- -

A two-parameter design storm for Mediterranean convective rainfall

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A two-parameter design storm for Mediterranean convective rainfall

Show simple item record

Files in this item

dc.contributor.author García Bartual, Rafael Luis es_ES
dc.contributor.author Andrés Doménech, Ignacio es_ES
dc.date.accessioned 2018-06-21T04:21:45Z
dc.date.available 2018-06-21T04:21:45Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1027-5606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104444
dc.description.abstract [EN] The following research explores the feasibility of building effective design storms for extreme hydrological regimes, such as the one which characterizes the rainfall regime of the east and south-east of the Iberian Peninsula, without employing intensity-duration-frequency (IDF) curves as a starting point. Nowadays, after decades of functioning hydrological automatic networks, there is an abundance of high-resolution rainfall data with a reasonable statistic representation, which enable the direct research of temporal patterns and inner structures of rainfall events at a given geographic location, with the aim of establishing a statistical synthesis directly based on those observed patterns. The authors propose a temporal design storm defined in analytical terms, through a two-parameter gamma-type function. The two parameters are directly estimated from 73 independent storms identified from rainfall records of high temporal resolution in Valencia (Spain). All the relevant analytical properties derived from that function are developed in order to use this storm in real applications. In particular, in order to assign a probability to the design storm (return period), an auxiliary variable combining maximum intensity and total cumulated rainfall is introduced. As a result, for a given return period, a set of three storms with different duration, depth and peak intensity are defined. The consistency of the results is verified by means of comparison with the classic method of alternating blocks based on an IDF curve, for the above mentioned study case. es_ES
dc.description.sponsorship This work was supported by the Regional Government of Valencia (Generalitat Valenciana, Conselleria d'Educacio, Investigacio, Cultura i Esport) through the project "Formulacion de un hietograma sintetico con reproduccion de las relaciones de dependencia entre variables de evento y de la estructura interna espacio-temporal" (reference GV/2015/064).
dc.language Inglés es_ES
dc.publisher EUROPEAN GEOSCIENCES UNION, MAX-PLANCK-STR 13, KATLENBURG-LINDAU, GERMANY, 37191 es_ES
dc.relation GV/GV/2015/064 es_ES
dc.relation.ispartof HYDROLOGY AND EARTH SYSTEM SCIENCES es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A two-parameter design storm for Mediterranean convective rainfall es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-21-2377-2017 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation García Bartual, RL.; Andrés Doménech, I. (2017). A two-parameter design storm for Mediterranean convective rainfall. HYDROLOGY AND EARTH SYSTEM SCIENCES. 21(5):2377-2387. doi:10.5194/hess-21-2377-2017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.5194/hess-21-2377-2017 es_ES
dc.description.upvformatpinicio 2377 es_ES
dc.description.upvformatpfin 2387 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela 336861 es_ES
dc.contributor.funder Generalitat Valenciana (GV) es_ES
dc.relation.references Adams, B. J. and Howard, C. D. D.: Design Storm Pathology, Can. Water Resour. J., 11, 49–55, https://doi.org/10.4296/cwrj1103049, 1986. es_ES
dc.relation.references Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal design hyetograph selection, Hydrol. Process., 22, 813–820, https://doi.org/10.1002/hyp.6646, 2008. es_ES
dc.relation.references Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010. es_ES
dc.relation.references Andrés-Doménech, I., García-Bartual, R., Rico Cortés, M., and Albentosa Hernández, E.: A Gaussian design-storm for Mediterranean convective events. Sustainable Hydraulics in the Era of Global Change, edited by: Erpicum, S., Dewals, B., Archambeau, P., and Pirotton, M., Taylor & Francis, London, ISBN 978-1-138-02977-4, 2016. es_ES
dc.relation.references Ball, J. E.: The influence of storm temporal patterns on catchment response, J. Hydrol., 158, 285–303, 1994. es_ES
dc.relation.references Barnolas, M., Rigo, T., and Llasat, M. C.: Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS, Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, 2010. es_ES
dc.relation.references Bonta, J. V. and Rao, R.: Factors affecting the identification of independent storm events, J. Hydrol., 98, 275–293, 1988. es_ES
dc.relation.references Brummer, J.: Rainfall events as paths of a stochastic process: Problems of design storm analysis, Water Sci. Technol., 16, 131–138, 1984. es_ES
dc.relation.references Capsoni, C., Luini, L., Paraboni, A., Riva, C., and Martellucci A.: A new prediction model of rain attenuation that separately accounts for stratiform and convective rain, IEEE T. Antenn. Propag., 57, 196–204, 2009. es_ES
dc.relation.references Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, Mc Graw-Hill, New York, 1988. es_ES
dc.relation.references De Luca, D. L.: Analysis and modelling of rainfall fields at different resolutions in southern Italy, Hydrolog. Sci. J., 59, 1536–1558, https://doi.org/10.1080/02626667.2014.926013, 2014. es_ES
dc.relation.references Di Baldassarre, G., Brath, A., and Montanari, A.: Reliability of different depth-duration-frequency equations for estimating short-duration design storms, Water Resour. Res., 42, W12501, https://doi.org/10.1029/2006WR004911, 2006. es_ES
dc.relation.references Dunkerley, D.: Identifying individual rain events from pluviography records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, 2008. es_ES
dc.relation.references Frances, F., García-Bartual, R., and Bussi, G.: High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events, in: “Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management”, Taylor and Francis, ISBN 978-0-415-62078-9, 185–190, 2012. es_ES
dc.relation.references French, R. and Jones, M.: Design rainfall temporal patterns in Australian Rainfall and Runoff: Durations exceeding one hour, Australian Journal of Water Resources, 16, 21–27, 2012. es_ES
dc.relation.references Froehlich, D. C.: Mathematical formulations of NRCS 24-hour design storms, J. Irrig. Drain E.-ASCE, 135, 241–247, https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(241), 2009. es_ES
dc.relation.references García-Bartual, R. and Marco, J.: A stochastic model of the internal structure of convective precipitation in time at a raingauge site, J. Hydrol., 118, 129–142, https://doi.org/10.1016/0022-1694(90)90254-U, 1990. es_ES
dc.relation.references García-Bartual, R. and Schneider, M.: Estimating maximum expected short-duration rainfall intensities from extreme convective storms, Phys. Chem. Earth Pt. B, 26, 675–681, https://doi.org/10.1016/S1464-1909(01)00068-5, 2001. es_ES
dc.relation.references Hicks, W. I.: A method of computing urban runoff, T. Am. Soc. Civ. Eng., 109, 1217–1253, 1944. es_ES
dc.relation.references Hogg, W. D.: Time distribution of short duration rainfall in Canada, in: Proceedings Canadian Hydrology Symposium, 80, Ottawa, Ontario, 53–63, 1980. es_ES
dc.relation.references Hogg, W. D.: Distribution of design rainfall with time: design considerations. American Geophysical Union Chapman on Rainfall Rates, Urbana, Illinois, 27–29 April 1982. es_ES
dc.relation.references Hoppe, H.: Impact of input data uncertainties on urban drainage models: climate change – a crucial issue? In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September, 10 pp., 2008. es_ES
dc.relation.references Huff, F. A.: Time distribution of rainfall in heavy storms, Water Resour. Res., 3, 1007–1019, https://doi.org/10.1029/WR003i004p01007, 1967. es_ES
dc.relation.references Huff, F. A. and Angel, J. R.: Rainfall Distributions and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois (Bulletin 70), Illinois State Water Survey, 1989. es_ES
dc.relation.references Keifer, C. J. and Chu, H. H.: Synthetic storm pattern for drainage design, J. Hydraul. Eng-ASCE, 83, 1–25, 1957. es_ES
dc.relation.references Kuichling, E.: The relation between rainfall and the discharge in sewers in populous districts, T. Am. Soc. Civ. Eng., 20, 37–40, 1889. es_ES
dc.relation.references Llasat, M. C.: . An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain, Int. J. Climatol., 21, 1385–1400, 2001. es_ES
dc.relation.references McCuen, R. H.: Hydrologic analysis and design, Prentice-Hall, Englewood Cliffs, N. J., 1989. es_ES
dc.relation.references McPherson, M. B.: Urban runoff control planning, EPA-600/9-78-035, Environmental Protection Agency, Washington D.C., 1978. es_ES
dc.relation.references Northrop, P. J. and Stone, T. M.: A point process model for rainfall with truncated gaussian rain cells. Research Report No. 251, Department of Statistical Science, University College London, 2005. es_ES
dc.relation.references Packman, J. C. and Kidd, C. H. R.: A logical approach to the design storm concept, Water Resour. Res., 16, 994–1000, https://doi.org/10.1029/WR016i006p00994, 1980. es_ES
dc.relation.references Pilgrim, D. H.: Australian rainfall and runoff, a guide to flood estimation. The Institution of Engineers, ACT, Australia, 1987. es_ES
dc.relation.references Pilgrim, D. H. and Cordery, I.: Rainfall temporal patterns for design floods, J. Hydr. Eng. Div.-ASCE, 101, 81–95, 1975. es_ES
dc.relation.references Restrepo-Posada, P. J. and Eagleson, P. S.: Identification of independent rainstorms, J. Hydrol., 55, 303–319, 1982. es_ES
dc.relation.references Rigo, T. and Llasat, M. C.: Radar analysis of the life cycle of Mesoscale Convective Systems during the 10 June 2000 event, Nat. Hazards Earth Syst. Sci., 5, 959–970, https://doi.org/10.5194/nhess-5-959-2005, 2005. es_ES
dc.relation.references Salsón, S. and Garcia-Bartual, R.: A space-time rainfall generator for highly convective Mediterranean rainstorms, Nat. Hazards Earth Syst. Sci., 3, 103–114, https://doi.org/10.5194/nhess-3-103-2003, 2003. es_ES
dc.relation.references Témez, J.: Cálculo Hidrometeorológico de caudales máximos en pequeñas cuencas naturales, Dirección General de Carreteras, Madrid, España, 1978. es_ES
dc.relation.references Vaskova, I.: Cálculo de las curvas IDF mediante la incorporación de las propiedades de escala y de dependencia temporales, PhD Thesis, Universitat Politècnica de València, 2001 (in Spanish). es_ES
dc.relation.references Walesh, S. G., Lau, D. H., and Liebman, M. D.: Statistically based use of event models. Proceedings of the International Symposium on Urban Storm Runoff, University of Kentucky, Lexington, 75–81, 1979. es_ES
dc.relation.references Watt, E. and Marsalek, J.: Critical review of the evolution of design storm event concept, Can. J. Civil. Eng., 40, 105–113, https://doi.org/10.1139/cjce-2011-0594, 2013. es_ES


This item appears in the following Collection(s)

Show simple item record