- -

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

Show simple item record

Files in this item

dc.contributor.author Bernal-Garcia, Alvaro es_ES
dc.contributor.author Hébert, Alain es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2018-05-13T04:23:48Z
dc.date.available 2018-05-13T04:23:48Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0022-3131 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101845
dc.description.abstract [EN] Mixed-dual formulations of the finite element method were successfully applied to the neutron diffusion equation, such as the Raviart¿Thomas method in Cartesian geometry and the Raviart¿Thomas¿Schneider in hexagonal geometry. Both methods obtain system matrices which are suitable for solving the eigenvalue problem with the preconditioned power method. This method is very fast and optimized, but only for the calculation of the fundamental mode. However, the determination of non-fundamental modes is important for modal analysis, instabilities, and fluctuations of nuclear reactors. So, effective and fast methods are required for solving eigenvalue problems. The most effective methods are those based on Krylov subspaces projection combined with restart, such as Krylov¿Schur. In this work, a Krylov¿Schur method has been applied to the neutron diffusion equation, discretized with the Raviart¿Thomas and Raviart¿Thomas¿Schneider methods. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P]; Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) [project number ENE2015-68353-P (MINECO/FEDER)]; Generalitat Valenciana [project number PROMETEOII/2014/008]; Universitat Politecnica de Valencia [project number UPPTE/2012/118]; Spanish Ministerio de Economia y Competitividad [project number TIN2016-75985-P]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation MECD/AP2013-01009 es_ES
dc.relation MINECO/ENE2014-59442-P es_ES
dc.relation MINECO/ENE2015-68353-P es_ES
dc.relation GV/PROMETEOII/2014/008 es_ES
dc.relation AEI/TIN2016-75985-P es_ES
dc.relation.ispartof Journal of Nuclear Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutron diffusion equation es_ES
dc.subject Finite element method es_ES
dc.subject Krylov-Schur es_ES
dc.subject Raviart-Thomas es_ES
dc.subject Reactor physics es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00223131.2017.1344577 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-07-05 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Bernal-Garcia, A.; Hébert, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2017). A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method. Journal of Nuclear Science and Technology. 54(10):1085-1094. doi:10.1080/00223131.2017.1344577 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00223131.2017.1344577 es_ES
dc.description.upvformatpinicio 1085 es_ES
dc.description.upvformatpfin 1094 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela 356202 es_ES
dc.contributor.funder Generalitat Valenciana (GV) es_ES
dc.contributor.funder Ministerio de Educación (MECD) es_ES
dc.contributor.funder Agencia Estatal de Investigación (AEI) es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitivdiad (MINECO) es_ES


This item appears in the following Collection(s)

Show simple item record