- -

Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ahmed, Ishtiaq es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Niemeyer, Christof M. es_ES
dc.contributor.author Mafe, Salvador es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.date.accessioned 2018-07-16T06:45:18Z
dc.date.available 2018-07-16T06:45:18Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1613-6810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105813
dc.description.abstract [EN] The label¿free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2¿picolyl)amine [bis(DPA)] moieties using carbodiimide coupling chemistry. The complexation of zinc (Zn2+) ion is achieved by exposing the modified pore to a solution of zinc chloride to form bis(Zn2+¿DPA) complexes. The chemical functionalization is demonstrated by recording the changes in the observed current¿voltage (I¿V) curves before and after pore modification. The bis(Zn2+¿DPA) complexes on the pore walls serve as recognition sites for pyrophosphate anion. The experimental results show that the proposed nanofluidic sensor has the ability to sense picomolar concentrations of PPi anion in the surrounding environment. On the contrary, it does not respond to other phosphate anions, including monohydrogen phosphate, dihydrogen phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The experimental results are described theoretically by using a model based on the Poisson¿Nernst¿Planck equations. es_ES
dc.description.sponsorship M.A., S.N., and W.E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. P.R. and S.M. acknowledge financial support by the Generalitat Valenciana (Program of Excellence Prometeo/GV/0069), the Spanish Ministry of Economic Affairs and Competitiveness (MAT2015-65011-P), and FEDER. I. A. and C.M.N. acknowledge financial support through the Helmholtz programme BioInterfaces in Technology and Medicine. The authors are also thankful to Prof. C. Trautmann, Department of Materials Research from GSI, for support with irradiation experiments. en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/smll.201600160 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ali, M.; Ahmed, I.; Ramirez Hoyos, P.; Nasir, S.; Niemeyer, CM.; Mafe, S.; Ensinger, W. (2016). Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. Small. 12(15):2014-2021. https://doi.org/10.1002/smll.201600160 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/smll.201600160 es_ES
dc.description.upvformatpinicio 2014 es_ES
dc.description.upvformatpfin 2021 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 15 es_ES
dc.relation.pasarela S\314418 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627-639. doi:10.1016/j.trac.2008.06.002 es_ES
dc.description.references Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a es_ES
dc.description.references Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b es_ES
dc.description.references Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904 es_ES
dc.description.references Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q es_ES
dc.description.references Ali, M., Schiedt, B., Neumann, R., & Ensinger, W. (2010). Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromolecular Bioscience, 10(1), 28-32. doi:10.1002/mabi.200900198 es_ES
dc.description.references Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258 es_ES
dc.description.references Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., & Li, J. (2005). Detecting Single Stranded DNA with a Solid State Nanopore. Nano Letters, 5(10), 1905-1909. doi:10.1021/nl051199m es_ES
dc.description.references Iqbal, S. M., Akin, D., & Bashir, R. (2007). Solid-state nanopore channels with DNA selectivity. Nature Nanotechnology, 2(4), 243-248. doi:10.1038/nnano.2007.78 es_ES
dc.description.references Mara, A., Siwy, Z., Trautmann, C., Wan, J., & Kamme, F. (2004). An Asymmetric Polymer Nanopore for Single Molecule Detection. Nano Letters, 4(3), 497-501. doi:10.1021/nl035141o es_ES
dc.description.references Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., & Dekker, C. (2005). Fast DNA Translocation through a Solid-State Nanopore. Nano Letters, 5(7), 1193-1197. doi:10.1021/nl048030d es_ES
dc.description.references Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f es_ES
dc.description.references Bayley, H., Braha, O., Cheley, S., & Gu, L.-Q. (2005). Engineered Nanopores. Nanobiotechnology, 93-112. doi:10.1002/3527602453.ch7 es_ES
dc.description.references Bayley, H., Braha, O., & Gu, L.-Q. (2000). Stochastic Sensing with Protein Pores. Advanced Materials, 12(2), 139-142. doi:10.1002/(sici)1521-4095(200001)12:2<139::aid-adma139>3.0.co;2-q es_ES
dc.description.references Bayley, H., & Cremer, P. S. (2001). Stochastic sensors inspired by biology. Nature, 413(6852), 226-230. doi:10.1038/35093038 es_ES
dc.description.references Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j es_ES
dc.description.references Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008 es_ES
dc.description.references Korchev, Y. E., Bashford, C. L., Alder, G. M., Apel, P. Y., Edmonds, D. T., Lev, A. A., … Pasternak, C. A. (1997). A novel explanation for fluctuations of ion current through narrow pores. The FASEB Journal, 11(7), 600-608. doi:10.1096/fasebj.11.7.9212084 es_ES
dc.description.references Siwy, Z., Apel, P., Dobrev, D., Neumann, R., Spohr, R., Trautmann, C., & Voss, K. (2003). Ion transport through asymmetric nanopores prepared by ion track etching. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 143-148. doi:10.1016/s0168-583x(03)00884-x es_ES
dc.description.references Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 es_ES
dc.description.references Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4 es_ES
dc.description.references Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f es_ES
dc.description.references Han, C., Hou, X., Zhang, H., Guo, W., Li, H., & Jiang, L. (2011). Enantioselective Recognition in Biomimetic Single Artificial Nanochannels. Journal of the American Chemical Society, 133(20), 7644-7647. doi:10.1021/ja2004939 es_ES
dc.description.references Liu, Q., Xiao, K., Wen, L., Lu, H., Liu, Y., Kong, X.-Y., … Jiang, L. (2015). Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society, 137(37), 11976-11983. doi:10.1021/jacs.5b04911 es_ES
dc.description.references Han, C., Su, H., Sun, Z., Wen, L., Tian, D., Xu, K., … Jiang, L. (2013). Biomimetic Ion Nanochannels as a Highly Selective Sequential Sensor for Zinc Ions Followed by Phosphate Anions. Chemistry - A European Journal, 19(28), 9388-9395. doi:10.1002/chem.201300200 es_ES
dc.description.references Pérez-Mitta, G., Albesa, A. G., Knoll, W., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2015). Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 7(38), 15594-15598. doi:10.1039/c5nr04645a es_ES
dc.description.references Tian, Y., Hou, X., Wen, L., Guo, W., Song, Y., Sun, H., … Zhu, D. (2010). A biomimetic zinc activated ion channel. Chemical Communications, 46(10), 1682. doi:10.1039/b918006k es_ES
dc.description.references Shang, Y., Zhang, Y., Li, P., Lai, J., Kong, X.-Y., Liu, W., … Jiang, L. (2015). DNAzyme tunable lead(ii) gating based on ion-track etched conical nanochannels. Chemical Communications, 51(27), 5979-5981. doi:10.1039/c5cc00288e es_ES
dc.description.references Liu, Q., Xiao, K., Wen, L., Dong, Y., Xie, G., Zhang, Z., … Jiang, L. (2014). A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano, 8(12), 12292-12299. doi:10.1021/nn506257c es_ES
dc.description.references Xie, G., Xiao, K., Zhang, Z., Kong, X.-Y., Liu, Q., Li, P., … Jiang, L. (2015). A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single Nanochannel. Angewandte Chemie International Edition, 54(46), 13664-13668. doi:10.1002/anie.201505269 es_ES
dc.description.references Ngo, H. T., Liu, X., & Jolliffe, K. A. (2012). Anion recognition and sensing with Zn(ii)–dipicolylamine complexes. Chemical Society Reviews, 41(14), 4928. doi:10.1039/c2cs35087d es_ES
dc.description.references Lee, S., Yuen, K. K. Y., Jolliffe, K. A., & Yoon, J. (2015). Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews, 44(7), 1749-1762. doi:10.1039/c4cs00353e es_ES
dc.description.references Kim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003f es_ES
dc.description.references Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial Receptors for the Recognition of Phosphorylated Molecules. Chemical Reviews, 111(11), 6603-6782. doi:10.1021/cr100242s es_ES
dc.description.references Heinonen, J. K. (2001). Biological Role of Inorganic Pyrophosphate. doi:10.1007/978-1-4615-1433-6 es_ES
dc.description.references Timms, A. E. (2002). Genetic studies of disorders of calcium crystal deposition. Rheumatology, 41(7), 725-729. doi:10.1093/rheumatology/41.7.725 es_ES
dc.description.references Doherty, M., Belcher, C., Regan, M., Jones, A., & Ledingham, J. (1996). Association between synovial fluid levels of inorganic pyrophosphate and short term radiographic outcome of knee osteoarthritis. Annals of the Rheumatic Diseases, 55(7), 432-436. doi:10.1136/ard.55.7.432 es_ES
dc.description.references Lomashvili, K. A., Khawandi, W., & O’Neill, W. C. (2005). Reduced Plasma Pyrophosphate Levels in Hemodialysis Patients. Journal of the American Society of Nephrology, 16(8), 2495-2500. doi:10.1681/asn.2004080694 es_ES
dc.description.references Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., & Nyrén, P. (1996). Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Analytical Biochemistry, 242(1), 84-89. doi:10.1006/abio.1996.0432 es_ES
dc.description.references Yang, S., Feng, G., & Williams, N. H. (2012). Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(ii) complex. Organic & Biomolecular Chemistry, 10(29), 5606. doi:10.1039/c2ob25617g es_ES
dc.description.references Liu, D. J., Credo, G. M., Su, X., Wu, K., Lim, H. C., Elibol, O. H., … Varma, M. (2011). Surface immobilizable chelator for label-free electrical detection of pyrophosphate. Chemical Communications, 47(29), 8310. doi:10.1039/c1cc12073e es_ES
dc.description.references Credo, G. M., Su, X., Wu, K., Elibol, O. H., Liu, D. J., Reddy, B., … Varma, M. (2012). Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. The Analyst, 137(6), 1351. doi:10.1039/c2an15930a es_ES
dc.description.references Ali, M., Bayer, V., Schiedt, B., Neumann, R., & Ensinger, W. (2008). Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology, 19(48), 485711. doi:10.1088/0957-4484/19/48/485711 es_ES
dc.description.references Xue, L., Wang, H.-H., Wang, X.-J., & Jiang, H. (2008). Modulating Affinities of Di-2-picolylamine (DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands. Inorganic Chemistry, 47(10), 4310-4318. doi:10.1021/ic702393z es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c es_ES
dc.description.references Van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C., & Dekker, C. (2007). Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Letters, 7(4), 1022-1025. doi:10.1021/nl070194h es_ES
dc.description.references Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem