Hébert A. Applied reactor physics. 2nd ed. Montréal: Presses Internationales Polytechnique; 2016. p. 368–369. | es_ES |
dc.description.references | Döring, M. G., Kalkkuhl, J. C., & Schröder, W. (1993). Subspace Iteration for Nonsymmetric Eigenvalue Problems Applied to the λ-Eigenvalue Problem. Nuclear Science and Engineering, 115(3), 244-252. doi:10.13182/nse93-a24053 | es_ES |
dc.description.references | Modak, R. S., & Jain, V. K. (1996). Sub-space iteration scheme for the evaluation of λ-modes of finite-differenced multi-group neutron diffusion equations. Annals of Nuclear Energy, 23(3), 229-237. doi:10.1016/0306-4549(95)00015-6 | es_ES |
dc.description.references | Singh, K. P., Modak, R. S., Degweker, S. B., & Singh, K. (2009). Iterative schemes for obtaining dominant alpha-modes of the neutron diffusion equation. Annals of Nuclear Energy, 36(8), 1086-1092. doi:10.1016/j.anucene.2009.05.006 | es_ES |
dc.description.references | Gupta, A., & Modak, R. S. (2011). Evaluation of dominant time-eigenvalues of neutron transport equation by Meyer’s sub-space iterations. Annals of Nuclear Energy, 38(7), 1680-1686. doi:10.1016/j.anucene.2011.02.016 | es_ES |
dc.description.references | Kópházi, J., & Lathouwers, D. (2012). Three-dimensional transport calculation of multiple alpha modes in subcritical systems. Annals of Nuclear Energy, 50, 167-174. doi:10.1016/j.anucene.2012.06.021 | es_ES |
dc.description.references | VERDÚ, G., GINESTAR, D., ROMÁN, J., & VIDAL, V. (2010). 3D Alpha Modes of a Nuclear Power Reactor. Journal of Nuclear Science and Technology, 47(5), 501-514. doi:10.1080/18811248.2010.9711641 | es_ES |
dc.description.references | Lathouwers, D. (2003). Iterative computation of time-eigenvalues of the neutron transport equation. Annals of Nuclear Energy, 30(17), 1793-1806. doi:10.1016/s0306-4549(03)00151-8 | es_ES |
dc.description.references | Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1 | es_ES |
dc.description.references | Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2 | es_ES |
dc.description.references | Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK Users’ Guide. doi:10.1137/1.9780898719628 | es_ES |
dc.description.references | Boer, B., Lathouwers, D., Kloosterman, J. L., Van Der Hagen, T. H. J. J., & Strydom, G. (2010). Validation of the DALTON-THERMIX Code System with Transient Analyses of the HTR-10 and Application to the PBMR. Nuclear Technology, 170(2), 306-321. doi:10.13182/nt10-a9485 | es_ES |
dc.description.references | Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 | es_ES |
dc.description.references | Hernández, V., Román, J. E., & Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. High Performance Computing for Computational Science — VECPAR 2002, 377-391. doi:10.1007/3-540-36569-9_25 | es_ES |
dc.description.references | Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529 | es_ES |
dc.description.references | Chao, Y. A., & Shatilla, Y. A. (1995). Conformal Mapping and Hexagonal Nodal Methods —II: Implementation in the ANC-H Code. Nuclear Science and Engineering, 121(2), 210-225. doi:10.13182/nse95-a28559 | es_ES |