- -

Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

Show full item record

Muñoz Mas, R.; Fukuda, S.; Portolés, J.; Martinez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics. 43:24-37. https://doi.org/10.1016/J.ECOINF.2017.10.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/102250

Files in this item

Item Metadata

Title: Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)
Author: Muñoz Mas, Rafael Fukuda, Shinji Portolés, Javier Martinez-Capel, Francisco
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible classification techniques suited to render trustworthy species distribution and habitat suitability models. Although several ...[+]
Subjects: Differential Evolution , Habitat suitability model , Iberian Peninsula , Machine learning , Partial dependence plot , Species distribution model
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Ecological Informatics. (issn: 1574-9541 )
DOI: 10.1016/J.ECOINF.2017.10.008
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/J.ECOINF.2017.10.008
Project ID:
info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/
Thanks:
The study has been partially funded by the national Research project IMPADAPT (CGL2013-48424-C2-1-R) with MINECO (Spanish Ministry of Economy) and Feder funds and by the Confederacion Hidrografica del Near (Spanish Ministry ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record