- -

Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores

Show full item record

Ali, M.; Ahmed, I.; Ramirez Hoyos, P.; Nasir, S.; Niemeyer, CM.; Mafe, S.; Ensinger, W. (2016). Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. Small. 12(15):2014-2021. https://doi.org/10.1002/smll.201600160

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105813

Files in this item

Item Metadata

Title: Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores
Author: Ali, Mubarak Ahmed, Ishtiaq Ramirez Hoyos, Patricio Nasir, Saima Niemeyer, Christof M. Mafe, Salvador Ensinger, Wolfgang
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
[EN] The label¿free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2¿picolyl)amine ...[+]
Copyrigths: Reserva de todos los derechos
Small. (issn: 1613-6810 )
DOI: 10.1002/smll.201600160
John Wiley & Sons
Publisher version: https://doi.org/10.1002/smll.201600160
Project ID:
M.A., S.N., and W.E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. P.R. and S.M. acknowledge financial support by the Generalitat ...[+]
Type: Artículo


Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627-639. doi:10.1016/j.trac.2008.06.002

Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a

Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b [+]
Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627-639. doi:10.1016/j.trac.2008.06.002

Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a

Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b

Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904

Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q

Ali, M., Schiedt, B., Neumann, R., & Ensinger, W. (2010). Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromolecular Bioscience, 10(1), 28-32. doi:10.1002/mabi.200900198

Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258

Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., & Li, J. (2005). Detecting Single Stranded DNA with a Solid State Nanopore. Nano Letters, 5(10), 1905-1909. doi:10.1021/nl051199m

Iqbal, S. M., Akin, D., & Bashir, R. (2007). Solid-state nanopore channels with DNA selectivity. Nature Nanotechnology, 2(4), 243-248. doi:10.1038/nnano.2007.78

Mara, A., Siwy, Z., Trautmann, C., Wan, J., & Kamme, F. (2004). An Asymmetric Polymer Nanopore for Single Molecule Detection. Nano Letters, 4(3), 497-501. doi:10.1021/nl035141o

Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., & Dekker, C. (2005). Fast DNA Translocation through a Solid-State Nanopore. Nano Letters, 5(7), 1193-1197. doi:10.1021/nl048030d

Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f

Bayley, H., Braha, O., Cheley, S., & Gu, L.-Q. (2005). Engineered Nanopores. Nanobiotechnology, 93-112. doi:10.1002/3527602453.ch7

Bayley, H., Braha, O., & Gu, L.-Q. (2000). Stochastic Sensing with Protein Pores. Advanced Materials, 12(2), 139-142. doi:10.1002/(sici)1521-4095(200001)12:2<139::aid-adma139>3.0.co;2-q

Bayley, H., & Cremer, P. S. (2001). Stochastic sensors inspired by biology. Nature, 413(6852), 226-230. doi:10.1038/35093038

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j

Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008

Korchev, Y. E., Bashford, C. L., Alder, G. M., Apel, P. Y., Edmonds, D. T., Lev, A. A., … Pasternak, C. A. (1997). A novel explanation for fluctuations of ion current through narrow pores. The FASEB Journal, 11(7), 600-608. doi:10.1096/fasebj.11.7.9212084

Siwy, Z., Apel, P., Dobrev, D., Neumann, R., Spohr, R., Trautmann, C., & Voss, K. (2003). Ion transport through asymmetric nanopores prepared by ion track etching. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 143-148. doi:10.1016/s0168-583x(03)00884-x

Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471

Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4

Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f

Han, C., Hou, X., Zhang, H., Guo, W., Li, H., & Jiang, L. (2011). Enantioselective Recognition in Biomimetic Single Artificial Nanochannels. Journal of the American Chemical Society, 133(20), 7644-7647. doi:10.1021/ja2004939

Liu, Q., Xiao, K., Wen, L., Lu, H., Liu, Y., Kong, X.-Y., … Jiang, L. (2015). Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society, 137(37), 11976-11983. doi:10.1021/jacs.5b04911

Han, C., Su, H., Sun, Z., Wen, L., Tian, D., Xu, K., … Jiang, L. (2013). Biomimetic Ion Nanochannels as a Highly Selective Sequential Sensor for Zinc Ions Followed by Phosphate Anions. Chemistry - A European Journal, 19(28), 9388-9395. doi:10.1002/chem.201300200

Pérez-Mitta, G., Albesa, A. G., Knoll, W., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2015). Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 7(38), 15594-15598. doi:10.1039/c5nr04645a

Tian, Y., Hou, X., Wen, L., Guo, W., Song, Y., Sun, H., … Zhu, D. (2010). A biomimetic zinc activated ion channel. Chemical Communications, 46(10), 1682. doi:10.1039/b918006k

Shang, Y., Zhang, Y., Li, P., Lai, J., Kong, X.-Y., Liu, W., … Jiang, L. (2015). DNAzyme tunable lead(ii) gating based on ion-track etched conical nanochannels. Chemical Communications, 51(27), 5979-5981. doi:10.1039/c5cc00288e

Liu, Q., Xiao, K., Wen, L., Dong, Y., Xie, G., Zhang, Z., … Jiang, L. (2014). A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano, 8(12), 12292-12299. doi:10.1021/nn506257c

Xie, G., Xiao, K., Zhang, Z., Kong, X.-Y., Liu, Q., Li, P., … Jiang, L. (2015). A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single Nanochannel. Angewandte Chemie International Edition, 54(46), 13664-13668. doi:10.1002/anie.201505269

Ngo, H. T., Liu, X., & Jolliffe, K. A. (2012). Anion recognition and sensing with Zn(ii)–dipicolylamine complexes. Chemical Society Reviews, 41(14), 4928. doi:10.1039/c2cs35087d

Lee, S., Yuen, K. K. Y., Jolliffe, K. A., & Yoon, J. (2015). Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews, 44(7), 1749-1762. doi:10.1039/c4cs00353e

Kim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003f

Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial Receptors for the Recognition of Phosphorylated Molecules. Chemical Reviews, 111(11), 6603-6782. doi:10.1021/cr100242s

Heinonen, J. K. (2001). Biological Role of Inorganic Pyrophosphate. doi:10.1007/978-1-4615-1433-6

Timms, A. E. (2002). Genetic studies of disorders of calcium crystal deposition. Rheumatology, 41(7), 725-729. doi:10.1093/rheumatology/41.7.725

Doherty, M., Belcher, C., Regan, M., Jones, A., & Ledingham, J. (1996). Association between synovial fluid levels of inorganic pyrophosphate and short term radiographic outcome of knee osteoarthritis. Annals of the Rheumatic Diseases, 55(7), 432-436. doi:10.1136/ard.55.7.432

Lomashvili, K. A., Khawandi, W., & O’Neill, W. C. (2005). Reduced Plasma Pyrophosphate Levels in Hemodialysis Patients. Journal of the American Society of Nephrology, 16(8), 2495-2500. doi:10.1681/asn.2004080694

Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., & Nyrén, P. (1996). Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Analytical Biochemistry, 242(1), 84-89. doi:10.1006/abio.1996.0432

Yang, S., Feng, G., & Williams, N. H. (2012). Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(ii) complex. Organic & Biomolecular Chemistry, 10(29), 5606. doi:10.1039/c2ob25617g

Liu, D. J., Credo, G. M., Su, X., Wu, K., Lim, H. C., Elibol, O. H., … Varma, M. (2011). Surface immobilizable chelator for label-free electrical detection of pyrophosphate. Chemical Communications, 47(29), 8310. doi:10.1039/c1cc12073e

Credo, G. M., Su, X., Wu, K., Elibol, O. H., Liu, D. J., Reddy, B., … Varma, M. (2012). Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. The Analyst, 137(6), 1351. doi:10.1039/c2an15930a

Ali, M., Bayer, V., Schiedt, B., Neumann, R., & Ensinger, W. (2008). Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology, 19(48), 485711. doi:10.1088/0957-4484/19/48/485711

Xue, L., Wang, H.-H., Wang, X.-J., & Jiang, H. (2008). Modulating Affinities of Di-2-picolylamine (DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands. Inorganic Chemistry, 47(10), 4310-4318. doi:10.1021/ic702393z

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C., & Dekker, C. (2007). Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Letters, 7(4), 1022-1025. doi:10.1021/nl070194h

Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g




This item appears in the following Collection(s)

Show full item record