- -

Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner-Sanz, Juan José es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2018-07-16T09:09:00Z
dc.date.available 2018-07-16T09:09:00Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105893
dc.description.abstract [EN] The impedance concept is defined by Ohm's generalized law. Ohm's law requires the fulfilment of 3 conditions in order to be valid: causality, linearity and stability. In general, electrochemical systems are highly nonlinear systems; and therefore, in order to achieve linearity low amplitude perturbations have to be used during EIS measurements. However, small amplitude perturbations lead to low signal-to-noise ratios. Consequently, the quality of an EIS measurement is determined by a trade-off: the perturbation amplitude should be big enough in order to obtain a good signal-to-noise ratio; and at the same time, it should be small enough in order to avoid significant nonlinear effects. The optimum perturbation amplitude corresponds with the maximum perturbation amplitude that ensures a pseudo linear response of the system. In this work, a method for experimentally determining the optimum perturbation amplitude for performing EIS measurements of a given system is presented. The presented method is based on the harmonic analysis of the output signals; and in this work, it was applied to a highly nonlinear system: the cathodic electrode of an alkaline water electrolyser. The presented method allows optimising the perturbation amplitude in both, constant amplitude and frequency dependant amplitude strategies. (c) 2017 The Electrochemical Society. All rights reserved. es_ES
dc.description.sponsorship The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.1451713jes es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F268/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Giner-Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society. 164(13):H918-H924. https://doi.org/10.1149/2.1451713jes es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1149/2.1451713jes es_ES
dc.description.upvformatpinicio H918 es_ES
dc.description.upvformatpfin H924 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 164 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\346422 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. doi:10.1016/j.electacta.2005.02.107 es_ES
dc.description.references Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2008). es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 es_ES
dc.description.references Cascos, V., Aguadero, A., Harrington, G., Fernández-Díaz, M. T., & Alonso, J. A. (2017). Design of Sr0.7R0.3CoO3-δ(R = Tb and Er) Perovskites Performing as Cathode Materials in Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(10), F3019-F3027. doi:10.1149/2.0031710jes es_ES
dc.description.references Pang, S., Wang, W., Su, Y., Shen, X., Wang, Y., Xu, K., & Chen, C. (2017). Synergistic Effect of A-Site Cation Ordered-Disordered Perovskite as a Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(7), F775-F780. doi:10.1149/2.0701707jes es_ES
dc.description.references Kiebach, R., Zielke, P., Veltzé, S., Ovtar, S., Xu, Y., Simonsen, S. B., … Küngas, R. (2017). On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of The Electrochemical Society, 164(7), F748-F758. doi:10.1149/2.0361707jes es_ES
dc.description.references Chen, J., Liu, Q., Wang, B., Li, F., Jiang, H., Liu, K., … Wang, D. (2017). Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries. Journal of The Electrochemical Society, 164(7), A1526-A1533. doi:10.1149/2.0971707jes es_ES
dc.description.references Hwang, C., Lee, K., Um, H.-D., Lee, Y., Seo, K., & Song, H.-K. (2017). Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 164(7), A1564-A1568. doi:10.1149/2.1241707jes es_ES
dc.description.references Zhang, Y., Chen, F., Yang, D., Zha, W., Li, J., Shen, Q., … Zhang, L. (2017). High Capacity All-Solid-State Lithium Battery Using Cathodes with Three-Dimensional Li+Conductive Network. Journal of The Electrochemical Society, 164(7), A1695-A1702. doi:10.1149/2.1501707jes es_ES
dc.description.references Malifarge, S., Delobel, B., & Delacourt, C. (2017). Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell. Journal of The Electrochemical Society, 164(11), E3329-E3334. doi:10.1149/2.0331711jes es_ES
dc.description.references Paulraj, A. R., Kiros, Y., Skårman, B., & Vidarsson, H. (2017). Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries. Journal of The Electrochemical Society, 164(7), A1665-A1672. doi:10.1149/2.1431707jes es_ES
dc.description.references Stein, M., Mistry, A., & Mukherjee, P. P. (2017). Mechanistic Understanding of the Role of Evaporation in Electrode Processing. Journal of The Electrochemical Society, 164(7), A1616-A1627. doi:10.1149/2.1271707jes es_ES
dc.description.references Murbach, M. D., & Schwartz, D. T. (2017). Extending Newman’s Pseudo-Two-Dimensional Lithium-Ion Battery Impedance Simulation Approach to Include the Nonlinear Harmonic Response. Journal of The Electrochemical Society, 164(11), E3311-E3320. doi:10.1149/2.0301711jes es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137 es_ES
dc.description.references Katić, J., Metikoš-Huković, M., Šarić, I., & Petravić, M. (2017). Electronic Structure and Redox Behavior of Tin Sulfide Films Potentiostatically Formed on Tin. Journal of The Electrochemical Society, 164(7), C383-C389. doi:10.1149/2.0371707jes es_ES
dc.description.references Yang, J., Yang, Y., Balaskas, A., & Curioni, M. (2017). Development of a Chromium-Free Post-Anodizing Treatment Based on 2-Mercaptobenzothiazole for Corrosion Protection of AA2024T3. Journal of The Electrochemical Society, 164(7), C376-C382. doi:10.1149/2.1191707jes es_ES
dc.description.references Takabatake, Y., Kitagawa, Y., Nakanishi, T., Hasegawa, Y., & Fushimi, K. (2017). Grain Dependency of a Passive Film Formed on Polycrystalline Iron in pH 8.4 Borate Solution. Journal of The Electrochemical Society, 164(7), C349-C355. doi:10.1149/2.1011707jes es_ES
dc.description.references Qi, J., Gao, L., Li, Y., Wang, Z., Thompson, G. E., & Skeldon, P. (2017). An Optimized Trivalent Chromium Conversion Coating Process for AA2024-T351 Alloy. Journal of The Electrochemical Society, 164(7), C390-C395. doi:10.1149/2.1371707jes es_ES
dc.description.references Zhang, Q., Kercher, A. K., Veith, G. M., Sarbada, V., Brady, A. B., Li, J., … Marschilok, A. C. (2017). Lithium Vanadium Oxide (Li1.1V3O8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry. Journal of The Electrochemical Society, 164(7), A1503-A1513. doi:10.1149/2.0881707jes es_ES
dc.description.references Moya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087 es_ES
dc.description.references García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jes es_ES
dc.description.references Wei, Q., Yan, X., Kang, Z., Zhang, Z., Cao, S., Liu, Y., & Zhang, Y. (2017). Carbon Quantum Dots Decorated C3N4/TiO2Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of The Electrochemical Society, 164(7), H515-H520. doi:10.1149/2.1281707jes es_ES
dc.description.references Machado, S., Calaça, G. N., da Silva, J. P., de Araujo, M. P., Boeré, R. T., Pessôa, C. A., & Wohnrath, K. (2017). Electrochemical Characterization of a Carbon Ceramic Electrode Modified with a Ru(II) Arene Complex and Its Application as Voltammetric Sensor for Paracetamol. Journal of The Electrochemical Society, 164(6), B314-B320. doi:10.1149/2.0191707jes es_ES
dc.description.references Balasubramanian, P., Thirumalraj, B., Chen, S.-M., & Barathi, P. (2017). Electrochemical Determination of Isoniazid Using Gallic Acid Supported Reduced Graphene Oxide. Journal of The Electrochemical Society, 164(7), H503-H508. doi:10.1149/2.1021707jes es_ES
dc.description.references Jiang, J. (2017). High Temperature Monolithic Biochar Supercapacitor Using Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 164(8), H5043-H5048. doi:10.1149/2.0211708jes es_ES
dc.description.references Wang, K.-Y., Chiu, Y.-K., & Cheng, H.-C. (2017). Electrochemical Capacitors of Horizontally Aligned Carbon Nanotube Electrodes with Oxygen Plasma Treatment. Journal of The Electrochemical Society, 164(7), A1587-A1594. doi:10.1149/2.1251707jes es_ES
dc.description.references Chang, C., Yang, X., Xiang, S., Lin, X., Que, H., & Li, M. (2017). Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors. Journal of The Electrochemical Society, 164(7), A1601-A1607. doi:10.1149/2.1341707jes es_ES
dc.description.references Lasia A. , Electrochemical Impedance Spectrscopy and its applications, Springer, London (2014). es_ES
dc.description.references Gray M. G. Goodman J. W. , Electrochemical Impedance Spectrscopy and its applications, Springer, New York (1995). es_ES
dc.description.references Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005). es_ES
dc.description.references Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7 es_ES
dc.description.references Schönleber, M., Klotz, D., & Ivers-Tiffée, E. (2014). A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta, 131, 20-27. doi:10.1016/j.electacta.2014.01.034 es_ES
dc.description.references Garland, J. E., Pettit, C. M., & Roy, D. (2004). Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochimica Acta, 49(16), 2623-2635. doi:10.1016/j.electacta.2003.12.051 es_ES
dc.description.references Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075 es_ES
dc.description.references Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-l es_ES
dc.description.references Darowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-v es_ES
dc.description.references Darowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-i es_ES
dc.description.references Darowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5 es_ES
dc.description.references Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7 es_ES
dc.description.references Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-x es_ES
dc.description.references Van Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039 es_ES
dc.description.references Van Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096 es_ES
dc.description.references Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-p es_ES
dc.description.references Kiel, M., Bohlen, O., & Sauer, D. U. (2008). Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochimica Acta, 53(25), 7367-7374. doi:10.1016/j.electacta.2008.01.089 es_ES
dc.description.references Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016 es_ES
dc.description.references Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram.com/NonlinearImpedanceOfTafelianElectrochemicalSystems/. es_ES
dc.description.references Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 es_ES
dc.description.references Kaisare, N. S., Ramani, V., Pushpavanam, K., & Ramanathan, S. (2011). An analysis of drifts and nonlinearities in electrochemical impedance spectra. Electrochimica Acta, 56(22), 7467-7475. doi:10.1016/j.electacta.2011.06.112 es_ES
dc.description.references Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133 es_ES
dc.description.references Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007 es_ES
dc.description.references Hernandez-Jaimes, C., Vazquez-Arenas, J., Vernon-Carter, J., & Alvarez-Ramirez, J. (2015). A nonlinear Cole–Cole model for large-amplitude electrochemical impedance spectroscopy. Chemical Engineering Science, 137, 1-8. doi:10.1016/j.ces.2015.06.015 es_ES
dc.description.references Yuan X. Z. , Electrochemical impedance spectroscopy in PEM fuel cells. Fundamentals and applications, Springer, London (2010). es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141 es_ES
dc.description.references Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9 es_ES
dc.description.references Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479 es_ES
dc.description.references BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5 es_ES
dc.description.references Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210 es_ES
dc.description.references Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522 es_ES
dc.description.references Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478 es_ES
dc.description.references Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5 es_ES
dc.description.references Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252 es_ES
dc.description.references Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564 es_ES
dc.description.references Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8 es_ES
dc.description.references Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059 es_ES
dc.description.references Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047 es_ES
dc.description.references Hirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131 es_ES
dc.description.references Popkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316 es_ES
dc.description.references Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457 es_ES
dc.description.references Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133 es_ES
dc.description.references Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—A modern perspective. Proceedings of the IEEE, 69(11), 1380-1419. doi:10.1109/proc.1981.12184 es_ES
dc.description.references Yuan, X., Sun, J. C., Blanco, M., Wang, H., Zhang, J., & Wilkinson, D. P. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 920-928. doi:10.1016/j.jpowsour.2006.05.003 es_ES
dc.description.references Herraiz-Cardona, I., Ortega, E., Vázquez-Gómez, L., & Pérez-Herranz, V. (2011). Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. International Journal of Hydrogen Energy, 36(18), 11578-11587. doi:10.1016/j.ijhydene.2011.06.067 es_ES
dc.description.references Herraiz-Cardona, I., Ortega, E., & Pérez-Herranz, V. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56(3), 1308-1315. doi:10.1016/j.electacta.2010.10.093 es_ES
dc.description.references Herraiz-Cardona, I., Ortega, E., Antón, J. G., & Pérez-Herranz, V. (2011). Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. International Journal of Hydrogen Energy, 36(16), 9428-9438. doi:10.1016/j.ijhydene.2011.05.047 es_ES
dc.description.references Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtención de hidrógeno a partir de la electrolisis alcalina del agua, PhD Tesis, Universitat Politècnica de València, Valencia, 2012. es_ES
dc.description.references Garcia-Antón J. Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000. es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem