- -

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernal-Garcia, Alvaro es_ES
dc.contributor.author Hébert, Alain es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2018-05-13T04:23:48Z
dc.date.available 2018-05-13T04:23:48Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0022-3131 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101845
dc.description.abstract [EN] Mixed-dual formulations of the finite element method were successfully applied to the neutron diffusion equation, such as the Raviart¿Thomas method in Cartesian geometry and the Raviart¿Thomas¿Schneider in hexagonal geometry. Both methods obtain system matrices which are suitable for solving the eigenvalue problem with the preconditioned power method. This method is very fast and optimized, but only for the calculation of the fundamental mode. However, the determination of non-fundamental modes is important for modal analysis, instabilities, and fluctuations of nuclear reactors. So, effective and fast methods are required for solving eigenvalue problems. The most effective methods are those based on Krylov subspaces projection combined with restart, such as Krylov¿Schur. In this work, a Krylov¿Schur method has been applied to the neutron diffusion equation, discretized with the Raviart¿Thomas and Raviart¿Thomas¿Schneider methods. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P]; Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) [project number ENE2015-68353-P (MINECO/FEDER)]; Generalitat Valenciana [project number PROMETEOII/2014/008]; Universitat Politecnica de Valencia [project number UPPTE/2012/118]; Spanish Ministerio de Economia y Competitividad [project number TIN2016-75985-P]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Nuclear Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutron diffusion equation es_ES
dc.subject Finite element method es_ES
dc.subject Krylov-Schur es_ES
dc.subject Raviart-Thomas es_ES
dc.subject Reactor physics es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00223131.2017.1344577 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//UPPTE%2F2012%2F118/ES/
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-07-05 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Bernal-Garcia, A.; Hébert, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2017). A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method. Journal of Nuclear Science and Technology. 54(10):1085-1094. https://doi.org/10.1080/00223131.2017.1344577 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00223131.2017.1344577 es_ES
dc.description.upvformatpinicio 1085 es_ES
dc.description.upvformatpfin 1094 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\356202 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Universitat Politècnica de València
dc.description.references Hébert, A. (1993). Application of a dual variational formulation to finite element reactor calculations. Annals of Nuclear Energy, 20(12), 823-845. doi:10.1016/0306-4549(93)90076-2 es_ES
dc.description.references Hébert, A. (2008). A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry. Annals of Nuclear Energy, 35(3), 363-376. doi:10.1016/j.anucene.2007.07.016 es_ES
dc.description.references Hébert, A. (1986). Preconditioning the Power Method for Reactor Calculations. Nuclear Science and Engineering, 94(1), 1-11. doi:10.13182/nse86-a17111 es_ES
dc.description.references Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 es_ES
dc.description.references Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7 es_ES
dc.description.references Hébert A. Applied reactor physics. 2nd ed. Montréal: Presses Internationales Polytechnique; 2016. p. 368–369. es_ES
dc.description.references Döring, M. G., Kalkkuhl, J. C., & Schröder, W. (1993). Subspace Iteration for Nonsymmetric Eigenvalue Problems Applied to the λ-Eigenvalue Problem. Nuclear Science and Engineering, 115(3), 244-252. doi:10.13182/nse93-a24053 es_ES
dc.description.references Modak, R. S., & Jain, V. K. (1996). Sub-space iteration scheme for the evaluation of λ-modes of finite-differenced multi-group neutron diffusion equations. Annals of Nuclear Energy, 23(3), 229-237. doi:10.1016/0306-4549(95)00015-6 es_ES
dc.description.references Singh, K. P., Modak, R. S., Degweker, S. B., & Singh, K. (2009). Iterative schemes for obtaining dominant alpha-modes of the neutron diffusion equation. Annals of Nuclear Energy, 36(8), 1086-1092. doi:10.1016/j.anucene.2009.05.006 es_ES
dc.description.references Gupta, A., & Modak, R. S. (2011). Evaluation of dominant time-eigenvalues of neutron transport equation by Meyer’s sub-space iterations. Annals of Nuclear Energy, 38(7), 1680-1686. doi:10.1016/j.anucene.2011.02.016 es_ES
dc.description.references Kópházi, J., & Lathouwers, D. (2012). Three-dimensional transport calculation of multiple alpha modes in subcritical systems. Annals of Nuclear Energy, 50, 167-174. doi:10.1016/j.anucene.2012.06.021 es_ES
dc.description.references VERDÚ, G., GINESTAR, D., ROMÁN, J., & VIDAL, V. (2010). 3D Alpha Modes of a Nuclear Power Reactor. Journal of Nuclear Science and Technology, 47(5), 501-514. doi:10.1080/18811248.2010.9711641 es_ES
dc.description.references Lathouwers, D. (2003). Iterative computation of time-eigenvalues of the neutron transport equation. Annals of Nuclear Energy, 30(17), 1793-1806. doi:10.1016/s0306-4549(03)00151-8 es_ES
dc.description.references Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1 es_ES
dc.description.references Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2 es_ES
dc.description.references Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK Users’ Guide. doi:10.1137/1.9780898719628 es_ES
dc.description.references Boer, B., Lathouwers, D., Kloosterman, J. L., Van Der Hagen, T. H. J. J., & Strydom, G. (2010). Validation of the DALTON-THERMIX Code System with Transient Analyses of the HTR-10 and Application to the PBMR. Nuclear Technology, 170(2), 306-321. doi:10.13182/nt10-a9485 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Hernández, V., Román, J. E., & Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. High Performance Computing for Computational Science — VECPAR 2002, 377-391. doi:10.1007/3-540-36569-9_25 es_ES
dc.description.references Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529 es_ES
dc.description.references Chao, Y. A., & Shatilla, Y. A. (1995). Conformal Mapping and Hexagonal Nodal Methods —II: Implementation in the ANC-H Code. Nuclear Science and Engineering, 121(2), 210-225. doi:10.13182/nse95-a28559 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem